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PREFACE 
 
 
 
 

In this book the authors introduce a new type of dual numbers 
called special dual like numbers.  

These numbers are constructed using idempotents in the 
place of nilpotents of order two as new element. That is  
x = a + bg is a special dual like number where a and b are reals 
and g is a new element such that g2 =g. The collection of special 
dual like numbers forms a ring. Further lattices are the rich 
structures which contributes to special dual like numbers. These 
special dual like numbers x = a + bg; when a and b are positive 
reals greater than or equal to one we see powers of x diverge on; 
and every power of x is also a special dual like number, with 
very large a and b. On the other hand if a and b are positive 
reals lying in the open interval (0, 1) then we see the higher 
powers of x may converge to 0. 

Another rich source of idempotents is the Neutrosophic 
number I, as I2 = I. We build several types of finite or infinite 
rings using these Neutrosophic numbers. We also define the 
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notion of mixed dual numbers using both dual numbers and 
special dual like numbers. Neither lattices nor the Neutrosophic 
number I can contribute to mixed dual numbers. The two 
sources are the linear operators on vector spaces or linear 
algebras and the modulo integers Zn; n a suitable composite 
number, are the ones which contribute to mixed dual numbers. 

This book contains seven chapters. Chapter one is 
introductory in nature. Special dual like numbers are introduced 
in chapter two. Chapter three introduces higher dimensional 
special dual like numbers. Special dual like neutrosophic 
numbers are introduced in chapter four of this book. Mixed dual 
numbers are defined and described in chapter five and the 
possible applications are mentioned in chapter six. The last 
chapter has suggested over 145 problems. 

We thank Dr. K.Kandasamy for proof reading and being 
extremely supportive. 

  

  
W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

  



 
 
 
 
Chapter One 
 
 

 
 
INTRODUCTION 
 
 
 
In this book the authors for the first time introduce the new 
notion of special dual like numbers.  Dual numbers were 
introduced in 1873 by W.K. Clifford. 
 
 We call a number a + bg to be a special dual like number if 
a, b  R (or Q or Zn or C) and g is a new element such that  
g2 = g.   
 

We give examples of them. 
 

 The natural class of special dual like numbers can also be 
got from Z  I = {a + bI | a, b  Z, I2 = I , I the indeterminate} 
(Q  I or Zn  I or R  I or C  I). 
 
 Thus introduction of special dual like numbers makes one 
identify these neutrosophic rings as special dual like numbers. 
 
 Apart from this in this book we use distributive lattices to 
build the special dual like numbers. 
 
 For S = {a + bg | a, b  R and g  L, L a lattice} paves way 
to a special dual like number as g  g = g and g  g = g that is 
every element in L is an idempotent under both the operations 
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on L. However if we are using only two dimensional special 
dual like numbers we do not need the notion of distributivity in 
lattices.  Only for higher dimensional special dual like numbers 
we need the concept of distributivity.   
 
 Further the modulo numbers Zn are rich in idempotents 
leading one to construct special dual like numbers. 
 
 We in this book introduce another concept called the mixed 
dual numbers.  We call x = a1 + a2g1 + a3g2, a1, a2, a3  Q (or Z 
or C or Zn or R) and g1 and g2 are new elements such that 2

1g  = 
0 and 2

2g  = g2 with g1g2 = g2g1 = 0 (or g1 or g2 ‘or’ used in the 
mutually exclusive sense) as a mixed dual number. 
 
 We generate mixed dual numbers only from Zn.  However 
we can use linear operators of vector spaces / linear algebras to 
get mixed dual numbers. 
 
 Study in this direction is also carried out.  We construct 
mixed dual numbers of any dimension.  However the dimension 
of mixed dual numbers are always greater than or equal to three.  
Only Zn’s happen to be a rich source of these mixed dual 
numbers.  We have constructed other algebraic structures using 
these two new numbers. 
 
 For more about vector spaces, semivector spaces and rings 
refer [19-20]. 
 
 



 
 
 
 
 
 
Chapter Two 
 
 

 
 
SPECIAL DUAL LIKE NUMBERS 
 
 
 

In this chapter we introduce a new notion called a special 
dual like number.   

 
 The special dual like numbers extend the real numbers by 
adjoining one new element g with the property g2 = g (g is an 
idempotent).  The collection of special dual like numbers forms 
a particular two dimensional general ring.  
 
 A special dual like number has the form x = a + bg, a, b are 
reals, with g2 = g; g a new element. 
 
Example 2.1:  Let g = 4  Z12, a, b  R any real x = a + bg is a 
special dual like number 
 

 x2 = (a + bg) (a + bg) = a2 + (2ab + b2)g 
 

= A + Bg (using g2 = g) only if 2a = –b (as b  0). 
 
 If b = –2a then we see x = a – 2ag and x2 = a2 + (4a2 – 4a2)g 
= a2 only the real part of it.  
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  However if x = a + bg and y = c + dg, xy  bg for any real a, 
b, c, d in R or Q or Z as a  0 b  0, c  0 and d  0. 
 
 We just describe the operations on special dual like 
numbers. 
 
 Suppose x = a1 + b1g and y = c1 + d1g then   
x  y = (a1  c1) + (b1  d1)g,  the sum can be a special dual like 
number or a pure number.  If a1 =  c1 then x  y is a pure part 
of the special dual like and is of the form (b1  d1)g. 
 
 If b1 =  d1 then x  y is a pure number a1  c1.  
 
 We see unlike dual numbers in case of pure part of dual like 
number the product is again a pure dual number as g2 = 0; where 
as in case of dual number the product will be zero as g2 = 0. 
 
 We will show by some simple examples. 
 
 Let g = 5  Z10 we see g2 = g.  Consider x = 7 + 6g and  
y = –7 + 3g any two special dual like numbers. 
 
 x + y = 9g and x – y = 14 + 3g so x + y is a pure dual 
number where as x – y is again special dual like number.  Now 
take x = 7 + 6g and y = –7 + 3g we find the product of two 
special dual like numbers. 
 
 x  y = (7 + 6g)  (–7 + 3g) 
      = –49 – 42g + 21g + 18g2  ( g =g2) 
    = –49 – 3g is again a special dual like number.   
 
This if x = a + bg and y = c + dg be any two special dual like 
numbers then x  y = (a + bg) (c+dg) = ac + bcg + dag + bdg2 

   = ac + (bc + da  bd)g. 
 
 Now the product of two special dual like numbers can never 
be a pure dual number for ac  0 as a and c are reals. 
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 The product xy is a real number only if bc + da + bd = 0, 
that is 

 

c + d = da
b
  or   

 

 a + b = bc
d
  

 
 For (3 + 2g) (5 – 2g)   = 15 so that it is a pure real number. 
 
THEOREM 2.1:  Let x = a + bg be a given special dual like 
number where g2 = g; a, b  R.  We have infinitely many  
y = c+dg such that xy = real and is not a special dual like 
number.   
 

The proof is direct.   
 
However for the reader to follow we give an  example. 

 
Example 2.2:  Let x = 3 + 5g  where g = 3  Z6  be a special 
dual like number. 
 
 Let y = a + bg (a, b  R),   such that xy = A + 0g 
 
 Consider x  y = (3 + 5g) (a + bg) 
         = 3a + 5ag + 3bg + 5bg 
         = 3a + g (5a + 8b) 
 
 Given 5a + 8b = 0 so that we get 5a = –8b we have infinite 
number of non zero solutions.   
 

Thus for a given special dual like number we can have 
infinite number of special dual like numbers such that the 
product is real that is only real part exist. 
 
 Further it is pertinent to mention the convention followed in 
this book.  
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If x = a + bg (g = g2) a, b  R we call a the pure part of the 
special dual like number and b as the pure dual part of the 
special dual like number.  
 
THEOREM 2.2:  Let x = a + bg be a special dual like number 
(a, b  R \ {0}) then for no special dual like number y = c + dg; 
c, d  R \ {0}; we have the pure part of the product to be zero.  
That is the pure product of xy is never zero.  
 
 Now we see this is not the case with ‘+’ or ‘–’. 
 
 For if x = –7 + 8g and y = 7 – 5g be two special dual like 
numbers then x + y = 3g, this special dual like numbers sum has 
only pure dual part and pure part of x + y is 0.   
 

However for a given x = a+bg we have a infinitely many  
y = c+dg such that  x + y = 0 + (b+d)g.  This y’s are defined as 
the additive inverse of the pure parts of x and vice versa. 
 
 Similarly if x = 3 – 5g and y = 8 + 5g be any two special 
dual like numbers we see x + y = 11 – (0) g that is x + y is only 
the pure part of the special dual like number.   
 

Thus we have the following to be true.  For every x = a + bg 
there exists infinitely many y; y = c+dg such that x + y = (a + c) 
+ (0)g these y’s will be called as additive inverse of the x.   
 

Now for a given special dual like number x = a + bg we 
have a unique y = –a – bg such that x + y = (0) + (0)g.  This y is 
unique and is defined as the additive inverse of x.   
 

Inview of all these we have the following theorem the proof 
of which is left as an exercise to the reader. 
 
THEOREM 2.3:  Let x = a + bg be a special dual like number  
g2 = g  (a, b  R or Q or Z).   
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 (i)  we have infinitely many y = d + (–b)g;  d  R \ {0, –a} 

such that x + y = a + d + (0)g pure part. 
 
(ii)  for x = a + bg are have infinitely may y = –a + dg, d  

R \ {0, –b} such that x + y = 0+(b+d)g, the pure dual 
part. 

 
(iii) for a given special dual like number x = a+ bg we have 

a unique y = –a –bg such that x + y = (0) + (0)g.  This 
y is defined as the additive inverse of x.   

 
Now we proceed onto give some notations followed in this 

book.   
 

R(g)  = {a + bg | a, b  R; g2 = g},  
Q(g)  = {a + bg | a, b  Q, g2 = g},   
Z(g)  = {a + bg | a, b  Z and g2 = g} and  
Zn(g) = {a + bg | a, b  Zn, g2 = g and p a prime}. 

 
 Following these notation we see that  

R(g) = {collection of all special dual like numbers}.   
 

Clearly R 

  R (g) (Q(g) or Z(g) or Zn(g), n a prime and  

g2 = g). 
 
THEOREM 2.4:  R(g) = {a + bg | a, b  R where g2 = g} be  
Zn(g) the collection of special dual like numbers, R(g) is an 
abelian group under addition. 
 
 The proof is direct and hence left as an exercise to the 
reader. 
 
 Now we just see how product  occurs on the class of 
special dual like numbers. 
 
 Let x = a + bg and y = c + dg be any two special dual like 
numbers.  xy = ac + (ad + bc + db)g,  we see if a, b, c, d   
R \ {0}, xy  (0) for all x, y  R(g).  If a or c = 0 then xy = bdg 
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  (0).  If  b or d = 0 then xy = ac  (0).  Thus xy  (0) whatever 
be a, b, c, d  R \ {0}.  However in the product xy the pure dual 
part can be zero if ad + bc + db = 0.   
 
 Thus if 3 + 2g = x is a special dual like number then the 
inverse of x is a unique y such that xy = 1 + 0 (g).  That is y = 
1/3 – 2/5g is the special dual like number such that xy = (3+2g) 
(1/3 – 2/15g)  
 

= 3  1
3

 + 29
3

 – 3.2
15

g – 2.29
15

 

 

= 1 + 2 6 4
3 15 15

   
 

g 

 
= 1 + 0.g  
 
= 1.  

 
But all elements in R(g) is not invertible.  For take 5g  

R(g) we do not have a y in R(g) such that y  5g = 1.  Hence 
only numbers of the for x = a + bg with a, b  R\{0} has 
inverse.  If b = 0 of course x  R has a unique inverse.  If a + 
bg, a  –b then only we have inverse.   

 
Inview of all these observations we have the following 

theorems. 
 

THEOREM 2.5:  Let R(g) (or Q(g)) be the collection of all 
special dual like numbers. 
 

(i) Every x  {a + bg | a, b  R \ {0} and  g2 = g, a  –b} has 
a unique inverse with respect to product . 

 
(ii) R(g) has zero divisors with respect to . 
 
(iii) x  {bg | b  R \ {0}, g2 = g} has no inverse in R(g).   
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 The proof of this theorem is direct and need only simple 
number theoretic techniques.  All element a – ag are zero 
divisors for (a – ag)g = ag – ag = 0.  
 
THEOREM 2.6: Let R(g) (Q(g) or Z(g)) be the collection of all 
special dual like numbers (R(g), ) is a semigroup and has zero 
divisors. 
 
 This proof is also direct and hence left as an exercise to the 
reader. 
 
THEOREM 2.7: Let  

(R(g), , +) = {a + bg | a, b  R, g2 = g, , +}.  {R (g), , +) 
is a commutative ring with unit 1 = 1 + 0.g. 
 
 This proof is also direct.  
 
Corollary 2.1:  (R(g), +, ) is not an integral domain.   
 

We can have for g matrices which are idempotent linear 
operators or g can be the elements of the standard basis of a 
vector space. 

 
 We will illustrate these situations by some examples. 
 
Example 2.3:  Let  

R(g) = {a + bg | g = (1, 1, 0, 0, 1, 1, 0, 1); a, b  R} 
be the general ring of special dual like numbers.   
 
Example 2.4:  Let  
 

Q(g) = {a + bg | g = 
1 0 1 0
1 1 0 1
 
 
 

, 

 

g n g = 
1 0 1 0
1 1 0 1
 
 
 

, a, b  Q} 

 
be the general ring of special dual like numbers.  
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Example 2.5:  Let  
 

Z(g) = {a + bg | g = 

1
0
1
0
1

 
 
 
 
 
 
  

, g n g = 

1
0
1
0
1

 
 
 
 
 
 
  

, a, b  Z} 

 
be the general ring of special dual like numbers. 
 
Example 2.6:  Let  
 

Z5(g) = {a + bg | g  g = 
1 0
0 0
 
 
 

  
1 0
0 0
 
 
 

 = 
1 0
0 0
 
 
 

} 

 
is the general ring of special dual like numbers.  Z5(g) has zero 
divisors, for 1 + 4g, g  Z5(g) and g(1+4g) = g + 4g = 5g = 0 
(mod 5) as g2 = g. 
 
Example 2.7:  Let  

Z11(g) = {a + bg | a, b  Z11, g = (1 1 1 1 0 1 1 0 0)} 
be a general ring of special dual numbers. 
 
 (1 + 10g)g = g + 10g  0 (mod 11).  Thus g is a zero divisor 
in Z11(g). 
 
 Inview of this we have the following theorem. 
 
THEOREM 2.8:  Let Zp(g) = {a + bg | g2 = g and a, b  Zp} be a 
general ring of special dual numbers.  Zp(g) is of finite order 
and has zero divisors. 
 
Proof:  Clearly order of Zp(g) is p2 and for 1 + (p–1)g and g  
Zp(g) we have (1+(p–1)g)g = g + (p–1)g  0 (mod p) as g2 = 0.  
Hence the claim. 
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  Suppose t + rg and g are in Zp(g) with t + r  p  0 (mod p) 
we see (t + rg) g = tg + rg  0 (mod p).  It is pertinent to note 
that in R(g) all element of the form a – ag, a  R \ {0} are zero 
divisors for (a–ag)  g = ag – ag = 0 as g2 = 0. 
 
 Inview of all these we have the following result. 
 
THEOREM 2.9:  Let R(g) (Z(g) or Q(g) or Zp(g)) be general 
special dual like number ring. R(g) has zero divisors and infact 
g is a zero divisor. 
 
Proof:  We know a – ag  R(g) where a  R \ {0}.   

We see g  R(g) (as 1–g = g.1 = g) (a – ag) g = ag – ag  0 
as g2 = 0.  Hence the claim. 
 
 Now we have the following observations about special dual 
like number general rings. 
 
Example 2.8:  Let Z7(g) = {a + bg | g = (1, 1, 0, 1, 0), a, b  Z7} 
be a ring of 72 elements.  Z7(g) is the general special dual like 
number ring. 
 
 Consider S = {1 + 6g, 6+g, 2+5g, 5+2g, 3+4g, 4+3g, 0} is a 
subring of Z7(g).  Clearly 1 + 6g  S is an idempotent of S as 
(1+6g)2 = 1+6g+6g+36g (mod 7). 

= 1 + 6g + 6g + g = 1 + 6g. 
 
 Infact 1 + 6g generates the subring as  

 
1 + 6g + 1 + 6g = 2 + 5g (mod 7) 

   1 + 6g + 2 + 5g = 3 + 4g (mod 7) 
   3 + 4g + 1 + 6g = 4 + 3g (mod 7) 
   4 + 3g + 1 + 6g = 5 + 2g (mod 7) 
   5 + 2g + 1 + 6g = 6 + g (mod 7)  
   6 + g + 1 + 6g = 0 (mod 7). 
 
 Hence 1 + 6g generates S additively. 

 
Infact 1 + 6g acts as the multiplicative identity.   
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 For (1+6g) (s) = s for all s  S. 

 
Consider P = {0, g, 2g, 3g, 4g, 5g, 6g}  Z7(g).  It is easily 

verified P is also a subring and g acts as the multiplicative 
identity. 

 
For 2g  4g = g (mod 7) 
3g  5g = g (mod 7) 
6g  6g = g (mod 7). 

 
 So 2g is the inverse of 4g with g as its identity and so on. 
 

Likewise in S we see for (2+5g); (4+3g) is its inverse as 
(2+5g) (4+3g) = 1+6g. 

 
    (6+g) (6+g) = 1 + 6g. 
    (5+2g) (3+4g) = 1 + 6g 

So for 5 + 2g; 3 + 4g is its inverse. 
 
 We see the subrings S and P are such that  
 
 S  P = {sp | for all s  S and p  P} = {0}.  We call such 
subrings as orthogonal subrings.  Infact these two are fields of 
order 7 and infact their product is zero. 
 
 Let M = {1 + g, 2+2g, 3+3g, 4+4g, 5+5g, 6+6g, 0}  Z7(g). 
M is an abelian group under addition how ever it is not 
multiplicatively closed. 
 
  For (1+g)3 = 1 and 1  M.  
 
    Also (1+g)2 = 1 + 3g  M. 
    (3+2g)3 = 1 and (2+2g)2 = 4 + 5g  M. 
    (3+3g)2 = 2 + 6g  M. 
    (3+3g)3 = 6  M. 
    (4+4g)2 = 2 + 6g  M. 
    (4+4g)3 = 1. 
    (6+6g)3 = 6  M. 
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    Consider 4 + 5g  Z7(g) 
    (4+5g)2 =  2 + 2g 
    (4 + 5g)3 = 1. 
 
 For 5 + 4g  Z7(g) we have 3 + g  Z7(g) is such that  
(5 + 4g) (3+g) = 1 (mod 7). 
 
 Thus Z7(g) has units subrings, orthogonal subrings and zero 
divisors. 
 
Example 2.9:  Let Z5(g) = {a + bg | 5 = g  Z20, a, b  Z5} be 
the general ring of special dual like numbers. 
 
 Take S = {0, 1+4g, 2+3g, 3+2g, 4+g}  Z5(g), S is a 
subring of Z5(g). 
 
 M = {0, g, 2g, 3g, 4g}  Z5(g) is also a subring of Z5(g). 
 
 Take P = {0, 1, 2, 3, 4}  Z5(g) is a subring. 
 P is not an ideal of Z5(g).  M is an ideal of Z5(g).   
 

Consider the subring T generated by 1 + g; T = {0, 1+g, 
2+2g, 3+3g, 4 + 4g, 1+3g, 4+2g, 2+4g, 3+g, 1+2g, 1, 2, 3, 4, 
2+g, 3+4g, 3g, g, 2g, 4g, 1+4g, 4+g, 2+3g, 3+2g, 4+3g}. 
 
 Now in view of these two examples we have the following 
result. 
 
THEOREM 2.10:  Let  

Zp(g) = {a + bg | a, b  Zp, p a prime, g2 = g} 
be the general ring of special dual like numbers. 
 
(i) S = {0, g, …, (p–1)g}  Zp(g) is a subring of Zp(g) which is 

also an ideal of Zp(a). 
 
(ii) T = {0, 1, 2, …, p–1} Zp  Zp(g), is a subring of Zp(g) which 

is not an ideal. 
 



22 Special Dual like Numbers and Lattices 
 
 
 (iii) P = {a + bg | a + b  0 (mod p), a, b  Zp(g) \ {0}}  Zp(g) 

is a subring as well as an ideal of Zp(g). 
 
(iv) As subrings (or ideals) P and S are orthogonal P.S. = (0).   

P  S = {0} but P + S  Zp(g). 
 
 The proof is direct and hence is left as an exercise to the 
reader. 
 
 Consider R(g) = {a + bg | a, b  R; g the new element such 
that g2 = g}; the general ring of special dual like numbers.   
 

R the set of reals.  Taking the reals on the x-axis and g’s on 
y axis we get the plane called the special plane of dual like 
numbers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Suppose –4 – 3g, 2–g, –4+4g and 5+3g are special dual like 
numbers then we plot them in the special dual like plane as 
follows. 

| | | | | | | |
– …–3 –2 –1 0 1 2 3 … 

–
–
–
–
 
 
–

–

–

 

4g 
 

3g 
 

2g 
g 
 
 
 
–g 
 

–2g
 

–3g
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 We call the y-axis as g-axis.  
 
 Now consider the line 1–g, 2–2g, 3–3g, 4–4g, …, 0, –1+g,  
–2+2g, –3+3g, –4+4g, …, then this can be plotted as follows: 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

| | | | | | | | | | |
      –5     –4   –3   –2  –1   0     1     2      3      4     5

–
–
–
–
 
 
–

–

–

 

4g 
 

3g 
 

2g 
g 
 
 
 
–g 
 

–2g
 

–3g

 

(–4,4)
–4+4g

 

(5,3) 
5+3g 

 

(–4,–3) 
–4–3g 

 

(2,–1)
2–g 

      |    |        |      | |         |     |      |      |      |  
      –5      –4     –3     –2   –1  0         1     2      3     4     5    

–
–
–
–
–
 
 

–
–
–
–
–

 

5g 
4g 
 

3g 
 

2g 
g 
 
  
 

–g 
 

–2g
 
 

–3g
 

–4g
 

–5g

 
 












(5,–5)
(4,–4)

(3,–3)

(2,–2)(1,–1)

(–5,5) 

(–4,4)

(–3,3)
(–2,2)

(–1,1)
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  We see in this set represented by the line –a+ag and a–ag 
for all a  R+ every element mg on the g-axis is such that  
mg  (–a + ag) = –mag + mag (as g2 = g) = 0. 
 
 Likewise mg (a–ag) = 0. 
 
 Further the set S = {–a + ag | a  R+} is a subring of R(g) 
known as the orthogonal like line of the line { mg | m  R} = 
P, the g-axis.  Further the g-axis is also a subring of R(g). 
 
    P.S = {0}  and P  S = {0}. 
 
 This is another feature of the special dual like numbers 
which is entirely different from dual numbers.   
 

Now we proceed onto explore other properties related with 
special dual like numbers.   
 
 We can have special dual like number matrices where the 
matrices will take its entries from R(g) or Q(g) or Z(g) or Zp(g). 
 
 Now we can also form polynomials with special dual like 

number coefficients R(g) [x] = i
i i

i 0
a x a R(g)





 
 

 
 ; R(g)[x] is a 

ring called the general ring of polynomial special dual like 
number coefficients.  
 
 Now we will illustrate how special dual like number 
matrices with examples. 
 
Example 2.10:  Let  

M = {(a1, a2, a3, a4, a5) | ai = xi + yig  R(g); g2 = g, 1  i  5} 
be the collection of row matrices with entries from R(g)  M will 
be also known as the special dual like number row matrices. 
 
 We can write M1 = {(x1, x2, x3, x4, x5) + (y1, y2, y3, y4, y5)g | 
xi, yi  R; 1  i  5 and g2 = g}.  Clearly both are isomorphic as 
general ring of special dual like numbers. 
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 If A = (5 + 2g, 3–g, 4+2g, 0, 1+g)  and  

   B = (8 + g, 3g, 0, 4+g, 1+3g) are in M then  
 

A = (5, 3, 4, 0, 1) + (2, –1, 2, 0, 1)g  M1. 
 B = (8, 0, 0, 4, 1) + (1, 3, 0, 1, 3)g  M1. 
 
 Now A + B =  (13+3g, 3+2g, 4+2g, 4+g, 2+4g) 
         = (13, 3, 4, 4, 2) + (3g, 2g, 2g, g, 4g). 
 
 Also A + B = (5, 3, 4, 0, 1) + (8, 0, 0, 4, 1) +  

   [(2, –1, 2, 0, 1) + (1, 3, 0, 14)]g.  
        = (13, 3, 4, 4, 2) + (3, 2, 2, 1, 4)g 
 
 We see A + B  M (M1). 
 
 Now A  B = (40, 0, 0, 0, 1) + (2, –3, 0, 0, 3)g +  

   (5, 9, 0, 0, 3)g + (16, 0, 0, 0, 1) 
    = (40, 0, 0, 0, 1) + (23, 6, 0, 0, 7)g. 
 
Now A  B = ((5 + 2g) (8 +g), (3–g)3g,  

   (4+2g)0, 0  (4+g), (1+g) (1+3g))  
   = (40 + 23g, 6g, 0, 0, 1+7g). 
 
 Thus both ways the product is the same.  (M (M1), +, ) is 
the general ring of special dual like numbers of row matrices. 
 
Example 2.11:  Let  
 

M = 

1

2

3

4

5

6

a
a
a
a
a
a

 
 
 
 
 
 
 
 
  

 ai = xi + yig, xi, yi  Q; 1  i  6 and g = 
1 0
0 0

 
 
 

 

 
be the general ring of special dual like number column matrices. 
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Let A = 

3 8g
2 g

1 4g
0
8g
6

 
   
 
 
 
 
 
  

 and B = 

2g
4

0
6 g
1 g
5 2g

 
  
 
 

 
 
 
   

 

 
 
be any two elements in M. 
 
 

A + B = 

3 10g
6 g

1 4g
6 g
1 9g
1 2g

 
   
 
 

 
 
 

  

  M. 

 
 

A  B = 

(3 8g)2g
( 2 g) 4
(1 4g) 0
0 (6 g)

8g(1 g)
6 ( 5 2g)

 
    
  
 

  
  
 
    

 = 

22g
8 4g

0
0
0

30 12g

 
   
 
 
 
 
 
   

. 

 
 
 Now A can be represented as  
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A = 

3
2

1
0
0
6

 
  
 
 
 
 
 
  

 + 

8
1
4
0
8

0

 
 
 
 
 
 
 
 
  

g and B is represented as 

 

B = 

0 2
4 0

0 0
6 1
1 1
5 2

   
      
   

   
   
   
   
      

g. 

 

Now AB = 

3 0
2 4

1 0
0 6
0 1
6 5

   
       
   
   
   
   
   

      

 + 

8 2
1 0
4 0
0 1
8 1

0 2

   
   
   
   
   
   
    
   
      

g2 +  

 
3 2
2 0

1 0
0 1
0 1
6 2

   
      
   
   
   
   
   
      

g + 

8 0
1 4
4 0
0 6
8 1

0 5

   
      
   
   
   
   
   

      

g 
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=  

0 16 6 0
8 0 0 4
0 0 0 0
0 0 0 0
0 8 0 8
30 0 12 0

    
       
    

   
    

    
   
        

g 

 
 

= 

0 22
8 4
0 0
0 0
0 0
30 12

   
      
   

   
   
   
   
      

g. 

 
 
Thus we see we can write  
 
 

A = 

3 8g 3 8
2 g 2 1

1 4g 1 4
0 0 0
8g 0 8
6 6 0

     
            
     

      
     
      
     
          

g. 

 
 

Both the representations are identical or one and the same. 
 
Now we give examples of a general ring of special dual like 

number square matrices. 
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 Example 2.12:  Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
 
 

 where ai = xi + yig   Q(g) with xi, yi  Q, 

 

g = 
1 0 0 1
0 1 1 0
 
 
 

, g2 = 
1 0 0 1
0 1 1 0
 
 
 

 n 
1 0 0 1
0 1 1 0
 
 
 

 

 

 = 
1 0 0 1
0 1 1 0
 
 
 

 = g; 1  i  9} 

 
be the general ring of special dual like number square matrices.  
  

Let A = 
8 g 9g 0
1 5g 2 3 2g

0 4 g 1 3g

 
    
    

 and 

 

B = 
0 2 7 9g

3 g g 5
7 2g g 1 0

 
  
    

  S. 

 

Now A + B = 
8 g 2 9g 7 9g
4 4g 2 g 2 2g
7 2g 3 1 3g

   
    
     

 is in S. 

 
 Now we can define two types of products on S, natural 
product n and usual product .  Under natural product n, S is a 
commutative ring and where as under usual product , S is a 
non commutative ring.   
 

We will illustrate both the situations. 
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  A n B = B n A for all A, B  S.  Thus (S, +, n) is a 
commutative ring. 
 
 Now we find A  B =  
 

8 g 0 9g 3 g 0 7 2g 8 g 2 9g g 0 g 1
1 5g 0 2 3 g 3 2g 7 2g 1 5g 2 2g 3 2g g 1
0 0 4 g 3 g 1 3g 7 2g 0 2 4 g g 1 3g g 1

              
                
                 
 

8 g 7 9g 9g 5 0 0
1 5g 7 9g 2 5 3 2g 0

0 7 9g 4 g 5 1 3g 0

       
         
        

 

 

= 
18g 16 7g 56 101g

27 18g 1 13g 17 89g
19 11g 1 2g 20 5g

  
     
      

   is in S. 

 
Clearly A  B  A n B, further it is easily verified  
A  B  B  A. 
 
 Now we can write A as  
 

A = 
8 g 9g 0
1 5g 2 3 2g

0 4 g 1 3g

 
    
    

 

 

= 
8 0 0 1 9 0
1 2 3 5 0 2 g
0 4 1 0 1 3

   
       
       

 

 

and B = 
0 2 7 9g

3 g g 5
7 2g g 1 0

 
  
    

 



Special Dual like Numbers and Lattices 31 
 
 
  

= 
0 2 7 0 0 9
3 0 5 1 1 0 g
7 1 0 2 1 0

   
       
      

. 

 

Now A n B = 
8 0 0 0 2 7
1 2 3 3 0 5
0 4 1 7 1 0

   
       
       

 

 

+ n

8 0 0 0 0 9
1 0 3 1 1 0 g
0 4 1 2 1 0

   
        
      

 

 

n

1 9 0 0 2 7
5 0 2 3 0 5 g
0 1 3 7 1 0

   
      
       

 + 

 

n

1 9 0 0 0 9
5 0 2 1 1 0 g
0 1 3 2 1 0

   
       
      

 

 

= 
0 0 0 0 0 0
3 2 15 1 2 0 g
0 4 0 0 4 0

   
        
       

 + 

 
0 18 0 0 0 0

15 0 10 g 5 0 0 g
0 1 0 0 1 0

   
       
       
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= 
0 0 0 0 18 0
3 2 15 9 2 10 g
0 4 0 0 6 0

   
       
       

. 

 
Now both way natural products are the same 
 

A  B =  
 

8 0 0 0 2 7 8 0 0 0 0 9
1 2 3 3 0 5 1 2 3 1 1 0 g
0 4 1 7 1 0 0 4 1 2 1 0

       
                    
                

 

 
1 9 0 0 2 7

5 0 2 3 0 5 g
0 1 3 7 1 0

   
       
       

1 9 0 0 0 9
5 0 2 1 1 0 g
0 1 3 2 1 0

   
       
      

 

 

= 
0 16 56 0 0 72

27 1 17 8 1 9 g
19 1 20 6 3 0

   
         
        

+ 

 
27 2 38 9 9 9
14 12 35 g 4 2 45 g
24 3 5 7 2 0

     
       
       

 

 

= 
0 16 56 18 7 101

27 1 17 18 13 89 g
19 1 20 11 2 5

   
        
         

 

 
 

is the same as A  B taken the other way. 
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 Example 2.13:  Let  
 

P =  1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a

 
 
 

 ai = xi + yig  Q(g),  

 
g = 3  Z6, xi, yi  Q; 1  i  10} 

 
be the general ring of special dual like number 2  5 matrix.   
(P, +, n) is a commutative ring.   
 

Let A = 
2 g 3 4 2g 0 g

0 5 g 0 1 7g 3 2g
   

    
 and 

  

 B = 
0 8g 3 g 0 1 5g

1 g 7 0 2 7g 5
  

    
 

 
be two elements of P. 
 

 A + B = 
2 g 3 8g 1 g 0 1 6g
1 g 12 g 0 3 14g 2 2g
     

      
  P. 

 
 A n B =  
 

0 24g 4 2g 3 g 0 g 1 5g
0 5 g 7 0 0 1 7g 2 7g 3 2g 5

      
         

 

 

= 
0 24g 12 8g 0 6g
0 35 7g 0 2 70g 15 10g

  
     

. 

 
 Now A can also be written as 
 

A = 
2 3 4 0 0
0 5 0 1 3

 
 
 

+
1 0 2 0 1
0 1 0 7 2
 
   

g and 
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 B = 

0 0 3 0 1
1 7 0 2 5
 
  

 + 
0 8 1 0 5
1 0 0 7 0

 
 
 

g. 

 
 

Now A n B = 
2 3 4 0 0
0 5 0 1 3

 
 
 

  
0 0 3 0 1
1 7 0 2 5
 
  

 + 

 
2 3 4 0 0
0 5 0 1 3

 
 
 

  
0 8 1 0 5
1 0 0 7 0

 
 
 

 + 

 
1 0 2 0 1
0 1 0 7 2
 
   

 
0 0 3 0 1
1 7 0 2 5
 
  

g + 

 
1 0 2 0 1
0 1 0 7 2
 
   

  
0 8 1 0 5
1 0 0 7 0

 
 
 

g 

 

= 
0 0 12 0 0
0 35 0 2 15

 
  

 + 
0 24 4 0 0
0 0 0 7 0
 
 
 

g +  

 
0 0 6 0 1

g
0 7 0 14 10
 
  

 + 
0 0 2 0 5
0 0 0 49 0

 
 
 

g 

 

= 
0 0 12 0 0 0 24 8 0 6

g
0 35 0 2 15 0 7 0 70 10

   
       

. 

 
 We use the second method for the simplification is easy.  
Thus we see both are the equivalent way of representation.   
 

Now having seen examples of general ring of special dual 
like number matrices we now represent when the entries are 
from Zp(g). 
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  Let  

Zp(g)  = {a + bg | a, b  Zp, g is a new element such that  
g2 = 0} be the general modulo integer ring of special dual like 
numbers. 
 
 We now give examples of them. 
 
Example 2.14:  Let  
 

V = {a + b 

12 0 0
0 12 12

12 12 12
12 0 12

 
 
 
 
 
 

 a, b  Z5, 12  Z132, 

 
12 is the new element as 122  12 (mod 132)} 

 
be the general modulo integer ring of special dual like numbers. 
V is finite, that is V has only finite number of elements in it. 
 
Example 2.15:  Let  
 

S = {(a1, a2, a3) + (b1, b2, b3)g | ai, bj  Z11, 
 

1  i, j  3, g = 
3 0
0 3
 
 
 

 where 3  Z9} 

 
be the general modulo integer ring of dual numbers.  
 
 Suppose  
 

x = (3, 7, 2) + (5, 10, 0) 
3 0
0 3
 
 
 

 and 

 

y = (8, 2, 10) + (3, 4, 2) 
3 0
0 3
 
 
 

  S. 
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 We see  

x + y = (0, 9, 1) + (8, 3, 2) 
3 0
0 3
 
 
 

 and  

x  y =  (3, 7, 2) (8, 2, 10) + (3, 7, 2) (3, 4, 2) 
3 0
0 3
 
 
 

+  

 

(5, 10, 0) (8, 2, 10) 
3 0
0 3
 
 
 

 +  

 

(5, 10, 0) (3, 4, 2) 
3 0
0 3
 
 
 

3 0
0 3
 
 
 

  

 

   = (2, 3, 9) + (9, 6, 4) 
3 0
0 3
 
 
 

 +  

 

    (7, 9, 0) 
3 0
0 3
 
 
 

+ (0, 0, 0)  

 

   =  (2, 3, 9) + (5, 4, 4) 
3 0
0 3
 
 
 

. 

 
 Thus S is a ring of finite order and of characteristic eleven.  
S has zero divisors, units, subrings and ideals. 
 

 Take I = {(a, 0, 0) + (a, 0, 0) 
3 0
0 3
 
 
 

 a  Z11}  S, I is an 

ideal of S. 
 

   Consider M = {(a, 0, 0) + (0, b, 0)  
3 0
0 3
 
 
 

 | a, b  Z11}  S  

is only a group under ‘+’ of S. 
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For x = (a, 0, 0) + (0, b, 0) 
3 0
0 3
 
 
 

 and 

 

 y = (c, 0, 0) + (0, d, 0) 
3 0
0 3
 
 
 

 we have x + y  M.  

 But x  y = (a, 0, 0) (c, 0, 0) + (a, 0, 0) (0, d, 0)  
3 0
0 3
 
 
 

 +  

 

(0, b, 0) (c, 0, 0) 
3 0
0 3
 
 
 

 +  

 

(0, b, 0) (0, d, 0) 
3 0
0 3
 
 
 

3 0
0 3
 
 
 

  

 

   =   (ac, 0, 0) + (o, bd, 0) 
3 0
0 3
 
 
 

. 

 
 M is only a subring as M is a semigroup under ‘+’. 
 

 Take z = (x1, x2, x3) + (y1, y2, y3) 
3 0
0 3
 
 
 

  

 

now xz = (ax1, 0, 0) + (ay1, 0, 0) 
3 0
0 3
 
 
 

 + (0, x2b, 0) 
3 0
0 3
 
 
 

 

 

       = (ax, 0, 0) + (ay1, x2b, 0) 
3 0
0 3
 
 
 

. 

 
 Clearly xz  M.  Thus M is a subring and not an ideal of S. 
 

   Let x = (0, a, 0) + (b, 0, 0) 
3 0
0 3
 
 
 

 



38 Special Dual like Numbers and Lattices 
 
 
  

   and y = (0, 0, c) + (0, 0, d) 
3 0
0 3
 
 
 

 

be in S.  Clearly x  y = (0, 0, 0) + (0, 0, 0) 
3 0
0 3
 
 
 

 = 0. 

 
 Thus x, y are zero divisors in S for different a, b, c, d  Z11. 
 

 However we compare this with 
3 0
0 3
 
 
 

 where 3  Z6.   

Clearly  
 

T = {(a1, a2, a3) + (b1, b2, b3) 
3 0
0 3
 
 
 

 where ai, bj  Z11, 

 
1  i, j  3, 3  Z6 so that 

 
3 0
0 3
 
 
 

  
3 0
0 3
 
 
 

 = 
3 0
0 3

 
 
 

 

 
is a general ring of special dual like numbers. 
 

Now consider P = {(a, 0, 0) + (b, 0, 0) 
3 0
0 3
 
 
 

 a, b  Z11} T.  

Is P is an ideal of T? 
 
 
 Now (P, +) is an abelian group. 
 
 (P, ) is a semigroup.  So (P, +, )  (T, +, ) is a subring. 
 

 Consider z = (x1, x2, x3) + (y1, y2, y3) 
3 0
0 3
 
 
 

  T and  
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let x = (a, 0, 0) + (b, 0, 0) 
3 0
0 3
 
 
 

 P. 

 

Now xz = (x1a, 0, 0) + (y1b, 0, 0) 
3 0
0 3
 
 
 

 + 

 

(ay1 0 0) 
3 0
0 3
 
 
 

 + (x1b, 0, 0) 
3 0
0 3
 
 
 

 

 

= (x1a, 0, 0) + (y1b + ay1 + x1b (mod 11), 0, 0 
3 0
0 3
 
 
 

  P 

 
has P is an ideal of T. 
 
 Consider  
 

N = {(x, 0, 0) + (0, y, 0) 
3 0
0 3
 
 
 

 where x, y  Z11}  T. 

 
 Is N an ideal of T? 
 
 We see (N, +) is an additive abelian group. 
 
 Further (N, ) is a semigroup under . 
 
 However for s  T and n  N we see sn  T, that is if  
 

s = (x1, x2, x3) + (y1, y2, y3) 
3 0
0 3
 
 
 

 

 

and n = (x, 0, 0) + (0, y, 0) 
3 0
0 3
 
 
 
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Then sn = (x1x, 0, 0) + (xy1, 0, 0) 
3 0
0 3
 
 
 

 + 

 

[0, x2 y, 0] 
3 0
0 3
 
 
 

 + (0, yy2, 0) 
3 0
0 3
 
 
 

 

 

= (x1x 0 0) + (xy1, x2y + yy2, 0) 
3 0
0 3
 
 
 

  N. 

 
 Thus N is only a subring and not an ideal of T. 
 
 Thus we have compared how the general ring of special 
dual like numbers and general ring of dual number behave. 
 
Example 2.16:  Let  
 

M = 

1 1

2 2

3 3

4 4

5 5

a b
a b
a b (4,9,0,4,9)
a b
a b

    
    
        
   
   
       

4, 9  Z12 and  

 
bi, aj  Z19, 1  i, j  5} 
 

be a general ring of special dual like numbers. 
 
 
 We just show how this has zero divisors under the natural 
product n of M. 
 
 
 M is finite and M has zero divisors and M is commutative. 
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 Further if x = 

3 5
0 4
1 2
2 1
4 3

   
   
   
   
   
   
      

(4, 9, 0, 4, 9)  M then  

 

x2 = 

9
0
1
4

16

 
 
 
 
 
 
  

 + 

15 15 6
0 0 16
2 2 4
2 2 1

12 12 9

      
      
      
       
      
      
            

  (4, 9, 0, 4, 9) 

 

   = 

9
0
1
4

16

 
 
 
 
 
 
  

 + 

17
16
8
5

14

 
 
 
 
 
 
  

 (4, 9, 0, 4, 9)  M. 

 
 

 Suppose y = 

1
2
0
3
0

 
 
 
 
 
 
  

 + 

0
2
0
0
1

 
 
 
 
 
 
  

(4, 9, 0, 4, 9)  

 

 and    z = 

0 3
0 0
1 1
0 2
7 0

   
   
   
   
   
   
      

 (4, 9, 0, 4, 9) are in M, then   
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xz = n n

1 0 1 3
2 0 2 0
0 1 0 1
3 0 3 2
0 7 0 0

       
       
       
         
       
       
              

 (4, 9, 0, 4, 9) 

 
 

+ n

0 0
2 0
0 1
0 0
1 7

   
   
   
   
   
   
      

 (4, 9, 0, 4, 9) + n

0 3
2 0
0 1
0 2
1 0

   
   
   
   
   
   
      

(4, 9, 0, 4, 9)   

 
 

= 

0 3 0 0
0 0 0 0
0 0 0 0
0 6 0 0
0 0 7 0

        
        
        
          
        
        
                

 (4, 9, 0, 4, 9)  

 
 

= 

3
0
0
6
7

 
 
 
 
 
 
  

 (4, 9, 0, 4, 9)  M  

 
has no pure part only pure special dual like number part. 
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Consider x = 

0 5
0 0
4 0
0 0
0 0

   
   
   
   
   
   
      

(4, 9, 0, 4, 9)  

 

and y = 

0 0
0 0
0 0
0 3
1 0

   
   
   
   
   
   
      

(4, 9, 0, 4, 9)  M. 

 
 

We see xy = 

0
0
4
0
0

 
 
 
 
 
 
  

 n 

0
0
0
0
1

 
 
 
 
 
 
  

 + 

0
0
4
0
0

 
 
 
 
 
 
  

n 

0
0
0
3
0

 
 
 
 
 
 
  

(4, 9, 0, 4, 9) + 

 
5
0
0
0
0

 
 
 
 
 
 
  

n 

0
0
0
0
1

 
 
 
 
 
 
  

(4, 9, 0, 4, 9) + 

5
0
0
0
0

 
 
 
 
 
 
  

n 

0
0
0
3
0

 
 
 
 
 
 
  

(4, 9, 0, 4, 9)  

 
 

= 

0
0
0
0
0

 
 
 
 
 
 
  

+ 

0
0
0
0
0

 
 
 
 
 
 
  

 (4, 9, 0, 4, 9)  M. 
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 Thus M has zero divisors.   

 
We can easily verify M has ideals and subrings which are 

not ideals. 
 
Example 2.17:  Let S =  
 

1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

10 11 12 10 11 12

4
a a a b b b

9
a a a b b b

0
a a a b b b

4
a a a b b b

0

  
     
                           

 ai, bj  Z2, 4,  

9  Z12,  1  i, j  12}  
 

be a commutative general ring of special dual like numbers.   
 

Suppose x = 

4
1 0 0 1 1 1

9
0 1 1 0 1 0

0
1 0 1 0 1 1

4
0 1 0 1 0 0

0

 
     
     
     
     
     
      

 and 

 

               y =  

4
0 1 1 1 0 0

9
1 1 1 1 1 1

0
1 1 1 1 1 0

4
0 0 1 0 1 1

0

 
     
     
     
     
     
      

 are in S. 

We see x + y = 

4
1 1 1 0 1 1

9
1 0 0 1 0 1

0
0 1 0 1 0 1

4
0 1 1 1 1 1

0

 
     
     
     
     
     
      

. 
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 x n y =  

 

n

1 0 0 0 1 1
0 1 1 1 1 1
1 0 1 1 1 1
0 1 0 0 0 1

   
   
    
   
   
   

n

4
1 0 0 1 0 0

9
0 1 1 1 1 1

0
1 0 1 1 1 0

4
0 1 0 0 1 1

0

 
     
     
     
     
     
      

 + 

 

n

4
1 1 1 0 1 1

9
0 1 0 1 1 1

0
0 1 1 1 1 1

4
1 0 0 0 0 1

0

 
     
     
     
     
     
      

 + n

4
1 1 1 1 0 0

9
0 1 0 1 1 1

0
0 1 1 1 1 0

4
1 0 0 0 1 1

0

 
     
     
     
     
     
      

 

 

= 

4
0 0 0 1 0 0 0 1 1 1 0 0

9
0 1 1 0 1 1 0 1 0 0 1 0

0
1 0 1 1 0 0 0 1 1 0 1 0

4
0 0 0 0 1 0 0 0 0 0 0 0

0

 
          
                                                      

 

 

= 

4
0 0 0 0 1 1

9
0 1 1 0 1 1

0
1 0 1 1 0 1

4
0 0 0 0 1 0

0

 
     
     
     
     
     
      

  M. 

 
This general ring has zero divisors, subrings which are not 

ideals and ideals. 
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Example 2.18:  Let  
 

V = 
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

a a a b b b 4 0 9 0
a a a b b b 0 4 0 9
a a a b b b 0 4 9 0

     
          
          

 ai, bj  Z7,  

 
1  i, j  9, 4, 9  Z12} 

 
be a non commutative general ring of special dual like numbers. 
 
 Here  

g = 
4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 with 4, 9  Z12 and 

 

g2 = g n g = 
4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 n 
4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 

 

= 
4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 = g 

 
is the new element that makes special dual like numbers.  
 

Now let x = 
3 1 2 2 1 0 4 0 9 0
0 1 4 0 1 4 0 4 0 9
1 0 0 0 0 5 0 4 9 0

     
           
          

 

 

and y  = 
2 1 0 1 0 2 4 0 9 0
1 0 6 0 1 0 0 4 0 9
0 1 3 4 0 1 0 4 9 0

     
           
          

 be in V. 
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Now x + y = 
5 2 2 3 1 2 4 0 9 0
1 1 3 0 2 4 0 4 0 9
1 1 3 4 0 6 0 4 9 0

     
          
          

  V. 

 

Consider x  y = 
3 1 2
0 1 4
1 0 0

 
 
 
  

  
2 1 0
1 0 6
0 1 3

 
 
 
  

 +  

 
3 1 2
0 1 4
1 0 0

 
 
 
  

  
1 0 2
0 1 0
4 0 1

 
 
 
  

4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

+ 

 
2 1 0
0 1 4
0 0 5

 
 
 
  

  
2 1 0
1 0 6
0 1 3

 
 
 
  

4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 + 

 
2 1 0
0 1 4
0 0 5

 
 
 
  

  
1 0 2
0 1 0
4 0 1

 
 
 
  

2
4 0 9 0
0 4 0 9
0 4 9 0

  
  
  
    

 

 

= 
0 5 5
1 4 4
2 1 0

 
 
 
  

 + 
4 1 1
2 1 4
1 0 2

 
 
 
  

4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

  + 

 
5 2 6
1 4 4
0 5 1

 
 
 
  

4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 + 
2 1 4
2 1 4
6 0 5

 
 
 
  

4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 

 

= 
0 5 5
1 4 4
2 1 0

 
 
 
  

+
4 4 4
5 6 5
0 5 1

 
 
 
  

4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

  V. 
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Consider y  x = 
2 1 0
1 0 6
0 1 3

 
 
 
  

  
3 1 2
0 1 4
1 0 0

 
 
 
  

 +  

 
1 0 2
0 1 0
4 0 1

 
 
 
  

  
3 1 2
0 1 4
1 0 0

 
 
 
  

4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 + 

 
2 1 0
1 0 6
0 1 3

 
 
 
  

 
2 1 0
0 1 4
0 0 5

 
 
 
  

 
4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 + 

 
1 0 2
0 1 0
4 0 1

 
 
 
  

  
2 1 0
0 1 4
0 0 5

 
 
 
  

 
4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 

 

= 
6 3 1
2 1 2
3 1 4

 
 
 
  

5 2 1 4 3 4
0 1 4 2 1 2
5 4 1 0 1 5

    
        
       

 

 
2 1 3
0 1 4
1 4 5

 
   
   

 
4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

 

 

= 
6 3 1
2 1 2
3 1 4

 
 
 
  

 + 
4 6 1
2 3 3
6 2 4

 
 
 
  

4 0 9 0
0 4 0 9
0 4 9 0

 
 
 
  

  V. 

 
 

Cleary xy  yx, this leads to a non commutative general ring 
of special dual like numbers. 
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 Example 2.19: Let M = {(aij) + (bij)g | g is a new element such 
that g2 = g and (aij) and (bij) are 7  7 matrices with entries from 
Z3} be a general non commutative ring of special dual like 
numbers.   
 

Clearly M is of finite order of characteristic three and has 
subrings which are not ideals, one sided ideals, ideals and zero 
divisors. 
 
 If on M we define the natural product n then M becomes a 
commutative general ring of special dual like numbers. 
 
 Next we proceed onto define vector spaces using special 
dual like numbers. 
 
 Recall if  
 X = {a + bg | g is a new element such that g2 = g and a, b  Q},  
X is an additive abelian group. 
 

V = 

1 1

2 2

3 3

4 4

a b
a b

g
a b
a b

   
   
            

 where g2 = g, ai, bj  R, 1  i, j  4} 

 
is again an additive abelian group. 
 
 Let S = {(a1, a2, …, a10) + (b1, b2, …, b10)g | g2 = g, ai, bj  
Q with 1  i, j  10} is again an additive abelian group. 
 
 

M = 
1 2 7 1 2 7

8 9 14 8 9 14

15 16 21 15 16 21

a a ... a b b ... b
a a ... a b b ... b g
a a ... a b b ... b

   
   
   
      

 g2 = g; 

 
ai, bj  Q, 1  i, j  21} 
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 is again an additive abelian group. 
 

Finally P =  
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

a a a b b b
a a a b b b g
a a a b b b

   
   
   
      

 g2 = g; 

 
ai, bj  Q, 1  i, j  9} 

 
is again an abelian group under addition.   
 

Now using these additive groups if define vector spaces 
over the appropriate fields then we define these vector spaces as 
special dual like number vector spaces.  If there is some product 
compatible on them we define them as special dual like number 
linear algebras. 

 
 We will illustrate this situation by some examples. 
 
Example 2.20:  Let V = {(a1, a2) + (b1, b2) where g = 10  Z30, 
g2 = (100) mod 30 = 10 = g and ai, bj  Q, 1  i  2} be a 
special dual like number vector space over the field Q. 
 
  V has W = {(a1, 0) + (b1, 0) g | a1, b1  Q; g2 = g = 10  Z30} 
 V and P = {(0, a) + (0, b)g | a, b  Q; g2 = g = 10  Z30}  V 
as subspaces, that is special dual like number vector subspaces 
of V over the field Q.  
 
 Clearly W  P = (0) and W + P = V, that is V the direct 
sum of subspaces of V. 
 
Example 2.21:  Let  
 

P = 

1 1

2 2

7 7

a b
a b

g

a b

   
   
            

 
 ai, bj  Q, 1  i, j  7 and 
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g = (4, 9), 4, 9  Z12,g2 = (4, 9)2 = (16, 81) (mod 12) =(4, 9)= 9} 

 
be a special dual number vector space over the field Q.  
 
 Consider  
 

M1 = 

1 1

2 2

3 3

a b
a b
a b

g0 0
0 0
0 0
0 0

   
   
   
   
       
   
   
   
      

 ai, bj  Q; 1  i, j  3, g = (4, 9)}  P, 

 
M1 is a special dual number like vector subspace of P over Q. 
 
  
Let  
 
 

M2 = 1 1

2 2

0 0
0 0
0 0

ga b
a b
0 0
0 0

   
   
   
   
       
   
   
   
      

 ai, bj  Q; 1  i, j  2, g = (4, 9)}  P, 

 
M1 is a special dual number like vector subspace of P over Q. 
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 Consider  

 

M3 = 

1 1

2 2

0 0
0 0
0 0

g0 0
0 0
a b
a b

   
   
   
   
       
   
   
   
   
   

 ai, bj  Q; 1  i, j  2, g = (4, 9)}  P 

 
is a special dual like number vector subspace of P. 
 

Clearly Mi  Mj = (0) if i  j, 1  i, j  3. 
 
Further V = M1 + M2 + M3, that V is a direct sum of special 

dual like number vector subspaces of P over Q.  
 
Let  
 

N1 = 

1 1

2 2

a b
0 0
a b

g0 0
0 0

0 0

   
   
   
   
       
   
   
   
      

 

 ai, bj  Q; 1  i, j  2, g = (4, 9)}  P, 

 

N2 = 

1 1

2 2

a b
a b

g0 0

0 0

   
   
      
   
   
      

 
 ai, bj  Q; 1  i, j  2, g = (4, 9)}  P, 
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N3 = 

1 1

2 2

a b
0 0
0 0

ga b
0 0
0 0
0 0

   
   
   
   
       
   
   
   
      

 ai, bj  Q; g = (4, 9) 1  i, j  2}  P, 

 

N4 = 

1 1

2 2

3 3

a b
0 0
0 0

g0 0
a b
a b
0 0

   
   
   
   
       
   
   
   
      

 ai, bj  Q; g = (4, 9) 1  i, j  2}  P and 

 

N5 = 

1 1

2 2

3 3

a b
0 0
0 0
0 0 g
a b
0 0
a b

   
   
   
   
       
   
   
   
   
   

 ai, bj  Q; g = (4, 9) 1  i, j  2}  P  

 
be special dual like number vector subspaces of P. 
 

Clearly Pi  Pj  (0) if i  j, 1  i, j  5. 
 

Further P  N1 + N2 + N3 + N4 + N5.  Thus P is a pseudo 
direct sum of subspaces of P over Q. 
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 Example 2.22:  Let  
 

V = 
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

a a a b b b
a a a b b b (3,3,0,3,0)
a a a b b b

   
      
      

 ai, bj  Q, 

 
1  i, j  9, 3  Z6} 

 
be a special dual like number vector space over the field Q.  V 
has subspaces.  If on V we define usual matrix product V 
becomes linear algebra of special dual like numbers which is 
non commutative. 
 
 If on V be define the natural product n, V becomes a 
commutative linear algebra of special dual like numbers. 
 
Example 2.23:  Let  
 

S = 

1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

10 11 12 10 11 12

a a a b b b
a a a b b b

g
a a a b b b
a a a b b b

   
   
            

 ai, bj  Q, 

 
1  i, j  12, g = (9, 4), 9, 4  Z12} 

 
be a vector space of special dual like numbers over the field Q.  
S is a commutative linear algebra if on S we define the natural 
product.   
 

Now having seen examples of vector spaces and linear 
algebras of special dual like numbers we can find basis, linear 
operator, subspaces and linear functionals using them, which is 
treated as a matter of routine and hence left as an exercise to the 
reader. 
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  Now we proceed onto define semiring of special dual like 
numbers and develop their related properties. 
 
 For properties of semirings, semifields and semivector 
spaces refer [19-20]. 
 
Let S = {a + bg | a, b  R+  {0}, g is the new element, g2 = g}.  
It is easily verified S is a semiring which is a strict semiring.  
Infact S is a semifield.  The same result holds good if in S, R+  
{0} is replaced by Z+  {0} and Q+  {0}. 
 
 We will illustrate this situation by some examples. 
 
Example 2.24:  Let P = {a + bg | a, b  Z+  {0} g = (4, 9) 
where 4, 9  Z12, g2 = (4, 9)2 = g} be the semifield of special 
dual like numbers. 
 
Example 2.25:  Let  
 

M = {a + bg | a, b  Q+  {0}, g = 
3
3
3

 
 
 
  

, 3  Z6} 

 
be the semifield of special dual like numbers. 
 
Example 2.26:  Let  
 

M =

1

2

3

4

a
a
a
a

 
 
    

 ai = xi + yig where xi, yi  Z+  {0}, 1  i  4, 

 
g is the new element (4, 4) such that 4  Z12}  
 

be the semiring of special dual like numbers. 
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 Clearly M is not a semifield for if  
 

x = 

1a
0
0
0

 
 
 
 
 
 

 and y = 1

0
b
0
0

 
 
 
 
 
 

 are in M then x n y = (0). 

 
 So M is only a commutative strict semiring. 
 
Example 2.27:  Let  
 

S = 1 2 6 1 2 6

7 8 12 7 8 12

a a ... a b b ... b
g

a a ... a b b ... b
       
   

6 = g  Z30 

 
so that g2 = 6  6 (mod 30) = 6 = g.  ai, bj  Z+  {0}, 1  i,  
j  12} be the semiring of special dual like numbers under 
natural product n. 
 
 S is not a semifield as S has  zero divisors. 
 
Example 2.28:  Let  
 

P = 

1 2 1 2

3 4 3 4

5 6 5 6

7 8 7 8

9 10 9 10

a a b b
a a b b
a a b b g
a a b b
a a b b

   
   
      
   
   
      

ai, bj  Q+ {0}, 

 
1  i, j  10; g = 10  Z30} 

 
be the semiring of special dual like numbers.  Clearly P is a 
strict semiring but P is not a semifield as P has zero divisors. 
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 Example 2.29:  Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = xi + yig with g = (4, 4, 4, 4, 9, 9); 

 
9, 4  Z12; 1  i  9; xi, yi  Q+ {0}} 

 
be the matrix semiring of special dual like numbers.  S has zero 
divisors and S is a strict non commutative semiring under usual 
matrix product and a commutative semiring of matrices under 
the natural product. 
 
Example 2.30:  Let M = {(a1, a2, …, a6) where ai = xi + yig with 
xi, yi  Z+,  1  i  6, g = 4  Z12}  {(0, 0, 0, 0, 0, 0)} be a 
semiring of row matrices of special dual like numbers.  M is 
also a semifield of dual like numbers. 
 
Example 2.31:  Now if we take  
 

P = 

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

with ai = xi + yig 1  i  5;  

 
xi, yi  Q+ {0}, g = 6  Z30} 

 
be the semiring of column vectors under natural product n of 
special dual like numbers.  Clearly P is only a strict semiring 
and is not a semifield. 
 
Example 2.32:  Let W = {(a1, a2, a3) | ai = xi + y = g with xi, yi  
R+, 1  i  3, g = 9  Z12}  {(0, 0, 0)} be a semifield of special 
dual like numbers. 
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 Example 2.33:  Let  
 

S = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

 
 
  
 
 
  

ai = xi + yig with xi, yi  R+,  

 

1  i  15}  

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

  
  
     
  
  
    

 

 
be a semifield of special dual like numbers. 
 
 
Example 2.34:  Let  
 
 

S = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

 
 
  
 
 
  

ai = xi + yig with xi, yi  Z+  {0}, 

 
1  i  15, g = 6  Z30} 

 
be a semiring of special dual like numbers.  S is a strict semiring 
but is not a semifield S has non trivial zero divisors. 
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 Example 2.35:  Let  
 

P = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = xi+yig where g = 3  Z6, 

 
xi, yi  Z+{0} 1  i, j  9} 

 
be the non commutative semiring of special dual like numbers.  
P is not a semifield as P contains zero divisors and P is non 
commutative. 
 
Example 2.36:  Let  
 

M = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = xi+yig, g = 4  Z12,  

 
xi, yi  Z+{0}, 1  i, j  9}  

 
be the commutative semiring of special dual like numbers under 
the natural product n.  M is not a field for M contains zero 
divisors. 
 
Example 2.37:  Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = xi+yig, g = 4  Z12, 

 

xi, yi  Z+{0} 1  i  9}  
0 0 0
0 0 0
0 0 0

  
  
  
    
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 be the non commutative semiring which has no zero divisors.  
Clearly S is not a semifield as the usual product on S is non 
commutative. 
 
Example 2.38:  Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = xi+yig, g = 4  Z6, xi, yi  Q+, 

 

1  i  9}  
0 0 0
0 0 0
0 0 0

  
  
  
    

. 

 
S under the natural product n is a semifield.   
 

Now having seen examples of semifields and semirings we 
wish to bring a relation between S and P. Let 

 
 

S =
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = xi+yig, g = 9  Z12, xi, yi  Q+; 

 

1  i  9}   
0 0 0
0 0 0
0 0 0

  
  
  
    

 and 

 

P = 
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

x x x y y y
x x x y y y g
x x x y y y

   
      
      

 xi, yi  Q+;  
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g = 9  Z12,  1  i  9}  
0 0 0 0 0 0
0 0 0 0 0 0 g
0 0 0 0 0 0

    
        
        

  

 
be two semifields under natural product, n. 
 
 We can map f : S  P such that for any A  S in the 
following way. 
 

f (A) = f 
1 1 2 2 3 3

4 4 5 5 6 6

7 7 8 8 9 6

x y g x y g x y g
x y g x y g x y g
x y g x y g x y g

    
      
      

 

 

= 
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

x x x y y y
x x x y y y
x x x y y y

   
      
      

g, 

 
f is a one to one map so the semifields are isomorphic, be it 
under natural product n or under usual product, . 
 
 Consider  : P  S such that  
 

 
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

x x x y y y
x x x y y y g
x x x y y y

    
        
        

 

 

= 
1 1 2 2 3 3

4 4 5 5 6 6

7 7 8 8 9 6

x y g x y g x y g
x y g x y g x y g
x y g x y g x y g

   
    
    
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     =

1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

. 

 
 Clearly  is a one to one map of P onto S.  P is isomorphic 
to S as semifield be it under the natural product n or be it under 
usual product. 
 
 Now we will show how addition and natural product / usual 
product are performed on square matrices with entries from 
special dual like numbers. 
 

 Let A = 
3 2g 6 g
5 7g 1 3g
  

   
 

 

        = 
3 6
5 1
 
 
 

 + 
2 1
7 3

 
  

g and  

 

 B = 
1 g 3 g
4 3g 5 2g
  

   
 = 

1 3
4 5
 
 
 

+ 
1 1
3 2

 
 
 

g. 

 
 

 Now A  B = 
3 2g 6 g
5 7g 1 3g
  

   
 

1 g 3 g
4 3g 5 2g
  

   
 

 

    = 
(3 2g)(1 g) (6 g)(4 3g)
(5 7g)(1 g) (1 3g)(4 3g)

    
     

 

 
(3 2g)(3 g) (6 g)(5 2g)
(5 7g)(3 g) (1 3g)(5 2g)

     
     
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= 
3 2g 3g 2g 24 4g 18g 3g
5 5g 7g 7g 4 9g 12g 3g
      

       
 

 

     
9 6g 3g 2g 30 12g 5g 2g

15 21g 5g 7g 5 15g 6g 2g
       

       
 

 

  = 
27 32g 39 20g
9 15g 20 4g
  

   
 

  

  = 
27 39
9 20

 
 
 

 + 
32 20
15 4
 
 
 

g …  I 

 
Consider  
 

 
3 6 2 1

g
5 1 7 3

    
         

1 3 1 1
g

4 5 3 2
    

         
 

 

= 
3 6 1 3
5 1 4 5
   
   
   

 + 
2 1 1 3

g
7 3 4 5

   
      

 + 

 

  
3 6 1 1

g
5 1 3 2

   
   
   

+
2 1 1 1

g
7 3 3 2

   
      

 

 

= 
27 39
9 20

 
 
 

 + 
6 11 21 9 5 0

g
5 6 8 3 2 13

      
               

 

 

= 
27 39
9 20

 
 
 

 +
32 20
15 4
 
 
 

g  … II 

 
Clearly I and II are the same. 
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 Now we will find A n B   

 

 = 
3 2g 6 g
5 7g 1 3g
  

   
 n

1 g 3 g
4 3g 5 2g
  

   
 

 

 = 
(3 2g)(1 g) (6 g)(3 g)

(5 7g)(4 3g) (1 3g)(5 2g)
    

     
 

 

 = 
3 2g 3g 2g 18 3g 6g g

20 28g 21g 15g 5 15g 2g 6g
      

       
 

 

 = 
3 7g 18 4g

20 34g 5 23g
  

   
 

 

 = 
3 18

20 5
 
 
 

 + 
7 4
34 23

 
  

g  … I 

 

A n B =  
3 6 2 1

g
5 1 7 3

    
         

 n 
1 3 1 1

g
4 5 3 2

    
         

 

 

=  n

3 6 1 3
5 1 4 5
   

   
   

 + n

2 1 1 3
g

7 3 4 5
   

      
  

 

+  n

3 6 1 1
g

5 1 3 2
   

   
   

+ n

2 1 1 1
g

7 3 3 2
   

      
 

 

= 
3 18

20 5
 
 
 

 + 
2 3 3 6 2 1
28 15 15 2 21 6

       
               

g 

 

= 
3 18

20 5
 
 
 

 + 
7 4
34 23

 
  

g   … II 

I and II are equal. 
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 Now if we consider  

 

P =  

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

ai = xi + yig with xi, yi  Z+,  

g = 3  Z6, 1  i  5}  

0
0
0
0
0

  
  
     
  
  
    

 

 
be the semifield of special dual like numbers. 
 

S = 

1 1

2 2

3 3

4 4

5 5

x y
x y
x y g
x y
x y

   
   
      
   
   
      

 xi, yi  Z+, 

 

1  i  5, g = 3  Z6}  

0
0
0
0
0

  
  
     
  
  
    

 

 
be a the semifield of special dual like numbers. 
 

We see S and P are isomorphic as semifields. 
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Similarly if  
 

S = 
1 2 5

6 7 10

11 12 15

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai = xi + yig; xi, yi  Q+, 

 

1  i  15, g = 3  Z6}  
0 0 ... 0
0 0 ... 0
0 0 ... 0

  
  
  
    

 

 
be the semifield of special dual like numbers. 
 

Let  
 

P = 
1 2 5 1 2 5

6 7 10 6 7 10

11 12 15 11 12 15

x x ... x y y ... y
x x ... x y y ... y g
x x ... x y y ... y

   
      
      

 

 
xi, yi  Q+, 1  i  15, g = 3  Z6} 

 

 

0 0 ... 0 0 0 ... 0
0 0 ... 0 0 0 ... 0

g

0 0 ... 0 0 0 ... 0

    
    
                 

     
 

 
be the semifield of special dual like numbers.  As semifields S 
and P are isomorphic. 
 

Now using this fact either we represent elements as in S or 
as in P both are equivalent. 
 

Now we can proceed on to define the notion of semiring of 
polynomial of dual numbers. 
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Let  
 

P = i
i

i 0
a x








  ai = ti + sig with ti, si  Q+,  

g such that g2 = g}  {0},  
 
S is a semifield of polynomials with special dual like numbers 
as its coefficients. 

 
We can also have the coefficients to be matrices. 

 

For consider P = i
i

i 0
a x








  ai = 

1
i
2
i
3
i
4
i

d
d
d
d

 
 
 
 
 
  

 with t
id  = t t

i im n g  

where g2 = g and t t
i im ,n   Z+{0}, 1  t  4}; P is only a 

semiring and is not a semifield as this special dual like number 
coefficient matrix polynomial ring has zero divisors. 

 

Suppose M = i
i

i 0
a x








  as = 

1
i
2
i
3
i
4
i

d
d
d
d

 
 
 
 
 
  

 with t
id  = t t

i im n g   

 
where g2 = g and t t

i im ,n   Z+, 1  t  4}  {0};  
 

M is a semifield with matrix polynomial special dual like 
number coefficients.  

 
Thus we can have polynomials with matrix coefficients 

where the entries of the matrices are special dual like numbers. 
 
We give examples of them. 
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 Example 2.39:  Let  
 

V = i
i

i 0
a x








  ai = 

i i
1 5
i i
2 6
i i
3 7
i i
4 8

s s
s s
s s
s s

 
 
 
 
 
  

 i
ts  = i i

t tx y g  with i i
t tx , y   Z+, 

g is the new element with g2 = g and 1  t  8}  

0 0
0 0
0 0
0 0

  
  
         

 

 
be a semifield of special dual like number matrix coefficients. 
 
 
Example 2.40:  Let  
 

V = i
i

i 0
a x








  ai = 

i i
1 5
i i
2 6
i i
3 7
i i
4 8

p p
p p
p p
p p

 
 
 
 
 
  

 where pi  = i i
t tx y g  

 
with i i

t tx , y  Z+ {0} 
 

and g is the new element such that g2 = g; 1  i  8} be the 
semiring of special dual like number polynomials with matrix 
coefficients.  Clearly M is not a semifield. 
 
Example 2.41:   Let  
 

P = i
i

i 0
a x








  ak = (mij)6  6, mij = tij + sij g with tij, sij  R+, 

 
1  i, j  36, g = 3 is in Z6 with g2 = g = 3}   
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 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

  
  
  
   
  
  
  
  
    

 

 
be the semifield of special dual like number with square matrix 
coefficient polynomials under the natural product n.  If the 
usual product ‘’ of matrices is taken P is only a semiring as the 
operation ‘’ on P is non commutative. 
 
 Also if in P, tij, sij  R+  {0}, 1  i, j  36, g = 3  Z6 then 
also P is only a semiring even under natural product n as P has 
zero divisors. 
 
 Thus we have seen examples of various types of semirings 
and semifields of special dual like numbers.   
 

Now we describe how we get special dual like numbers. In 
the first place the modulo integers happen to be a very rich 
structure that can produce the new element ‘g’ with g2 = g, 
which is used to construct special dual like numbers. 
 
 For take any Zn, n not a prime and n  6 then in most cases 
we get atleast one new element g  Zn such that g2 = g (mod n). 
 
 We just give illustrations. 
 
 Consider Z6, 3, 4  Z6 are such that 32  3 (mod 6) and 42 = 
4  (mod 6) 3 and 6 are new elements.  Consider Z7, Z11 or any Zp 
they do not have new elements such that they are idempotents. 
 
 In view of this we see if x  Zn is an idempotent then x2 = x 
so that x2 – x = 0 that is x2 + (n–1)x = 0. 
 
 Hence x (x+n–1) = 0 as x  0 and x + n–1   0. 
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 We see 32 = 3 (mod 6)  32 – 3  0 (mod 6) that is 32 + 5  3 
 0 (mod 6) that is 3 [3 + 5]  0 (mod 6) 3  2  0 (mod 6).  So 
Z6 has zero divisors. 
 
 4  Z6 is such that 42  4 (mod 6)  4  (4 + 5)  0 (mod 6) 
so that 4  3  0 (mod 6) is a zero divisor.  We have 3 and 4 in 
Z6 are idempotents.  These serve to build special dual like 
numbers. 
 
 Not only we get a + bg and c + dg1, g = 3 and g1 = 4 are 
special dual like numbers but elements like  
 

p = 

3
4
0
3

 
 
 
 
 
 

 and q = 

3 4
4 3
4 4
3 3
3 0
0 3
4 0

 
 
 
 
 
 
 
 
 
  

 

 
are also such that p n  p = p (mod 6) and  q n q =  q (mod 6). 
 

 If A  = 
3 4 0 3
4 4 0 4
3 4 0 4

 
 
 
  

 we see A n A  A (mod 6) and so 

on. 
 
 Thus this method leads us to get from these two new 
elements 3 and 4 infinitely many new elements or to be more in 
mathematical terminology we see we can using these two 
idempotents with 0 construct infinitely many m  n matrices  
m, n Z+ which are idempotents.   
 

Thus using these collection of idempotents we can build 
special dual like numbers. 
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 Clearly Z8 has no idempotents, Z9 has no idempotents, 
however Z10 has idempotents 5, 6  Z10 are idempotents. Z11 has 
no idempotent.  Consider Z12, Z12 has 4 and 9 to be idempotents.  
Z14 has 7 and 8 to be idempotents.  In Z15, 6 and 10 are 
idempotents. Z18 has 9 and 10 to be their idempotents.   
 

In view of this we have the following three theorems. 
 
THEOREM 2.11:  Let Zp be the finite prime field of 
characteristic p.  Zp has no idempotents. 
 
Proof:  Clear from the fact a field cannot have idempotents. 
 
THEOREM 2.12 :  Let 2p

Z  be the finite modulo integers, p a 

prime 2p
Z  has no idempotents. 

 
 Simple number theoretic methods yields the result for if  
n  2p

Z  is such that n2 = n (mod p2) then n(n–1) 0 (mod p2). 

 
 Using the fact p is a prime n2  n is impossible by simple 
number theoretic techniques. 
 
 However this is true for any np

Z  p a prime, n  2. 

 
Example 2.42:  Let Z27 be the ring of modulo integers. Z27 has 
no idempotents Z27 = 33

Z . 
 
Example 2.43:  Let S = Z10 be the ring 5, 6  Z10 are such that 
52 = 25 = 5 (mod 10), 62 = 36 = 6 (mod 10). 
 So 5, 6 are idempotents of Z10. 
 
Example 2.44:  Let S = Z14 be the ring of modulo integers 7, 8 
 Z14 are such that 72 = 49 = 7 (mod 14), 82 = 64  8 (mod 14), 
8 and 7 are the only idempotents of Z14. 
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 Example 2.45:  Let S = Z34 be the ring of modulo integers.  17, 
18  Z34 are such that 172  17 (mod 34) and 182 = 8 (mod 34).  
Thus only 17 and 18 are the idempotents of Z34 which is used in 
the construction of special dual like numbers. 
 
 Inview all these examples we have the following theorem. 
 
THEOREM 2.13:  Let S = Z2p (where p is a prime) be the ring of 
modulo integers.  Clearly p, p+1 are idempotents of S. 
 
 Proof is direct using simple number theoretic techniques. 
 
Example 2.46:  Let Z15 be the ring of modulo integers 6 and 10 
are idempotents of Z15.   
 
Example 2.47:  Let Z21 be the ring of modulo integers. 7 and 15 
are the idempotents of Z21. 
 
Example 2.48:  Let Z33 be the ring of modulo integers. 12 and 
22 are idempotents of Z33. 
 
Example 2.49:  Let Z39 be the ring of modulo integers.  13 and 
27 are idempotents of Z39. 
 
Example 2.50:  Let Z35 be the ring of integers the idempotents 
in Z35 are 15 and 21. 
 
 Inview of all these we make the following theorem. 
 
THEOREM 2.14:  Let Zpq (p and q two distinct primes) be the 
ring of modulo integers Zpq has two idempotent t and m such 
that t = ap and q = bm, a  1 and m  1. 
 
 The proof is straight forward and uses only simple number 
theoretic methods. 
 
Example 2.51:  Let Z30 be the ring of integers.  6, 10, 15, 16, 21 
and 25 are idempotents of Z30. 
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 Example 2.52:  Let Z42 be the ring of integers.  7, 15, 21, 22, 28 
and 36 are idempotents of Z42.  

Thus we have the following theorem. 
 
THEOREM 2.15:  Let Zn be the ring of integers.  n = pqr where 
p, q and r are three distinct primes. 
 
 Then Zn has atleast 6 non trivial idemponents which are of 
the form ap, bq and cr (a  1, b  1 and c  1). 
 
 The proof exploits simple number theoretic techniques. 
 
Example 2.53:  Let Z210 be the ring of modulo integers.  15, 21, 
36, 60, 70, 105, 106, 196, 175, 120, 126, and 85 are some of the 
idempotents in Z210. 
 
Example 2.54:  Let Z50 be the ring of modulo integers.  25 and 
26 are the only idempotent of Z50.   

 
Now using these idempotents we can construct many 

special dual like numbers. 
 
 Next we proceed on to study the algebraic structures 
enjoyed by the collection of idempotents in Zn. 
 
Example 2.55:  Let Z42 be the ring of modulo integers.  We see 
S = {7, 0, 15, 21, 22, 28 and 36} are idempotents of Z42 we give 
the table under .  However under ‘+’ we see S is not even 
closed. 
 

 0 7 15 21 22 28 36 
0 0 0 0 0 0 0 0 
7 0 7 21 21 28 28 0 

15 0 21 15 21 36 0 36 
21 0 21 21 21 0 0 0 
22 0 28 36 0 22 28 36 
28 0 28 0 0 28 28 0 
36 0 0 36 0 36 0 36 



74 Special Dual like Numbers and Lattices 
 
 
  (S, ) is a semigroup.  Thus product of any two distinct 
idempotents in S is either an idempotent or a zero divisor. 
 
     That is for a, b  S. 
     We have a  b = 0 (mod 42) 
     or  (a  b) = c (mod 42), 0  c  S 
     or a  b = b (mod 42) 
     or a  b = a (mod 42). 
 
 We call this semigroup as special dual like number 
associated component semigroup of S. 
 
Example 2.56:  Let Z30 be the ring of modulo integers.   
 

S = {0, 6, 10, 15, 16, 21, 25}  Z30 be the collection of 
idempotents of Z30.  Clearly S is not closed under ‘+’ modulo 
30. 
 
 The table for S under  is as follows: 
 

 0 6 10 15 16 21 25 
0 0 0 0 0 0 0 0 
6 0 6 0 0 6 6 0 

10 0 0 10 0 10 0 10 
15 0 0 0 15 0 15 15 
16 0 6 10 0 16 6 10 
21 0 6 0 15 6 21 15 
25 0 10 10 15 21 15 25 

 
 (S, ) is a semigroup which is the special dual like number 
associated semigroup.  If we want we can adjoin ‘1’.  The unit 
element as 12 = 1 (mod n).  Now we cannot give any other 
structure.  Further S is not an idempotent semigroup also.   
 

We can call it as an idempotent semigroup provided we 
accept ‘0’ as the idempotent and xy = 0 (x  0 and y  0) then 
interpret ‘xy = 0’ as not zero divisor but again an idempotent. 
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 THEOREM 2.16:  Let Zm be the ring of modulo integers. m = 2p 
where p is a prime. S = {0, p, p+1}  Zm is a semigroup with 
p(p+1) = 0 (mod m). 
 
Proof : p(p+1) = p2 + p = p(p+1) as p+1 is even as p is a prime.  
So p(p+1)  0 (mod m).  Hence the claim. (S, ) is a semigroup. 
 
 We see in case of Z33, 22 and 12 are the idempotents of Z33.  
We see 22  12  0 (mod 33).  Further S = {0, 12, 22}  Z33 is a 
semigroup. 
 
 Thus we see as in case of Z2p the ring Z3p, p a prime also 
behaves. Infact for Z35, 15 and 21 are idempotents and  
15 21  0 (mod 35). 
 
 Hence S = {0, 15, 21}  Z35 is a semigroup under  
product . 
 

In view of all these we have the following theorem.  
 
THEOREM 2.17:  Let Zpq (p and q be two distinct primes) be the 
ring of modulo integers.  Let x, y be idempotents of Zpq we see  
x  y  0 (mod pq) and S = {0, x, y}  Zpq is a semigroup. 
 
 The proof requires only simple number theoretic techniques 
hence left as an exercise to the reader. 
 
 Let S = Zm where m = p1p2 … pt, pi are distinct that m is the 
product of t distinct primes. 
 

(i) How many idempotents does Zm \ {0,1} contain? 
 
(ii) Is P = {s1, …, sn, 0, 1}, a semigroup where s1, …, sn 

are idempotents of Zm? 
 

This is left as an open problem for the reader. 
 

Now we proceed on to describe semivector spaces and 
semilinear algebras of special dual like numbers. 
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Let M = {(a1, a2, …, a9) | ai = xi + yig where xi, yi  Z+  
{0}, g such that g2 = g; 1  i  9}  be a semivector space of 
special dual like numbers over the semifield.   

M is also known as the special dual like number semivector 
space over the semifield Z+ {0}. 

 
Clearly M is not a semivector space over the semifields  

Q+ {0} or R+ {0}. 
 
Example 2.57:  Let  
 

V = 

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

 ai  {xi + yig |  xi, yi  Q+  {0}, 

 
g = 3  Z6, g2 = g 1  i  5}} 

 
be the semivector space of special dual like numbers over the 
semifield Q+  {0} or Z+  {0}.  If on V we can define n the 
natural product, V becomes a semilinear algebra. 
 
Example 2.58:  Let  
 

S = 1 2

3 4

a a
a a

 
 
 

 ai = {xi + yig where  xi, yi  Q+  {0}, 

 
g = 7  Z14, 1  i  4}} 
 

be the semivector space over the semifield Z+  {0}.   
 

If we define the usual matrix product  on S then S is a non 
commutative semilinear algebra.   
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 If on S we define the natural product n then S is a 
commutative semilinear algebra special dual like numbers over 
the semifield Z+  {0}. 

 

 Let A = 
3 2g 0
4 5g 2 g
 

   
 and B = 

0 1 3g
2 g 4 2g

 
   

 be in S. 

 

A  B = 
3 2g 0
4 5g 2 g
 

   
  

0 1 3g
2 g 4 2g

 
   

 

 

       = 2

0 (3 2g)(1 3g)
(2 g) (4 5g)(1 3g) (2 g)(4 2g)

  
       

 

 

  = 
2

2 2 2

0 3 2g 9g 6g
4 4g g 4 12g 5g 15g 8 4g 4g 2g
   
          

 

 
           (using g2 = g) 
  

   = 
0 3 17g

4 5g 12 42g
 

   
  S. 

 
 Suppose instead of the usual product  we define the natural 
product n; 
 

A n B  = 
3 2g 0
4 5g 2 g
 

   
 n 

0 1 3g
2 g 4 2g

 
   

 

 

= 2 2

0 0
8 10g 4g 5g 8 4g 4g 2g
 
       

 

 

= 
0 0

8 19g 8 10g
 
   

  S. 

 
 However we see A  B  A n B. 
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 Example 2.59:  Let 
 

P = 

1 2

3 4

5 6

7 8

9 10

a a
a a
a a
a a
a a

 
 
  
 
 
  

 ai = xi + yig 

where g = 5  Z10, xi, yi  R+  {0}, 1  i  10} 
 

be a semivector space of special dual like number over the 
semifield Z+  {0}.   
 

On P we can define the usual product, however under the 
natural product n, P is a semilinear algebra.  
 
 Consider  

 

M1 = 

1 2a a
0 0
0 0
0 0
0 0

 
 
  
 
 
  

 ai = xi + yig where g = 5  Z10,  

 
xi, yi  R+  {0}, 1  i  2}  P, 

 

M2 = 
1 2

0 0
a a
0 0
0 0
0 0

 
 
  
 
 
  

 ai = xi + yig where g = 5  Z10,  

 
xi, yi  R+  {0}, 1  i  2}  P, 
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M3 = 1 2

0 0
0 0
a a
0 0
0 0

 
 
  
 
 
  

 ai = xi + yig where g = 5  Z10,  

 
xi, yi  R+  {0}, 1  i  2}  P, 

 
 

M4 = 

1 2

0 0
0 0
0 0
a a
0 0

 
 
  
 
 
  

 ai = xi + yig where g = 5  Z10,  

 
xi, yi  R+  {0}, 1  i  2}  P and 

 
 

M5 = 

1 2

0 0
0 0
0 0
0 0
a a

 
 
  
 
 
  

 ai = xi + yig where g = 5  Z10,  

 
xi, yi  R+  {0}, 1  i  2}  P 

 
be semivector subspaces of the semivector space P.  Infact M1, 
M2, M3, M4 and M5 are semivector subspaces of special dual 
like numbers over the semifield Z+  {0} of P. 
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 Clearly Mi  Mj = 

0 0
0 0
0 0
0 0
0 0

 
 
 
 
 
 
  

 if i  j, 1  i, j  5 and  

 
P = M1 + M2 + M3 + M4 + M5, that is P is the direct sum of 

special dual like number semivector subspaces of P over the 
semifield R+  {0}.  
 

Suppose  

T1 = 

1 2

3

a a
a 0
0 0
0 0
0 0

 
 
  
 
 
  

 ai = xi + yig where g = 5  Z10, 

xi, yi  R+  {0}, 1  i  3}  P, 
 

T2 = 
1 2

3

0 0
a a
a 0
0 0
0 0

 
 
  
 
 
  

ai = xi + yig where g = 5  Z10, 

xi, yi  R+  {0}, 1  i  3}  P, 
 

T3 = 
1

2

3

0 0
a 0
0 a
a 0
0 0

 
 
  
 
 
  

 ai = xi + yig where g = 5  Z10, 

 
xi, yi  R+  {0}, 1  i  3}  P, 
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T4 = 
1

2

3

0 0
a 0
0 0
0 a
a 0

 
 
  
 
 
  

 ai = xi + yig where g = 5  Z10, 

xi, yi  R+  {0}, 1  i  3}  P, 
 

and 
 

T5 = 
1

2

3

0 0
a 0
0 0
0 a
a 0

 
 
  
 
 
  

 ai = xi + yig where g = 5  Z10, 

xi, yi  R+  {0}, 1  i  3}  P 
 

 
be special dual like number semivector subspaces of P over the 
semifield R+  {0}.   
 
 
 

We see Ti  Tj = 

0 0
a 0
0 0
0 0
0 0

 
 
  
 
 
  

 if i  j, 1  i, j  5, a = x +yg;  

 
g  Z10, x, y  R+  {0}}. 
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 Only in one case  

 

T4  T5 = 
1

2

0 0
a 0
0 0
0 0
a 0

 
 
  
 
 
  

 ai = xi + yig, g = 5  Z10, 

 
xi, yi  R+  {0}, 1  i  2}  P. 

 
Thus P 


 T1 + T2 + T3 + T4 + T5, so P is the pseudo direct 

sum of special dual like number semivector subspaces of P over 
the semifield R+  {0}. 
 

We have several semivector subspaces of P.  P can be 
represented as a direct sum or as a pseudo direct sum depending 
on the subsemivector spaces taken under at that time. 
 
Example 2.60:  Let  
 

V = 

1

2

3

4

5

a
a
a
a
a

 
 
  
 
 
  

 ai  {xi + yig |  xi, yi  Q+  {0}}, 

 
1  i  5, g = 10  Z30} 

 
be a semivector space of special dual like numbers over the 
semifield Q+  {0}. 
 
 W = {(a1, a2, a3, a4, a5) | ai = {xi + yig |  xi, yi  Q+  {0}}, 1 
 i  5, g = 6  Z30} be a semivector space of special dual like 
numbers over the semifield Q+  {0}. 
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  Consider T : V  W  
 

T (

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

) = (a1, a2, a3, a4, a5), 

 
then T is defined as a semilinear transformation from V to W. 
 
 Likewise we can define the notion of semilinear operator 
and semilinear functional of a semivector space of special dual 
like numbers. 
 
 For if A = (3 + 2g, 4 + g, 15 + g, 2g, 0)  V then if f is a 
semilinear functional from V to Q+  {0}, we see 
 f (A) = 3 + 4 + 15 + 0 + 0  = 22  Q+  {0}. 
 
 So we can define f as a semilinear functional of V. 
 
 Thus the study of semilinear functional, semilinear operator 
and semilinear transformation can be treated as a matter of 
routine.  This task of defining / describing the related properties 
of these structures and finding 

Q {0}
Hom (V,W) 

, 

Q {0}
Hom (V,V) 

 and L (V, Q+  {0}) are left as exercise to the 

reader.  
 
 We can also define projection and semiprojection on vector 
spaces and semivector spaces of special dual numbers 
respectively. 
 
 Further both projections as well semiprojections themselves 
can be used to construct special dual like numbers. 
 
 One can do all the study by replacing the semivector space 
of special dual like numbers by the semilinear algebra of special 
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 dual like numbers over the semifield.  This study is also simple 
and hence left for the reader as exercise. 
 
 Finally we can define the notion of basis, linearly dependent 
set and linearly independent set of a semivector space / 
semilinear algebra of special dual like numbers. 
 
 We can also define the notion of set vector space of special 
dual like numbers and semigroup vector space of special dual 
like numbers over the field F.   We have two or more dual 
numbers and they are not related in any way we use the concept 
of set vector space of special dual like numbers. 
 
 All these concepts we only describe by examples.  
 
Example 2.61:  Let M = {a + bg1, c + dg2 | a, b, c, d  R, g1 = 5 
 Z10 and g2 = 3  Z6} be a set vector space of special dual like 
numbers over the set S = 3Z. 
 
Example 2.62:  Let  
 

T =

1

1 22

3 43

4

a
a aa

,
a aa

a

 
           

, (a1, a2, a3, a4) | ai = {xi + yig  with 

  
xi, yi  R}, 1  i  4, g = (3, 4, 3, 4, 3, 4)  where 3, 4  Z6} 

 
be a set vector space of special dual like numbers over the set  
S = {3Z  5Z  7Z}. 
 
Example 2.63:  Let  
 

T =
1 2

1 2 3 10
3 4

11 12 13 20
5 6

a a
a a a ... a

a a ,
a a a ... a

a a

 
  

       

, (a1, a2, a3) |  
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ai = {xi + yig  with  xi, yi  R}, 1  i  20,  
 

g = (10, 10, 0, 10, 0)  where 10  Z30} 
 

be a set vector space of special dual like numbers over the set  
F = 5Z. 
 
Example 2.64:  Let  
 

W = i i
i i

i 0 i 0
a x , b x

 

 




   ai = {xi + yig1  with   

 
xi, yi  Q, g1 = 5  Z10}, and bj = xj + yjg2,  

 
g2 = 10  Z30, xj, yj  3Z} 

 
be the set vector space of special dual like numbers over the set 
S = 5Z  3Z+. 
 
 It is pertinent to mention here that we can define subset 
vector subspaces of special dual like numbers and set vector 
subspaces of special dual like numbers.  
 
Example 2.65:  Let  
 

M = {a + bg1, d + cdg2, e + fg3 | a, b  3Z, c, d  5Z 
 

and e, f  11Z+  {0} where g1 = 4  Z11, 
 

g2 = 

3
0
3
4

 
 
 
 
 
 

, 3, 4  Z6 and g3 = (6, 10, 6, 10), 6, 10  Z30} 

 
be the set vector space of special dual like numbers over the set 
S = 5Z. 
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 Example 2.66:  Let  
 

S = 

1

2

3

4

a
a

,
a
a

 
 
    

c + dg2, i
i

i 0

d x



 ai = {xi + yig1  with 

 
xi, yi  13Z, 1  i  4, g1 = 6  Z30, c, d  Q, 

 

g2 =

4
3
4
3

 
 
 
 
 
 

, 4, 3  Z6, di = mi + nig3 where  

 
g3 = (5, 5, 5, 6, 0, 5, 6), 5, 6  Z10, mi, ni  12Z}} 

 
be a set vector space of special dual like numbers over the set 
5Z+  3Z. 
 
Example 2.67:  Let  
 

S = {a + bg1, d + cdg2 and e + fg3 | a, b  Z+, c, d  Q+ and 
 

e, f  14Z+, where g1 = (0, 4, 9, 0, 4, 9), 4, 9  Z12, 
 

g2 = 

3
4
3
4
3

 
 
 
 
 
 
  

, 3, 4  Z6 and g3 =
10 6
6 10

 
 
 

 where 10, 6  Z30} 

 
 

be the set vector space of special dual like numbers over the set 
S = 5Z+  8Z+. 
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 All properties associated with set vector spaces can be 
developed in case of set vector spaces of special dual like 
number without any difficulty.  This task is left as an exercise to 
the interested reader. 
 
 Now we proceed onto define a very special set vector 
spaces which we choose to call as strong special set like vector 
spaces of special dual like numbers.  
 
DEFINITION 2.1:  Let S = {collection of algebraic structures 
using special dual like numbers} be a set.  Let F be a field if for 
every x  S and a  F 
 

(i) ax = xa  S. 
(ii) (a + b)x = ax + bx 
(iii) a (x+y) = ax + ay 
(iv) a.0 = 0 
(v) 1.s = s for all x, y, s  S and a, b, 0  F,  

then we define S to be a strong special set like 
vector space of special dual like numbers. 

 
We will illustrate this situation by some examples. 

 
Example 2.68: Let  
 

M = 

1 5 91

2 6 102

3 7 113

4 8 124

x x xa
x x xa

,
x x xa
x x xa

   
   
            

, (d1, d2, …, d10) | ai = mi + nig1, 

 
dj = tj + sj g3 and xk = pk + rk g2 where mi, ni  Q, 1  i  4, pk,  
rk  R, 1  k  12 and tj, sj  Q; 1  j  10; with  
g1 = (4, 3, 4), 4, 3  Z6, g2 = (17, 18), 17, 18  Z34 and  
 

g3 =
7 8 7 8
7 0 8 7
 
 
 

, 7, 8  Z14} 
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 be the strong special set like vector space of special dual like 
numbers over the field Q.  Clearly no addition can be performed 
on M. 
 
Example 2.69:  Let  
 

S = {a + bg1, c+dg2, c+fg3, m + ng4, x + yg5 | a, b, e, f  R, c, 
 

d, m, n, x, y  Q, g1 =

4
3
4
3

 
 
 
 
 
 

, 4, 3  Z6, 

g2 =
7 8 7
8 7 8
8 8 8

 
 
 
 
 

, 8, 7  Z14, g3 =
10 6 10 6
6 10 6 10

 
 
 

,10, 6  Z30, 

g4 =  

5 6
6 5
5 5
6 6

 
 
 
 
 
 

, 5, 6  Z10 and 

 

      g5 = 
4 9 4 9 4 9
9 4 9 4 9 4
 
 
 

 with 9, 4  Z12} 

 
be a strong special set like vector space of special dual like 
numbers over the field Q.  We see g1, g2, g3, g4 and g5 are 
idempotents which are unrelated for they take values from 
distinct Zn’s.  No type of compatability can be achieved as it is 
not possible to define operations on them. 
 
Example 2.70: Let  
 

M = 
1

2

3

a
a ,
a

 
 
 
  

(x1, x2, x3), m + ng3, i
i

i 0

t x



  ai = ri + sig1, 
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xj = cj + djg2, tk = qk + pk g4 such that ri, si, cj, dj, qk, pk, 
 

m and n  Q; 1  i  3, 1  j  3, 1  k  ; g1 = (6, 10, 6), 
 

g2 = 
10
6

10

 
 
 
  

, g3 = 
6 10 6 10
6 10 6 10
6 6 10 10

 
 
 
  

 and g4 = (10, 6)  

 
with 10, 6  Z30} 

 
be a strong special set vector space of special dual like numbers 
over the field Q. 
 
 Though the gi’s are elements basically from Z30 that using 
the idempotents 6 and 10 of Z30, still we see we cannot define 
any sort of compatible operation on M. 
 

Now on same lines we can define strong special set like 
semivector space of special dual like numbers over the semifield 
F. 
 
 We only give some examples for this concept. 
 
Example 2.71:  Let  
 

P = {a + bg1, c + dg2, m + nd3 where a, b  Q+  {0},  
c, d  3Z+  {0} and m, n  R+  {0}; 

 

g1 = (3, 4), 3, 4  Z6, g2 = 
3 4 3 4 3 4 3 4
4 3 4 3 4 3 4 3
 
 
 

 

 

4, 3  Z6 and g3 = 

4 3 4
3 4 4
4 4 3
3 4 3

 
 
 
 
 
 

, 4, 3  Z6} 
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 be the strong special set like semivector space of special dual 
like numbers over the semifield Z+  {0}. 
 
 Clearly no compatible operation on P can be defined.  
Further P is not a semivector space over  Q+  {0} or R+  {0}. 
 
Example 2.72:  Let  
 

S = 
1 2

3 4

5 6

a a
a a ,
a a

 
 
 
  

 (d1, d2, d3, d4, d5), 1 2

3 4

x x
x x
 
 
 

, 
1

2

3

p
p
p

 
 
 
  

 where 

 
ai = xi + yig, xi, yi  3Z+  {0}, 1  i  6, dj = mj + nj g; mj, nj  
5Z+  {0}, 1  j  5, xt = rt + stg; 1  t  4, rt, st  17Z+  {0} 
and ps = qs + tsq, qs, ts  43Z+  {0}; 1  s  3 with g = 4  Z12} 
be a strong special set like semivector space of special dual like 
numbers over the semifield Z+  {0}. 
 
Example 2.73:  Let  
 

W = i i i
i i i

i 0 i 0 i 0
a x , b x , m x

  

  




    ai = ti + sig1 + nj = mj+ njg2 

 
and mk = ck + dkg3 where ti, si  3Z+  {0}, mj, nj  47Z+  {0} 
 

and ck, dk  10Z+  {0} with g1 = 

3 4
4 3
3 4
4 3
3 4

 
 
 
 
 
 
  

; 4, 3  Z6,  

 
g2 = (10, 6, 10, 6, 10, 6), 10, 6  Z30 and  
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g3 = 
11 12 11 12 11
12 11 12 11 12
11 11 12 12 12

 
 
 
  

; 11, 12  Z22}  

 
be the strong special  set like semivector space of special dual 
like numbers over the semifield Z+  {0}. 
 
Example 2.74:  Let  
 

S = 

1 5
1 2 3

2 6 1 2
4 5 6

3 7 3 4
7 8 9

4 8

a a
d d d

a a b b
, d d d , ,x yg

a a b b
d d d

a a

 
                    

 x, yQ+ {0}, 

 
ai = xi + yig, xi, yi  Z+  {0}, 1  i  8, bj = tj + sjg; tj, sj  Q+ 
 {0}, dm = am + bmg, am, bm  Q+  {0}; 1  m  9, 1  j  4 
and g = 10  Z30} be the strong special set like semivector 
space of special dual like numbers over the semifield Q+  {0}. 
 
Example 2.75:  Let  
 

S = 1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

a a b b c c d d
, , ,

a a b b c c d d
       
       
       

ai = xi + yig, bj 

 
= mj + njg2, ck = sk + rkg3 and dm = am + bmg4 where xi, xj, yi, nj, 
sk, rk, am and bm   Q+  {0}, 1  i, j, k, m   4. 
 

g1 = (4 3 4 3);  4, 3  Z6, g2 = 
10 6
10 6
6 10

 
 
 
  

, 10, 6  Z30, 

 

g3 = 
11 12 11 12 11
12 11 12 11 12
 
 
 

; 11, 12  Z22 and  
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g4 = 
6 10 6 10 6 10

10 6 10 6 10 6
 
 
 

, 10, 6  Z30}  

 
be the strong special set like semivector space of special dual 
like numbers over the semifield Z+  {0}. 
 
 The study of substructures, writing them as direct sum of 
subspaces, expressing them as a direct sum of pseudo vector 
subspaces, linear transformation, linear operator and linear 
functionals happen to be a matter of routine, hence left as an 
exercise to the reader. 
 
Example 2.76:  Let  
 

S = 

1 2
1 2 3

3 4
4 5 6 1 2 12

5 6
7 8 9

7 8

a a
a a a

a a
, a a a ,(a ,a ,...,a )

a a
a a a

a a

 
  

            

 ai  {xi + yig 

 

where xi, yi  Q+  {0} and g = 
3 4 3 4
4 3 4 3
 
 
 

with  

 
3, 4   Z12}; 1  i  12} 

 
be the strong special set like semivector space of special dual 
like numbers over the semifield Z+  {0}. 
 

Take M1 = 

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
    

 ai  {xi + yig 

 
where xi, yi  Q+  {0} 1  i  8}  S, 
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M2 = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  {xi + yig where xi, yi  Q+  {0},  

 

g = 
3 4 3 4
4 3 4 3
 
 
 

,  1  i  9}  S 

 
and  
 

M3 = {(a1, a2, …, a12) | ai  {xi + yig 
 

where xi, yi  Q+  {0}, g = 
3 4 3 4
4 3 4 3
 
 
 

,  1  i  12}  S 

 
are strong special set like semivector subspaces of special dual 
like numbers of S over the semifield Z+  {0}. 
 
 Clearly S = M1 + M2 + M3 and Mi  Mj =  if i  j; 1  i, j  
3.  Thus S is the direct sum of semivector subspaces. 
 
 Now consider  
 

P1 = 

1 2

3 4
1 2 12

5 6

7 8

a a
a a

,(a ,a ,...,a )
a a
a a

 
 
    

 ai = xi + yig 

 
where xi, yi  Q+  {0}; 1  i  12,  

 

         g =  
3 4 3 4
4 3 4 3
 
 
 

, 3, 4  Z12}  S, 
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P2 = {(a1, a2, …, a12), 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai = xi + yig 

 
with xi, yi  Q+  {0}; 1  i  12, 

 

g =  
3 4 3 4
4 3 4 3
 
 
 

, 3, 4  Z12}  S and 

 

P3 = 

1 2
1 2 3

3 4
4 5 6

5 6
7 8 9

7 8

a a
a a a

a a
a a a ,

a a
a a a

a a

  
   
            

 ai = xi + yig 

 

with xi, yi  Q+  {0}, 1  i  9, g =  
3 4 3 4
4 3 4 3
 
 
 

, 

 
3, 4  Z12}  S 

 
be strong special set like semivector subspaces of special dual 
like numbers over the semifield Z+  {0}. 
 
 Clearly Pi  Pj   if i  j; 1  i, j  3. 
 
 Thus S  P1 + P2 + P3 so S is only a pseudo direct sum of 
semivector subspaces of S over Z+  {0}. 
 
 We can define T : S  S  

 

where T (

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
 
 
 
 

) = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

, 
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T (a1, a2, a3, a4, a5, a6, …, a12) = 
2 4 6

8 10 12

3 6 9

a a a
a a a
a a a

 
 
 
  

 

and  
 

T (
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

) = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12). 

 
Thus T is a special set linear operator on S. 
 
Similarly we can define  

 
f : S  Z+  {0} as follows: 

 

f (

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
 
 
 
 

) = [x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8] 

where ai = xi + yig; xi, yi  Q+  {0}  that is if  xi = n if n is a 
fraction we near it to a integer.   
 

For instance n = t/s t , s but t/s > ½ = 0.5 then n = 1 if t/s < 
½ = 0.5 then n = 0 if t/s  = m r/s with r / s < 0.5 then t/s = m if 
t/s = m+r/s    r/s > 0.5  t/s = m+1. 
 

f is a set linear functional on S.   
 

Interested reader can study the properties of basis, linear 
independent element and linearly dependent elements and so on. 

 
Now we just show we can write a matrix with entries  

ai = xi + yig in the form of two matrices that is A + Bg where A 
and B are matrices with g2 = g, we can define this as the special 
dual like matrix number.   
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We will illustrate this situation only by examples.  
 
Example 2.77:  Let  
M = {(x1, x2, x3, x4) + (y1, y2, y3, y4)g | xi, yi  Q+  {0}, g2 = g} 
be a special dual like row matrix number semiring.   
 

We see N = {(a1, a2, a3, a4) | ai = xi + yig, xi, yj  Q+  {0}, 
1  i, j  4, g2 = g} is a special dual like row matrix number 
semiring such that M is isomorphic to N, by an isomorphism  

 
 : M  N such that  
 ((x1, x2, x3, x4) + (y1, y2, y3, y4)g)   

   = (x1 + y1g, x2+g2g, x3+y3g, x4+y4g)  = (a1, a2, a3, a4). 
 

Example 2.78:  Let  
 

T = 

1 1

2 2

10 10

x y
x y

, g

x y

   
   
            

 
g = 

3 4 3 4 3
4 3 4 3 4
 
 
 

 

 
with 3, 4  Z6, xi, yi  Z+  {0}, 1   i  10} 

 
be the special dual like column matrix number semiring such 
that T is isomorphic with  
 

P = 

1

2

10

a
a

a

 
 
    


ai = xi, yig +  1   i  10 and  

 

g = 
3 4 3 4 3
4 3 4 3 4
 
 
 

, 3, 4  Z6 with xi, yi  Z+  {0}}. 
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 Example 2.79: Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai = xi + yig with 

 

g = 
4
3
4

 
 
 
  

, 4, 3  Z6, xi, yi  Z+  {0}, 1   i  9} 

 
be the special dual like square matrix number semiring such that 
S is isomorphic with  
 

P = 
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

x x x y y y
x x x y y y g
x x x y y y

   
      
      

 g = 
4
3
4

 
 
 
  

,  

 
4, 3  Z6, xi, yi  Z+  {0}, 1   i, j  9}  

 
the special dual like square matrix number semiring. 
 
 Finally consider the following example. 
 
Example 2.80:  Let  
 

P = 
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
  

 xi, yi g; g =
7 8 7 8 7
8 7 8 7 8
 
 
 

, 

 
7, 8  Z14;  xi, yi  Z+  {0}, 1   i  30} 

 
 

be the special dual like rectangular matrix number semiring.  P 
is isomorphic with  
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Q = 
1 2 10 1 2 10

11 12 20 11 12 20

21 22 30 21 22 30

x x ... x y y ... y
x x ... x y y ... y g
x x ... x y y ... y

   
      
      

 

 

g = 
7 8 7 8 7
8 7 8 7 8
 
 
 

  8,7  Z14;  xi, yi  Z+  {0}, 

 
1   i, j  30} as a semiring. 

 
 Now we just show if  
 

S[x] = i
i

i 0
a x








  ai = ti + sig with g = 7  Z14; ti, si  Q+  {0}} 

 
then S[x] isomorphic with  
 

P = i i
i i

i 0 i 0
(t )x s gx

 

 





   with g = 7  Z14; ti, si  Q+  {0}}. 

 

 For define  : S[x]  P   by  (p(x))  =  i
i

i 0

a x




 
 
 
  

 

   =  i
i i

i 0
(t s g)x





 
 

 
 =  i i

i i
i 0 i 0

t x s x g
 

 

 
  
 

    P. 

 
  is 1-1 and is an isomorphism of semirings. 
 
 The results are true if coefficients of the polynomials are 
matrices with special dual like number entries. 



 
 
 
 
 
Chapter Three 
 
 

 
 
HIGHER DIMENSIONAL SPECIAL DUAL 
LIKE NUMBERS 
 
 
 
 

In this chapter we for the first time introduce the new notion 
of higher dimensional special dual like numbers.  We study the 
properties associated with them.  We also indicate the method of 
construction of any higher dimensional special dual like number 
space. 

 
 Let x = a + bg1 + cg2 where g1 and g2 are idempotents such 
that g1g2 = 0 = g2g1 and a, b, c are reals.  We call x as the three 
dimensional special dual like number. 
 
 We first illustrate this situation by some examples. 
 
Example 3.1:  Let x = a + bg1 + cg2 where g1 = 3 and g2 = 4; 3, 
4  Z6.  x is a three  dimensional special dual like number. 
 
 We see if y = c + dg1 + eg2 another three dimensional dual 
like number then x  y = (a + bg1 + cg2) (c + dg1 + eg2) 
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= ac + bcg1 + c2g2 + adg1 + bd 2
1g  + cdg2g1 + aeg2  

   + beg1g2 + ce 2
2g  

 
= ac + (bc + ad + bd)g1 + (c2 + ae + ce)g2. 

 
 We see once again xy is a three dimensional special dual 
like number. 
 
 Thus if g1 and g2 are two idempotents such that 2

1g  = g1 and 
2
2g  = g2 with g1g2 = g2g1 = 0 then  

R(g1, g2) = {a + bg1 + cg2 | a, b, c  R} denotes the collection of 
all three dimensional special dual like numbers. 
 
 Clearly R(g1) = {a + bg1 | a, b  R}  R(g1, g2) and  
R(g2) = {a + bg2 | a, b  R}  R(g1, g2) we see (R(g1, g2), +) is 
an abelian group under addition. 
 
 For if x = a + bg1 + cg2 and y = c + dg1 + eg2 are in R(g1, g2) 
then x + y  = a + c (b+d)g1 + (c+d)g2 is in R(g1, g2). 
 
 Likewise x – y = (a–c) + (b–d)g1 + (c–e)g2 is in R(g1, g2).  
Further x + y = y + x for all x, y  R(g1, g2). 
 
 0 = 0 + 0g1 + 0g2  R(g1, g2) is the additive identity in  
R(g1, g2).  Clearly for every x = a + bg1 + cg2 in R(g1,g2) we 
have –x = –a – bg1 – cg2 in R(g1, g2) is such that x + (–x) = (a + 
bg1 + cg2 + (–a – bg1 – cg2) = (a–a) + (b–b)g1 + (c–c)g2 = 0 + 
0g1 + 0g2 = 0, thus for every x in R(g1,g2) we see –x is in  
R(g1, g2). 
 
 Further if x = a + bg1 + cg2 and y = d + eg1 + fg2  R(g1, g2) 
then x  y = y  x and x  y  R(g1, g2).  We see (R(g1, g2), ) is 
a semigroup in fact the semigroup is commutative with unit so 
is a monoid.  Thus it is easily verified (R(g1, g2), +, ) is a ring, 
infact a commutative ring with unit and has nontrivial zero 
divisors for ag1 and bg2 in R(g1, g2) are such that ag1  bg2 = 0, 
for all a, b  R. 



Higher Dimensional Special Dual like Numbers  101 
 

 We define (R(g1, g2), +, ) as the special general ring of 
special dual like numbers.   
 

We call it “special general” as R(g1, g2) contains also 
elements of the form ag1, bg2 and c where a, b, c  R. 
 
Example 3.2:  Let M = {a + bg1 + cg2 | a, b, c  R, g1 = 7 and g2 
= 8, g1, g2  Z14, 2

1g  = 7, 2
2g  = 8 and g1  g2 = g2  g1 = 0} be 

the special general ring of three dimensional special dual like 
numbers. 
 
 In view of this we have the following theorem. 
 
THEOREM 3.1:  Let R(g1, g2) (Q(g1, g2) or Z(g1, g2)) = {a + bg1 
+ cg2 | a, b, c  R, 2

1g  = g1, 
2
2g  = g2 and g1g2 = g2g1 = 0}. 

{R(g1, g2), +, } is the special general ring of three dimensional 
special dual like numbers. 
 
 The proof is direct and hence is left as an exercise to the 
reader. 
 
Example 3.3:  Let  

Z(g1, g2) = {a + bg1 + cg2 | a, b, c  Z, g1 = 5; g2 = 6 , g1, g2 
 Z10} be the special general ring of three dimensional special 
dual like number ring. 
 
Example 3.4:  Let Z(g1, g2) = {a + bg1 + cg2 | a, b, c  Z  and g1 
= (1 0 0 1 0 0 1) and g2 = (0 1 1 0 0 1 0)}.   
 

We see 2
1g  = (1 0 0 1 0 0 1) = g1 and 2

2g  = (0 1 1 0 0 1 0) = 
g2 further g1 g2 = g2g1 = (0 0 0 0 0 0 0) we see Z(g1, g2) is a 
special general ring of special dual like numbers. 
 
Example 3.5:  Let  
 

M = {a + bg1 + cg2 | a, b, c  Q, g1 = 
1 0 0 1
0 1 1 0
 
 
 

 and 
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g2 = 
0 1 1 0
1 0 0 1
 
 
 

; 2
1g  = 

1 0 0 1
0 1 1 0
 
 
 

  = g1 and 

 

2
2g  =

0 1 1 0
1 0 0 1
 
 
 

 = g2 with g1g2 = g2g1 = 
0 0 0 0
0 0 0 0

 
 
 

 

 
be the special general three dimensional ring of special dual like 
numbers. 
 
We just show how product is performed. 
 

Let x = 5 + 7 
1 0 0 1
0 1 1 0
 
 
 

 + 3 
0 1 1 0
1 0 0 1
 
 
 

 and 

 

y = –2  –4 
1 0 0 1
0 1 1 0
 
 
 

 + 8 
0 1 1 0
1 0 0 1
 
 
 

 be in M. 

 

To find  x  y =  –10 + (–14) 
1 0 0 1
0 1 1 0
 
 
 

 + 6 
0 1 1 0
1 0 0 1
 
 
 

 

 

    – 20
1 0 0 1
0 1 1 0
 
 
 

 –28 
1 0 0 1
0 1 1 0
 
 
 

 

 

–12  (0) + 40 
0 1 1 0
1 0 0 1
 
 
 

 + 42 (0) + 24 
0 1 1 0
1 0 0 1
 
 
 

 

 

= –10 + (–62) 
1 0 0 1
0 1 1 0
 
 
 

 + 70 
0 1 1 0
1 0 0 1
 
 
 

  M. 

 
 

This is the way product on M is performed. 
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Example 3.6:  Let  
 

S = {a + bg1 + cg2 | a, b, c  R, 
 

g1 = 

1
1
0
1
1
0
1

 
 
 
 
 
 
 
 
 
  

 and g2 = 

0
0
1
0
0
1
0

 
 
 
 
 
 
 
 
 
  

 

 
be a special general ring of special dual like numbers. 
 

Suppose x = 3 + 2 

1
1
0
1
1
0
1

 
 
 
 
 
 
 
 
 
  

 + 

0
0
1
0
0
1
0

 
 
 
 
 
 
 
 
 
  

 and 

 

y = –3 – 2 

1
1
0
1
1
0
1

 
 
 
 
 
 
 
 
 
  

 + 7 

0
0
1
0
0
1
0

 
 
 
 
 
 
 
 
 
  

 are in S, 
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then x + y = 8 

0
0
1
0
0
1
0

 
 
 
 
 
 
 
 
 
  

  S. 

 
 

We find x  y = (3 + 2 

1
1
0
1
1
0
1

 
 
 
 
 
 
 
 
 
  

 + 7 

0
0
1
0
0
1
0

 
 
 
 
 
 
 
 
 
  

)   

 
 

(–3 – 2 

1
1
0
1
1
0
1

 
 
 
 
 
 
 
 
 
  

 + 7 

0
0
1
0
0
1
0

 
 
 
 
 
 
 
 
 
  

) 
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= –9 –6 

1
1
0
1
1
0
1

 
 
 
 
 
 
 
 
 
  

 –37 

0
0
1
0
0
1
0

 
 
 
 
 
 
 
 
 
  

 – 6

1
1
0
1
1
0
1

 
 
 
 
 
 
 
 
 
  

 –4 

1
1
0
1
1
0
1

 
 
 
 
 
 
 
 
 
  

 + 14 

0
0
0
0
0
0
0

 
 
 
 
 
 
 
 
 
  

 

 

+ 21 

0
0
1
0
0
1
0

 
 
 
 
 
 
 
 
 
  

 + 14 

0
0
0
0
0
0
0

 
 
 
 
 
 
 
 
 
  

 + 7 

0
0
1
0
0
1
0

 
 
 
 
 
 
 
 
 
  

 

 

           = –9 – 16 

1
1
0
1
1
0
1

 
 
 
 
 
 
 
 
 
  

 + 25 

0
0
1
0
0
1
0

 
 
 
 
 
 
 
 
 
  

 is in S. 

 
Thus (S, +, ) is a special general ring of special dual like 

numbers.   
 
Now we can as in case of dual numbers define general 

matrix ring of special dual like numbers. However the definition 
is a matter of routine.   
 

Now we illustrate this situation only by examples. 
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Example 3.7:  Let S = {(a1, a2, a3, a4, a5, a6) | ai = xi + y1g1 + z1g2 
where xi, yi, zi  Q; 1  i  6, g1 = 4 and g2 = 3, 3, 4  Z6} be 
the general special ring of special dual like numbers. 
 
 We see (S, +) is an abelian group for if  

x = (a1, a2, a3, a4, a5, a6) and y = (b1, b2, b3, b4, b5, b6) are in S 
then 
  x + y = (a1 + b1, a2 + b2, a3 + b3, a4 + b4, a5 + b5, a6 + b6) is in S.   
 
 Consider x  y = (a1, a2, …, a6)  (b1, b2, …, b6)  

= (a1b1, a2b2, …, a6b6), x  y  S.  Thus (S, +, ) is a special 
general ring of row matrix special dual like numbers. 
 
 Let P = {a + bg1 + cg2 | a = (a1, a2, …, a6), b = (b1, b2, …, b6) 
and c = (c1, c2, …, c6) with g2 = 3 and g1 = 4, 3, 4  Z6; 32 = 3 
(mod 6), 42 = 4 (mod 6) and 3.4 = 4.3  0 (mod 6)} is also a 
special general ring of row matrices of special dual like 
numbers.  Clearly P is isomorphic with S as rings. 
 
Example 3.8:  Let  
 

M = 

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 where ai = xi + yigi + zg2, xi, yi, zi  Z; 1  i  5, 

 
g1 = 7 and g2 = 8 with 7, 8  Z14} be the special general ring of 
column matrices of special dual like numbers under the natural 
product n. 

We see if x = 

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 and y = 

1

2

3

4

5

b
b
b
b
b

 
 
 
 
 
 
  

 are in M, then 
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x + y = 

1 1

2 2

3 3

4 4

5 5

a b
a b
a b
a b
a b

 
  
 
  
  

is in M. 

 

We find x n y = 

1

2

3

4

5

a
a
a
a
a

 
 
 
 
 
 
  

 n 

1

2

3

4

5

b
b
b
b
b

 
 
 
 
 
 
  

 = 

1 1

2 2

3 3

4 4

5 5

a b
a b
a b
a b
a b

 
 
 
 
 
 
  

  M. 

 

Suppose N = 

1 1 1

2 2 2

3 3 1 3 2

4 4 4

5 5 5

x y z
x y z
x y g z g
x y z
x y z

     
     
           
     
     
          

 xi, yi, zi  Z,  

 
1  i, j, k  5 with g1 = 7 and g2 = 8 in Z14} is again a special 
general ring of column matrix special dual like numbers. 
 
 We see clearly M and N are isomorphic as rings under the 
natural product n. 
 
Example 3.9:  Let  
 

S = 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
  

 where ai = xi + yig1 + zig2 

 
with xi, yi, zi  Q; 1  i  12; g1 = (7, 8, 7, 8, 0) and 

 
g2 = (8, 7, 8, 7, 8) with 7,  8  Z14} 
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be the special general ring of 3  4 matrices of special dual like 
numbers under natural product n. 
 

Suppose x = 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
  

 and 

 

y = 
1 2 3 4

5 6 7 8

9 10 11 12

b b b b
b b b b
b b b b

 
 
 
  

 are in S, 

 

then x + y = 
1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8

9 9 10 10 11 11 12 12

a b a b a b a b
a b a b a b a b
a b a b a b a b

    
     
     

 is in S. 

 

We find x n y = 
1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8

9 9 10 10 11 11 12 12

a b a b a b a b
a b a b a b a b
a b a b a b a b

 
 
 
  

  S. 

 
Thus (S, +, n) is the special matrix general ring of special dual 
like numbers. 
 

Finally we give an example of the notion of special general 
square matrix special dual like number ring. 
 
Example 3.10:  Let  
 

P = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

 ai = ti + sig1 + rig2 
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where ti, si, ri  Q, 1  i  16, g1 = 

13
14
0

13
14

 
 
 
 
 
 
  

 and g2 = 

14
13
13
0
0

 
 
 
 
 
 
  

 

 
with 13, 14  Z26} 

 
be the special general ring special dual like numbers of square 
matrices under the usual product  or the natural product n.  
Clearly P is a three dimensional commutative ring under n. 
 
 Now we just show how we can generate the idempotents so 
that x = a + bg1 + cg2 forms a three dimensional special dual 
like numbers.   
 

We get these idempotents from various sources. 
 
 (i) From the idempotents of Zn (n not a prime or a prime 
power) has atleast two non trivial idempotents.  
 
 (ii) From the standard basis of any vector space.   
 

For if x = (1 0 0 0 0 … 0) and y = (0, 1, 0, …, 0) we see  
x2 = x, y2 = y and xy = yx = (0, 0, …, 0). 
  

This is true even if x = 

0
0
0
0
0

0
1

 
 
 
 
 
 
 
 
 
 
 
  



 and y = 

0
0

0
1
0

 
 
 
 
 
 
 
 
  


; 
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 x n x = x, y n y = y and x n y = y n x = 

0
0

0

 
 
 
 
 
 


. 

 

Also if x = 
1 0
0 0
 
 
 

 and y = 
0 1
0 0
 
 
 

 then 

 

x n y = 
0 0
0 0
 
 
 

 = y n y, x n x = 
1 0
0 0
 
 
 

 

 

and y n y = 
0 1
0 0
 
 
 

. 

 

 Finally if x = 
1 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0

 
 
 
  

 and y = 
0 1 0 ... 0
0 0 0 ... 0
0 0 0 ... 0

 
 
 
  

  

 

then also x n y = 
0 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0

 
 
 
  

 = y n x and 

 

x n x = 
1 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0

 
 
 
  

 and y n y = 
0 1 0 ... 0
0 0 0 ... 0
0 0 0 ... 0

 
 
 
  

. 

 
 All these idempotents can contribute for three dimensional 
special dual like number. 
 
 (iii)  We know if we have a normal operator T on a finite 
dimensional complex inner product space V or a selfadjoint 
operator on a finite dimensional real inner product space V. 
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 Suppose c1, c2, …, ck are distinct eigen values of T, Wj’s the 
characteristic space associated with cj and Ej the orthogonal 
projection of V on Wj.  Then Wj is orthogonal to Wi (i  j).  Ei’s 
are such that 2

iE  = Ei, i = 1, 2, …, k so we can have special dual 
like numbers of higher dimension  can be got from this set of 
projections. 
 
 (iv)  If we take either the elements of a lattice or a 
semilattice we get idempotents.  All the more if we take the 
atoms of a lattice say a1, …, an then we always have ai  aj = 0 
if i  j and ai  ai = ai; 1  i, j  M.  By this method also we can 
get a collection of special dual like numbers. 
 
 Finally we can construct matrices using these special dual 
like numbers to get any desired dimension of special dual like 
numbers. 
 
 Now we will illustrate them and describe by a n-
dimensional special dual like numbers. 
 
 Let x = a1 + a2g1 + … + angn–1 be such that ai  R (or Q or 
Z), 1  i  n and gj’s are such that 2

jg  = gj, gj . gi = gk or 0 if  
i  j; 1  i, k, j  n–1. We see x2 = A1 + A2g1 + … + Angn–1 
where Aj  R (1  j  n).   

 
We will first illustrate this situation by some examples. 

 
Example 3.11:  Let x = a1 + a2g1 + a3g2 + a4g3 where ai  R;  
 
 
 
 
 
 
 
 
 
 











1 

g3 

g2 

g1 
 

0 
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1  i  4  and g1, g2 and g3 are marked in the diagram and gi  gj 
= gk or 0 if i  j and gi  gi = gi; 1  i, j, k  3.   
 

Of course we can take ‘’ as operation and still the 
compatibility is true. 
 
Example 3.12:  Suppose we take x = a1 + a2g1 + a3g2 + a4g3 with 
ai  Q; 1  i  4 and g1, g2 and g3 from the lattice 
 
 
 
 
 
 
 
 
we see we cannot claim x to be special dual like number of 
dimension three as this lattice is not distributive.   
 

We so just define the following new concept. 
 
DEFINITION 3.1:   Let F be the field or a commutative ring with 
unit.  L be a distriblute lattice of finite order say n + 1.   
 

FL = i i
i

a m



  ai  F and mi  L; 0  i  n+1} (L =  {0 = 

m0, m1, m2, …, mn+1 = 1}).  We define + and  on FL as follows: 
 

(1) For x =  aimi and y bimi in FL; x = y in and only if 
ai = bi for i = 0, …, n+1. 

(2) 0.mi = 0, i = 0, i, …, n+1 and am0 = 0 for all a  F. 
(3) x + y =  (ai + bi) mi for all x, y  FL. 
(4) x.1 = 1.x = x for mn+1 = 1  L for all x  F. 
(5) x  y =  aimi   bimi  

  =  aibj (mi  mj) 
 = k k

k
a m  

        (or equivalently aibj (mi  mj) = x  y =  ak mk). 







 g3 

0 

g1 

1 

g2 



Higher Dimensional Special Dual like Numbers  113 
 

(6) ami = mi a for all a  F and mi  L. 
(7) x  (y + z) = x  y + x  z for all x, y, z  FL. 
 
Thus FL is a ring, which is defined as a ring lattice. 
 
We see the ring lattice is a n-dimensional general ring of 

special dual like numbers. 
 
We will illustrate this situation by some simple examples. 
 

Example 3.13:  Let L =        
 
 
 
 
 
 
 
 
be a distribute lattice. Q be the ring of rational.  QL be the 
lattice ring.   
 

QL = {m0 + m1a + m2b  | m0, m1, m2  Q and a, b  L}.  
 
 We just show how product is performed on QL. 
 
 Take x = 5 – 3a + 8b and y = –10 + 8a – 7b in QL. 
 
 x + y = –5 + 5a + b  QL. 

x  y = (5 – 3a + 8b) (–10 + 8a – 7b) 
  = –50 + 30a – 80b + 40a – 24a + 8  8 (b  a)  

                    – 35 b+ 21 (a  b) – 56b 
  = –50 + 46a – 91b  QL. 

 
 Thus QL is a three dimensional general ring of special dual 
like numbers. 
 
 Suppose we take ‘’ as the operation on QL. 
 







 b 

0 

a 

1 
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 x  y = (5 – 3a + 8b) (–10 + 8a – 7b) 
 
     = –50 + 30a – 80b + 40a – 42a + 8  8 (b  a) – 35b +  

2 (a  b) – 56b 
     = –50 + 46a – 91b + 64 + 21 
     = 35 + 46a – 91b  QL. 
 
Example 3.14:  Let Z be the ring of integers.  L be the chain 
lattice given by 
 
 
 
 
 
 
 
 
 
 
 

ZL = 
6

i i
i 0

a m





  mi  Z and ai  L; 0  i  6} be the lattice ring.  

ZL is a 5-dimensional special general ring of special dual like 
numbers. 
 
 Suppose x = m1 + m2a1 + m3 a2 + m4 a3 + m5a4 + m6a5 and  
 
 y = n1 + n2a1 + n3 a2 + n4 a3 + n5a4 + n6a5 are in ZL, then we 
can find xy and x + y.  
 
 Suppose y = –7 – 5a2 + 3a4 + 6a5 and x = 3 + 4a1 + 5a2 – 8a3 
are in ZL. 
 

x + y = –4 + 4a1 + 0 – 8a3 + 3a4 + 6a5 and 
 x  y = (3 +4a1 + 5a2 – 8a3) (–7 – 5a2 + 3a4 + 6a5)  
     = –21 – 28a1 – 35a2 + 56 a3 – 15a2 – 20a1 –  

      25a2 + 40a2 + 9a4 + 12a1 + 15a2 – 24a3 + 18a5 +  
   24a1 + 30a2 – 48a3  















a6=1 

a5 

a4 

a3 
 

a2 

a1 

a0=0 
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   = –21 – 12a1 + 10a2 – 16a3 + 9a4 + 18a5  ZL. 
 
 Thus ZL is a six dimensional general ring of special dual 
like numbers. 
 
Example 3.15:  Let Z be the ring of integers.  L be a lattice 
given by the following diagram. 
 
 
 
 
 
 
 

 
 

 
 
L is a distribute lattice.  ZL be the lattice ring given by ZL = 
{m1 + m2a1 + … + m6a6 | aj  L; mi  Z; 1  i  6, 1  j  6}. 
 
 Take x = 3 + 4a4 + 5a6 and y = 4 – 2a2 + 3a5 we find x + y 
and x  y (where product on L is taken as ‘’. 
 
 x + y = 7 – 2a2 + 4a4 + 3a5 + 5a6. 
 x  y = (3 + 4a4 + 5a6)  (4 – 2a2 + 3a5) 
 = 12 + 16a4 + 20a6 – 6a2 – 8a2 – 10a2 + 9a5 + 12a3 + 15a1 
 = 12 + 15a1 – 24a2 + 12a3 + 16a4 + 9a5 + 20a6  ZL. 
 
 Suppose we replace ‘’ by ‘’ on ZL then x  y; 
 x  y  = (3 + 4a4 + 5a6) (4 – 2a2 + 3a5) 
 = 12 + 16a4 + 20a6 – 6a2 – 8a4  a2 – 10a6  a2 +  

   9a5 + 12a5  a4 + 15a6  a4 
 = 12 + 16a4 + 20a6 – 6a2 – 8a4 – 10a6 + 9a5 +  

   12  0 + 15  0. 
 = 12 + 8a4 + 10a6 + 9a5 – 6a2  ZL. 
 







 a4 

0=a0

a6 

a2 

a5 





 a3 a1 

a=1 
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 Clearly x  y  x  y for we see  is under ‘’ and  is 
under ‘’. 
  
Example 3.16:  Let R be the field of reals.  L = 
 
 
 
 
  
 
 
 
 
 
 
 
be a lattice.  RL be the lattice ring RL is a 5-dimensional 
general ring of special and like numbers.  
 
 Thus lattices help in building special dual like number 
general ring. However we get two types of general rings of 
special dual like number rings depending on the operation ‘’ 
or ‘’. 
 
Example 3.17:  Let F be a field.  M = {(0, 0, 0, 0, 0, 0), (1, 0, 0, 
0, 0, 0), (0, 1, 0, 0, 0, 0)  (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 
0, 0, 1, 0), (0, 0, 0, 0, 0, 1)} be the semigroup under product.  
FM = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 | g1 = (1, 0, 0, 
0, 0, 0), g2 = (0, 1, 0, 0, 0, 0), g3 = (0, 0, 1, 0, 0, 0), g4 = (0, 0, 0, 
1, 0, 0), g5 = (0, 0, 0, 0, 1, 0) and g6 = (0, 0, 0, 0, 0, 1) where 2

ig  
= gi, 1  i  6} be the seven dimensional general ring of special 
dual like numbers. 
 
Example 3.18:   Let F = Q be the field.   
S = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0)} 
be the idempotent five dimensional general ring of special dual 
like numbers.  
 
Example 3.19:  Let F = R be the field.   





 a5 

a0=0

a4 









1 

a1 

a2 

a3 
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S = {(0, 0, …, 0), (1, 0, …, 0) … (0, 0, …, 0, 1)} be the 
idempotent semigroup of order n + 1.  Clearly FS the semigroup 
ring is a n + 1 dimensional general ring of special dual like 
numbers. 
 
Example 3.20:  Let V be a vector space over a field R.  W1, W2, 
…, Wt be t vector subspaces of V over R such that  
 

V = W1  W2  …  Wt is a direct sum.  Suppose E1, E2, 
…, Et be t projection operator on W1, W2, …, Wt respectively.  I 
be the identity operator.   
 

Now S = {a1 + a2E1 + a3E2 + …. + at+1 Et | ai  R; 1  i  t + 
1;  Fj is a projection of V onto Wj; 1  j  t}; S is a general t + 1 
dimensional ring of special dual like (operators) numbers. 
 
 In this way we get any desired dimensional special dual like 
operator general rings. 
 
 Finally show how we construct special dual like rings using 
idempotents in Zn. 
 
Example 3.21:  Let Zn be the ring of integers.  S = {g1, g2, …, 
gt, 0} be idempotents of S such that {m1 + m2g1 + m3g2 + … + 
mt+1 gt | mi  R; 1  i  t+1; gj  S; 1  j  t}; P is a  
t + 1 dimensional general ring of special dual like numbers. 
 
Example 3.22:  Let Zn be the ring of modulo integers.  S = {0, 
g1, g2, g3, g4}  Zn be idempotents such that 2

ig  = gi; 1  i  4; 
gigj = 0 or gk; 1  i, j, k  4. 
 

   Consider P = 
1 2

1 2

2 1

0 0 g g 0 0
g , g , 0 , 0 , 0 , 0
g 0 0 0 0 g

           
           
           
                      

  g1.g2 = 0}.   
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Suppose  
 

B = {a1 + a2 
1 2

3 1 4 2 5 6

1 2

0 0 0 g g
0 a g a g a 0 a 0
g g 0 0 0

         
                     
                  

 ai  R, 

 
1  i  6}.  B is a 6-dimensional special dual like number 
general ring. 
 
 We can construct idempotent semigroup or matrices using 
the idempotents in Zn.  Using these idempotent matrices we can 
build any desired dimensional general ring of special dual like 
numbers. 
 
 Now having seen methods of constructing different types of 
special dual like numbers of desired dimension.  Now we can 
also construct t-dimensional special semiring  semifield of 
special dual like numbers.   
 
 We illustrate this only by examples. 
 
Example 3.23:  Let M = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 | ai 
 Z+, 1  i  5, g1 = (1, 0, 0, 0, 0), g2 = (0, 1, 0, 0, 0), g3 = (0, 0, 
1, 0, 0), g4 = (0, 0, 0, 1, 0) and g5 = (0, 0, 0, 0, 1)}  {0} be the 
6 dimensional general semifield of special dual like numbers.  
 
Example 3.24:  Let  
 

S = {a1 + a2g1 + a3g2 + a4g3 + a5g4 | ai  Z+, 1  i  4; 
 

g1 = 

1
0
0
0

 
 
 
 
 
 

, g2 = 

0
1
0
0

 
 
 
 
 
 

, g3 = 

0
0
1
0

 
 
 
 
 
 

 and g4 = 

0
0
0
1

 
 
    

  

0
0
0
0

  
  
         

 

 
be the special dual like number semifield of dimension five. 
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Example 3.25:  Let  
 

M = {a1 + a2g1 + a3g2 + … + a7g8 | ai  Q+; 1  i  9; 
 

g1 = 
1 0 0 0
0 1 0 0
 
 
 

, g2 = 
0 1 0 0
0 0 0 0
 
 
 

, g3 = 
0 0 1 0
0 0 0 0
 
 
 

, 

g4 = 
0 0 0 1
0 0 0 0
 
 
 

, g5 = 
0 0 0 0
1 0 0 0
 
 
 

, g6 = 
0 0 0 0
0 1 0 0
 
 
 

, 

 

g7 = 
0 0 0 0
0 0 1 0
 
 
 

 and g8 = 
0 0 0 0
0 0 0 1
 
 
 

; 

 

gi n gj = 
0 0 0 0
0 0 0 0
 
 
 

 if i  j; 2
ig  = gi 

 
for i = 1, 2, …, 8}  {0} 

 
be the special semifield of special dual like numbers of 
dimension of nine. 
 
Example 3.26:  Let  
 

S = 
1

2

3

a
a
a

 
   
  

1 1 1 1

2 1 2 2 2 3 2 4

3 3 3 3

b c d e
b g c g d g e g
b c d e

       
                
              

 ai, bj, ck, 

 
dt, es  R+; 1  i, j, k, t, s  3; g1 = (4, 3, 0), g2 = (3, 0, 0),  

 
g3 = (0, 0, 4) and g4 = (0, 4, 3), 4, 3  Z6} 

 
be the special five dimensional semifield of special dual like 
numbers. 
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Example 3.27:  Let  
 

P = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 | ai  R+, 
 

1  i  7, gj  L; 1  j  6}  {0}; 
 

where L is a chain lattice given below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clearly P is a seven dimensional semifield of special dual like 
numbers.   
 

We see every distributive lattice paves way for special dual 
like numbers. 

 
 However modular lattices that is lattices which are not 
distributive, does not result in special dual like numbers on 
which we can define some algebraic structure on them. 
 
 Another point to be noted is lattices and Boolean algebras 
do not in any way help in constructing dual numbers, they are 
helpful only in building special dual like numbers. 
 
 We give examples of semirings and S-semirings of special 
dual like numbers.  
 

















1 

g6 

g5 

g4 
 

g3 

g2 

g1 

0 
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Example 3.28:  Let M = 1 2 3

4 5 6

a a a
a a a

 
 
 

 ai = x1 + x2g1 + x3g2 + 

x4g3 where xj  Q+  {0}, g1 = (3, 4, 0, 0), g2 = (0, 3, 0, 0),  
g3 = (3, 4, 0, 0) with 3, 4 Z6; 1  i  6 and 1  j  3} be the 
semiring of special dual like number.  Clearly M is not a 
semifield for we see in M we have elements x, y  M;  
 

  x n y = 
0 0 0
0 0 0
 
 
 

 = y n x. 

 

Consider N = 1 2 3 1 2 3
1

4 5 6 4 5 6

x x x y y y
g

x x x y y y
        
   

 

 

1 2 3 1 2 3
2 3

4 5 6 4 5 6

z z z s s s
g g

z z z s s s
   

   
   

 

 
xi, yj, zk, sr  Q+  {0}; g1 = (3, 4, 0, 0), g2 = (0, 3, 0, 0),  
g3 = (4, 0, 3, 4); 3, 4  Z6; 1  i, j, k, r  6} be the special 
semiring of special dual like numbers.  
 
 We see M and N are isomorphic as semirings.  
 We define  : M  N as follows: 
 (A) =  
 

1 1 1 1 2 1 3 2 2 1 2 2 2 3 3 3 1 3 2 3 3

4 4 1 4 2 4 3 5 5 1 5 2 5 3 6 6 1 6 2 6 3

x y g z g s g x y g z g s g x y g z g s g
x y g z g s g x y g z g s g x y g z g s g
         

          
 

 

= 1 2 3 1 2 3 1 2 3 1 2 3
1 2 3

4 5 6 4 5 6 4 5 6 4 5 6

x x x y y y z z z s s s
g g g

x x x y y y z z z s s s
       

         
       

 

 
is a one to one onto map.  Infact  it is easily verified  is an 
isomorphisms of semirings.  This result is true for any m  n 
matrix of semirings with entries from any t-dimensional special 
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dual like numbers.  We denote by R(g1, g2) = {a1 + a2g1 + a3g2 | 
ai  R; 1  i  3, 2

1g  = g1, 2
2g  = g2 and g1g2 = g2g1 = 0}   

 
 Q(g1, g2, g3) = {x1 + x2g1 + x3g2 + x4g3 | xi  Q; 1  i  4; 

2
jg  = gj, 1  k, j  3; gj gk = gk gj = (0)}.  On similar lines we 

have a t-dimensional special dual like number collection which 
is denoted by 
 
 R(g1, g2, …, gt–1) = {a1 + a2g1 + a3g2 + … + atgt–1 | ai  R,  
1  i  t ; 2

kg  = gk and gj. gk = (0) = gk gj; 1  j, k  t–1}.  R can 
be replaced by Q or Z still the results hold good.  In all these 
cases we can say R(g1)  R(g1, g2)  R(g1, g2, g3)  …   
R(g1, g2, …, gt–1).   
 

However if we replace R by R+ we see this chain is not 
possible and every element in R+(g1, g2, …, gt–1) is of dimension 
t and t alone.  However if R+ is replaced by R+{0} then we see 
the chain relation is possible.  When the chain relation is not 
possible the set R+(g1, g2, …, gt–1)  {0} is a semifield of 
dimension t. 
 
Example 3.29:  Let  
 

M = 1 2

3 4

a a
a a

 
 
 

 ai = xi + x2g1 + x3g2 + x4g3 + x5g4 + 

 
x6g5 + x7g6 + x8g7 where 1  i  4; xj  R+; 1  j  8 and 

 
g1 = (1, 0, …, 0), g2 = (0, 1, 0, …, 0), g3 = (0, 0, 1, 0, …, 0), 

 
g4 = (0, 0, 0, 1, 0, 0, 0), g5 = (0, 0, 0, 0, 1, 0, 0), 

 

g6 = (0, 0, 0, 0, 0, 1, 0) and g7 = (0, 0, …, 0, 1)} 
0 0
0 0

   
  
   

 

be a semifield of special dual like numbers under the natural 
product n. 
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 N = {A1 + A2g1 + … + A8g7 | where Ai  1 2

3 4

x x
x x
 
 
 

; xj  

R+; 1  i  8; 1  j  4.  g1 = (1, 0, …, 0), …, g7 = (0, 0, …, 0, 

1)} 
0 0
0 0

   
  
   

 be the semifield under n of special dual like 

numbers.  Clearly M is isomorphic to N as semifields. 
 
 If in M and N instead of using R+ if we use R+{0} we get 
semirings under natural product n as well as under the usual 
product . 
 
 Thus we can study M or N and get the properties of both as 
they are isomorphic. 
 
Example 3.30:  Let  
 

S = i
i

i 0
a x








  ai = 

1 2 1 3 2 4 3 5 4

1 2 1 3 2 4 3 5 4

1 2 1 3 2 4 3 5 4

d d g d g d g d g
c c g c g c g c g
e e g e g e g e g

    
     
     

 with dk, cj, 

 
ep  Q+{0} 1  j, k, p  5; and g1 = (5, 6, 0) g2 = (0, 0, 5),  
g3 = (0,  0, 6), g4 = (6, 5, 0) with 6, 5  Z10} be the general 
semiring of five dimensional special dual like numbers.  Clearly 
S is only a semiring and not a semifield. 
 

 P = 

i i i
1 2 3
i i i i i i
1 2 1 3 2

i 0 i 0 i 0i i i
1 2 3

d d d
c x c g x c g x
e e e

  

  

      
              
           

    

i i
4 5
i i i i
4 3 5 4

i 0 i 0i i
4 5

d d
c g x c g x
e e

 

 

   
      
      

   i i i
j t pd ,c ,e   Q+ {0}, 1  j  5; 

1  t  5, 1  p  5 with g1 = (5, 6, 0), g2 = (0, 0, 5), 
  

g3 = (0, 0, 6) and g4 = (6, 5, 0)} 
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is a general semiring of five dimension special dual like 
numbers and S and P are isomorphic as semirings. 
 
 Interested reader can study subsemirings, semiideals and 
other related properties of semirings. 
 
 We can also use lattices to get any desired dimensional 
special semiring of special dual like numbers.  Thus lattices play 
a major role of getting special dual like numbers.  
 
 Further for a given lattice we get two distinct classes of 
general special semiring of t-dimensional special dual like 
numbers. 
 
 We will illustrate this by an example. 
 
Example 3.31:  Let L be the lattice given by the following 
diagram. 
 
 
 
 
 
 
 
 
 
Clearly ai  ai = ai  ai = ai, a1  a2 = a2, a1  a2 = a1, a1  a3 = 
a3, a1  a3 = a1 a2  a3 = a3,  a2  a3 = a2. 
 
 Now let S = {x1 + x2a1 + x3a2 + x4a3 | xi  Q+  {0};  

1  i  4, 1, a1, a2, a3  L}. 
 
 Consider x = 3 + 2a1 + 4a2 + 5a3 and y = 8 + 4a1 + 6a2 + a3 
in S.  x + y = 11 + 6a1 + 10a2 + 6a3. 
 
 x  y = (3 + 2a1 + 4a2 + 5a3) (8 + 4a1 + 6a2 + a3) 
    = 24 + 16a1 + 32a2 + 40a3 + 12a1 + 8a1 + 16a2 +   20a3  

     + 18a2 + 12a2 + 24a2 + 30a3 + 3a3 + 2a3 + 4a3 + 5a3  











1 

a1 

a2 

a3 
 

0 
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= 24 + 36a1 + 102 a2 + 104a3      … I  
(operation under ) 

 
 Now x  y = 24 + 16 + 32 + 40 + 12 + 8a1 + 16a1 + 20a1 +  

       18 + 12a1 + 24a2 + 30a2 + 3 + 2a1 + 4a2 + 5a3 
 

       = 145 + 58a1 + 58a2 + 5a3     …II 
         (operation under ) 
 
 Clearly I and II are not equal so for a given lattice we can 
get two distinct general special semiring of four dimensional 
special dual like numbers.   
 

Thus lattices play a major role in building special dual like 
number. 
 
 We can also build matrices with lattice entries and use 
natural product to get special dual like numbers. 
 
 Now we proceed onto study the vector spaces and 
semivector spaces of t-dimensional special dual like numbers.   
 

We also denote them by simple examples.  
 
Example 3.32:  Let S = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 | g1 
= (0, 0, 4), g2 = (4, 0, 0), g3 = (3, 0, 0), g4 = (0, 4, 3) and g5 = (0, 
3, 0) where 4, 3  Z6; ai  Q 1  i  6} be a special vector space 
of special dual like numbers over the field Q. 
 
 We see if T is a linear operator on S then to find the eigen 
values associated with T. 
 
 The eigen values will be rationals.  On the other hand we 
use the fact Q(g1, g2, …, gt) is a Smarandache ring and study the 
Smarandache vector space of special dual like numbers over the 
general S-ring of special dual like numbers, we can get dual 
numbers as eigen values.   
 
 We will illustrate this situation by some simple examples. 
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Example 3.33: Let S = 1 2

3 4

a a
a a

 
 
 

 ai = x1 + x2g1 + x3g2 where 

g1 and g2 are the elements of the lattice L       
  
 
 
 
 
 
 
1  i  4; xj  Q; 1  j  3} be the Smarandache special vector 
space of special dual like numbers over the Smarandache ring. 
 
 P = {x1 + x2g1 + x3g2 | xi  Q; 1  i  3; 2

1g  = g1,  
g1  g2 = g2  g1 = 0 and 2

2g  = g2; g1, g2  L}. 
 
 Clearly eigen values of any linear operator can also be 
special dual like numbers.  So by using the Smarandache vector 
spaces of special dual like numbers we can get the eigen values 
to be special dual like numbers.  This is one of the advantages 
of using S-vector spaces over S-rings which are general special 
dual like rings. 
 
Example 3.34:  Let S = {(a1, a2, a3, a4) where ai = x1 + x2g1 + 
x3g2 + x4g5 + x5g4 + x6g5 + x7g6 | xi  R; gj  L where L   
   
 
 
 
 
 
 
 
 
 
 
 







 g2 

0 

g1 

1 

















1 

g1 

g2 

g3 
 

g4 

g5 

g6 

0 
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1  j  6, 1  i  7} be a S-vector space of special dual like 
numbers over the S ring  
  R(g1, g2, g3, g4, g5, g6) = {x1 + x2g1 + x3g2 + … + x7g6 | gi  L; 
1  i  6, xj  R; 1  j  7} of special dual like numbers.  If T is 
a linear operator on S then the eigen values related with T can 
be specal dual like numbers from R(g1, g2, …, g6). 
 
 Similarly the eigen vectors related with any linear operator 
can be special dual like numbers. 
 
 Now we proceed onto study linear functional of a vector 
space of special dual like numbers and S-vector space of special 
dual like numbers.  
 

Example 3.35:  Let V = 

1

2

3

4

a
a
a
a

 
 
    

 ai = x1 + x2g1 + x3g2 + x4g3 +  

 
x5g4 + x6g5; gj  L where L is a lattice given by 
 
 
 
 
 
 
 
 
 
 
 
 
1  j  5, xi  Q, 1  i  6} be a S-vector space of special dual 
like numbers over the S-ring, Q(g1, g2, g3, g4, g5) = {x1 + x2g1 + 
x3g2 + x4g3 + x5g4 + x6g5 | xi  Q; 1  i  6; gj  L; 1  j  5}  
 















1 

g1 

g2 

g3 
 

g4 

g5 

0 
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Example 3.36:  Let V = 1 2 3 7

4 5 6 8

a a a a
a a a a

 
 
 

 ai = x1 + x2g1 + 

x3g2; 1  i  8, xj  R; 1  j  3, g1, g2  L;      
 
 
 
                            L = 
    
 
 
 
be the S-vector space of special dual like numbers over the S-
ring R(g1, g2) = {x1 + x2g1 + x3g2; xi  R; g1, g2  L, 1  i  3}.   
 

We see V is a S-linear algebra under the natural product n 
over the S-ring, R(g1, g2) and for any S-linear operator on V we 
can have the eigen vectors to be special dual like numbers.   

 
Now having seen examples of S-linear algebras, S-linear 

operators T and eigen vectors associated with T are special dual 
like numbers we proceed onto give examples of special n-
dimensional semivector spaces / semilinear algebras of special 
dual like numbers and strong special n-dimensional semivector 
spaces / semilinear algebras of special dual like numbers. 
 

Example 3.37:  Let S = 1 2

3 4

a a
a a

 
 
 

 ai = x1 + x2g1 + x3g2 + x4g3 

+ x5g4, 1  i  4, xj  R+{0}; 1  j  5 and gp  L where 
   
 
 
 
     L = 
 
 
 
 







 g2 

0 

g1 

1 













1 

g1 

g2 

g3 
 

g4 

0 
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1  p  4} be the semivector space of special dual like numbers 
over the semifield R+{0}.  The eigen values of S associated 
with any linear operator is real and the eigen vectors are from 
(R+{0}) (g1, g2, g3, g4). 
 

Example 3.38:  Let S = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a
a a a
a a a
a a a
a a a
a a a

 
 
 
 
 
 
 
 
  

 ai = x1 + x2g1 + x3g2  

 
+ x4g3 + x5g4, with xk  Q+{0}; gj  L where         
 
 
 
 
 
      L = 
 
 
 
 
1  i  18, 1  k  5 and 1  j  4} be the strong semivector 
space of special dual like numbers over the semifield R+(g1, g2, 
g3, g4) = {x1+x2g1 + x3g2 + x4g3 + x5g4 | gj  L, 1  j  4, xi  
R+, 1  i  5}  {0}.  The eigen values of S related with any 
linear operator on T can be special dual like numbers. 
 
Example 3.39: Let  
 

P = 1 2 10

11 12 20

a a ... a
a a ... a

 
 
 

 ai = x1 + x2g1 + x3g2 + x4g3 + 

 
x5g4; 1  i  20,  xj  Q+{0}; 1  j  5 and gi  L;  

 













1 

g1 

g2 

g3 
 

g4 

0 
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                  L = 
 
 
 
gk  L; 1  k  4} be a strong semivector space over the 
semifield Q+(g1, g2, g3, g4) = {x1 + x2g1 + x3g2 + x4g3 + x5g4, xi  
Q+, 1  i  5}, gj  L; 1  j  4}  {0}.  
 
 Any linear operator T has its associated eigen values to be 
special dual like numbers.   
 

Further if f : P  Q+(g1, g2, g3, g4)  {0}; then f also has for 
any A  P; f (A) to be a special dual like numbers. 
 
 Finally we give examples of them. 
 
 
Example 3.40:  Let M = {(a1, a2, a3) | ai = x1 + x2g1 + x3g2; 1  i 
 3 xj  Q+{0}; 1  j  3;  
 
 
 
      g1, g2  L =    
     
 
 
 
be a strong semivector space over the semifield  

Q+(g1, g2)  {0} = {x1 + x2g1 + x3g2}  {0} where xi  Q+  
and gj  L, 1  i  3 and 1  j  2.   
 

Define f : M  Q+(g1, g2)  {0} as  
 







 g2 

0 

g1 

1 







 g3 

0 

g4 





g1 g2 

1 
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f((a1, a2, a3))= f(x1 + x2g1 + x3g2, y1 + y2g1 + y3g2, z1+z2g1 + z3g2)  
 = x1 + y1 + z1 + (x2+y2+z2)g1 + (x3+y3+z3)g2  Q+(g1,g2)  
{0} if xi, yj, zk  Q+; 1  i, j, k  3 and 0 if even one of xi, yj or 
zk is zero. 
 
 f is a semilinear functional on M. 
 

Example 3.41:  Let S = 1 2

3 4

a a
a a

 
 
 

 ai = x1 + x2 g1 + x3g2;  

1  i  4, x1, x2, x3  Z7;   
 
 
 
          g1, g2  L  = 
 
 
 
 
be the special vector space of special dual like numbers.  
 

Example 3.42:  Let S = 

1

2

3

4

5

6

a
a
a
a
a
a

 
 
 
 
 
 
 
 
  

 ai = x1 + x2g1 + x3g2 + x4g3 + 

x5g4 + x6g5 + x7g6; 1  i  6,      
 
 
 
 
 
         L = 
 
 
            ; 







 g2 

0 

g1 

1 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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 xk  Z11; 1  k  7} be the special vector space of special dual 
like numbers over the field Z11.   
 

Define f : S  Z11 by f (

1

2

3

4

5

6

a
a
a
a
a
a

 
 
 
 
 
 
 
 
  

) = x1 + y1 + z1 + d1 + e1 + f1 

(mod 11); 
 

 where  
a1 = x1 + x2g1 + … + x7g6 

    a2 = y1 + y2g1 + … + y7g6 
    a3 = z1 + z2g1 + … + z7g6 
    a4 = d1 + d2g1 + … + d7g6 
    a5 = e1 + e2g1 + … + e7g6 

a6 = f1 + f2g1 + … + f7g6 ; 
 
    f is a linear functional on S. 
 

Example 3.43:  Let S = 
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai = x1 + x2g1 

+…+ x7g6; 1  i  30,  xj  Z37; 1  j  7  
 
 
 
 
 
      and gk  L  = 
 
 
 
 
 

















1 

g1 

g2 

g3 
 

g4 

g5 

g6 

0 
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1  k  6} be special vector space of dual like numbers over the 
field Z37.  Clearly S has only finite number of elements.  If T is 
any linear operator then the eigen vector associated with T are 
special dual like numbers. 
 

Example 3.44:  Let M = 1 2

3

a a
0 a

 
 
 

 ai = x1 + x2g1 + x3g2 + x4g3 

+ x5g4 + x6g5 where 1  i  3, xj  Z5; 1  j  6  
 
 
 
  
 
 
   and gk  L = 
 
 
 
 
 
1  k  5} be a special vector space of special dual like numbers 
over the field Z5. 
 
 M is also finite dimensional; M under the natural product n 
is a special linear algebra of special dual like numbers over Z5.   

 
Now we give example Smarandache special vector spaces / 

linear algebras of special dual like numbers over the S-ring 
Zp(g1, g2, …, gt); where Zp(g1, g2, …, gt) = {x1 + x2g1 + … + 
xt+1gt | xi  Zp; 1  i  t+1 and gj  L; L is distributive lattice,  
1  j  t; p a prime}.   

 
We give a few examples.  The main property enjoyed by 

these Smarandache vector spaces are that they have finite 
number of elements in them and the eigen values can be special 
dual like numbers from Zp(g1, …, gt).  

 
 We will illustrate this situation by some examples. 















1 

g1 

g2 

g3 
 

g4 

g5 

0 
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Example 3.45:  Let S = {(a1, a2, a3) | ai = x1 + x2g1 + x3g2 where 
1  i  3; xj  Z3, 1  j  3 and 
 
 
 
      g1, g2  L = 
 
 
 
 
be a Smarandache special vector space of special dual  like 
numbers over the S-ring  

Z3(g1, g2) = {x1 + x2g1 + x3g2 | g1, g2  L, xi  Z3 1  i  3}.  
 

 Clearly the eigen values in general of T of S (T : S  S) 
can also be special dual like numbers from Z3(g1, g2). 
 

Example 3.46:  Let S = 

1 2

3 4

5 6

7 8

9 10

a a
a a
a a
a a
a a

 
 
  
 
 
  

 where ai = x1 + x2g1 + … +  

 
x7g6; 1  i  10, gj  L, 1  j  6 and xk  Z7; 1  k  7, where 
 
 
              
 
 
      L = 
 
 
 
 







 g2 

0 

g1 

1 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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be the  Smarandache special dual like number vector space over 
the S-ring Z7(g1, g2, …, g6) = {x1 + x2g1 + … + x7g6 | gi  L,  
1  i  6 and xj  Z7; 1  j  7}. 
 Clearly Z7  Z7(g1)  Z7(g1, g2)  Z7(g1, g2, g3)  …  
Z7(g1, g2, …, g6). 
 
 All Z7(g1, g2, …, gt); 1  t  6 is also a S-ring for Z7; the 
field is properly contained in them. 
 
 The eigen values related with a linear  operator T on S can 
also be a special dual like number. 
 

Example 3.47:  Let S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 where ai = x1 + x2g1 

+x3g2 + x4g3 + x5g4 + x6g5 where xj  Z13, 1  j  6; 1  i  9 and
    
 
 
 
 
         gk  L = 
 
 
 
 
 
 
1  k  5} be is Smarandache special vector space of special 
dual like numbers over the S-ring; Z13(g1, g2, g4) = {x1 + x2g1 + 
x3g2 + x4g4 where the operation on gj’s are intersection and g1, 
g2, g4 are in L; xj  Z13, 1  j  4},  Here also for any linear 
operator on S we can have the eigen values to be special dual 
like numbers from Z13(g1, g2, g4).  
 
 Finally we give examples of polynomial special dual like 
number vector spaces. 
 















1 

g1 

g2 

g3 
 

g4 

g5 

0 
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Example 3.48:  Let S = 
1 2 8

9 10 16

17 18 24

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai = x1 + x2g1 

+…+ x7g6; with xj  Z11; 1  j  7,  1  i  24 and gk  L;  
 
 
 
 
 
      L = 
 
 
 
 
1  k  6} be a special vector space of special dual like numbers 
over the field Z11. 
 
 The eigen values of any linear operator on S has only 
elements from Z11, however the eigen vectors of T can be 
special dual like numbers. 
 
 However if S is defined over the S-ring, Z11(g1, g2, …, g6) 
with gi  L then S is a Smarandache special vector space over 
the S-ring, Z11 (g1, g2, …, g6) and the eigen values associated 
with a linear operator on S can be special dual like numbers. 
 
 Thus we see the possibility of getting eigen values of 
special dual like numbers will certainly find nice applications.  
Finally we give examples of Smarandache vector spaces / linear 
algebras over the S-ring of special dual like number where the 
S-rings are Zn(g1, …,gt); n not a prime but a composite number.  
 

Example 3.49:  Let V = 1 2

3 4

a a
a a

 
 
 

 ai = x1 + x2 g1 + x3g2 with 

xj  Z12; 1  i  4; 1  j  3 and g1, g2  L =    
 
 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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be the strong Smarandache special dual like number vector 
space over the S-ring  
   Z12(g1, g2) = {x1 + x2g1 + x3g2 | xi  Z12; g1, g2  L; 1  i  3}.  
 
Example 3.50:  Let  
 

M = 1 2 10

11 12 20

a a ... a
a a ... a

 
 
 

 ai = x1 + x2g1 + x3g2 + 

 
x4g3 + x5g4 + x6g5 + x7g6  with 1  i  20 and xj  Z24,   

 
1  j  7 and  
 
 
 
 
 
 
    gp  L = 
 
 
 
 
 
1  p  6} be the Smarandache special vector space of special 
dual like numbers over the S-ring Z24.  Clearly M is not a strong 
Smarandache vector space over a S-ring.  







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 







 g2 

0 

g1 

1 
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Example 3.51:  Let P = 

1

2

3

16

a
a
a

a

 
 
  
 
 
  


 ai = x1 + x2g1 + x3g2 + x4g3 + 

x5g4 + x6g5 + x7g6 + x8g7 with 1  i  16; xj  Z30, 1  j  8 and  
 
 
 
  
 
      
 
    gp  L = 
 
 
  
 
 
 
 
1  p  7} be a strong Smarandache special dual like number 
vector space over the S-ring.   
 

Z30 (g1, …, g7) = {x1 + x2g1 + … + x8g7 | xi  Z30, 1  i  8 
and gj  L; 1  j  7}. 
 
 This P has eigen vaues which can be special dual like 
numbers for any associated linear operator T of P.  Also T can 
have eigen vectors which can be special dual like numbers. 
 
 Study of these properties using strong Smarandache special 
dual like numbers using Zn(g1,…,gt) can lead to several 
applications and the S-ring Zn(g1,…,gt) can be so chosen that 
Zn(g1,…,gt) contains a field as a subset of desired quality.  

 



















1 

g1 

g2 

g3 
 

g4 

g5 

g6 

g7 

0 



 
 
 
 
 
Chapter Four 
 
 

 
 
SPECIAL DUAL LIKE NEUTROSOPHIC 
NUMBERS 
 
 
 
 
 The concept of neutrosophy and the indeterminate I, was 
introduced and studied by in [11]. 
 
 Recently in 2006 neutrosophic rings was introduced and 
studied [23]. In this chapter we study the notion of neutrosophic 
special dual like numbers.  
 
 Consider S = Q  I = {a + bI | a, b  Q}; S is a ring S is a 
general special dual like number ring. 
 
 Suppose T = R  I = {a + bI | a, b  R, I2 = I}; T is a 
general neutrosophic ring of special dual like numbers. 
 
 Let F = Z  I = {a + bI | a, b  Z; I2 = I}; F is a general 
neutrosophic ring of special dual like numbers.  
 
 Like S = Zn  I = {a + bI | a, b  Zn, I2 = I} is a general 
neutrosophic ring of special dual like numbers.  
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Example 4.1:  Let S = {Z12  I} = {a + bI | a, b  Z12, I2 = I} 
be the general neutrosophic ring of special dual like numbers of 
finite order. 
 
Example 4.2:  Let T = {5Z  I} = {a + bI | a, b  5Z, I2 = I} 
be the general neutrosophic ring of special dual like numbers of 
infinite order. 
 
Example 4.3:  Let M = {R  I} = {a + bI | a, b  R, I2 = I} be 
the general neutrosophic ring of special dual like numbers. 
 
Example 4.4:  Let M = {Z39  I} = {a + bI | a, b  Z39, I2 = I} 
be the general neutrosophic ring of special dual like numbers. 
 
 Clearly we have to use the term only general ring as M 
contains Z39 as a subring as well as Z39I  M as a neutrosophic 
subring which is also an ideal, that is every element is not of the 
form a + bI, both a and b not zero.  
 
 A ring which has special dual like numbers as well as other 
elements will be known as the general neutrosophic ring of 
special dual like numbers. 
 
Example 4.5:  Let S = {Z5  I} = {a + bI | a, b  Z5, I2 = I} be 
the general neutrosophic ring of special dual like numbers of 
dimension two.  Clearly S is a Smarandache ring.  Z5I  S is an 
ideal of S.  Z5  S is only a subring of S which is not an ideal.  
Clearly S is a finite ring characteristic five.  
 
Example 4.6:  S = {Z  I} = {a + bI | a, b  Z, I2 = I} be the 
general neutrosophic ring of special dual like numbers. 
 

S has ideals and subrings which are not ideals.  Clearly S is 
of infinite order and of dimension two.   

 
Now we build matrices and polynomials using general 

neutrosophic ring of special ring of special dual like numbers. 
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Consider A = 1 2

3 4

x x
x x

 
 
 

 xi  Z  I; i = 1, 2, 3, 4};  

 
A is a non commutative general neutrosophic matrix ring of 
special dual like numbers under the usual product . 

 
Infact A has zero divisors, units, idempotents, ideals and 

subrings which are not ideals.  
 
If on A we define the natural product n then A is a 

commutative neutrosophic with zero divisors, units and ideals.  
 

For 1 1
n

2 2

0 x x 0 0 0
0 x x 0 0 0
     

      
    

 xi  Z  I; 1  i  2. 

 
We can have general neutrosophic row matrix ring of 

special dual like numbers. 
 
Consider  

B={(a1, a2, …, a10) | ai = a+ bI with a, b  Q and I2=I; 1i 10}; 
B is a general neutrosophic row matrix ring of special dual like 
numbers.  B has zero divisors, units and idempotents.  

 

Let C =  

1

2

n

a
a

a

 
 
    


 ai  Q  I;  1  i  n}; C is a general  

 
neutrosophic column matrix ring of special dual like numbers 
under the natural product n. 
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If x = 

I
0
0

I
I

 
 
 
 
 
 
 
 
  


  C  we see x2 = x  and so on.   

 
However we cannot  define usual product  on C. 

 
Finally consider  
 

P = 

1 2 15

16 17 30

31 32 45

41 47 60

a a ... a
a a ... a
a a ... a
a a ... a

 
 
    

 ai = x + yI  R  I; 

 
x, y  R; I2 = I  1  i  6}; 
 

P is a general neutrosophic 4  15 matrix ring of special dual 
like numbers under the natural product n. 

 
P has zero divisors, units and idempotents.   
 
Further  
 

I4 15 = 

1 1 ... 1
1 1 ... 1
1 1 ... 1
1 1 ... 1

 
 
 
 
 
 

 

 
is the unit (i.e., the identity element of P with respect to the 

natural product n. 
 
Now we will give more examples of this situation. 
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Example 4.7:  Let  
 

S = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

  ai  Z6  I; 1  i  9; I2 = I} 

 
be the general neutrosophic square matrix ring of special dual 
like numbers. 
 

 
1 1 1
1 1 1
1 1 1

 
 
 
  

 is the identity with respect to natural product n.  

If on S we define the usual product  then S has 
1 0 0
0 1 0
0 0 1

 
 
 
  

 to 

be the unit. (S, +, n) is a commutative ring where as (S, +, ) is 
a non commutative ring. 
 
 S has units, zero divisors, ideals and subrings which are not 
ideals.  Further S has only finite number of elements in it.   
 

X = 
I 0 0
I I 0
0 I I

 
 
 
  

 is an idempotent under natural product n 

and X is not an idempotent under the usual product . 
 
Example 4.8:  Let  
 

P = 

1 2

3 4

15 16

a a
a a

a a

 
 
    

 
 ai  Z3  I; 1  i  16}  
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be the general neutrosophic matrix ring of special dual like 
numbers under the natural product n.  P has zero divisors, 
units, idempotents, ideal and subrings which are not ideals. 
 

x = 

1 1
1 1
1 1

1 1

 
 
 
 
 
 
  

 
 is the unit, y = 

0 I
1 0
0 I

I 0

 
 
 
 
 
 
  

 
 is an idempotent. 

 

M =  

1 2

3 4

a a
a a
0 0

0 0

 
 
  
 
 
  

 
 ai  Z3  I; 1  i  4}  P 

 
 

is a subring as well as ideal of P. 
  

x =

1

2

16

a 0
a 0

a 0

 
 
 
 
 
 

 
 and y =  

1

2

16

0 b
0 b

0 b

 
 
 
 
 
 

 
 

 
 

in P are such that x n y = 

0 0
0 0

0 0

 
 
 
 
 
 

 
 is a zero divisor in P.  

 
P has only finite number of elements in it. 
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Example 4.9: Let  
 

S = 1 2 5

6 7 10

a a ... a
a a ... a

 
 
 

ai  R  I; 1  i  10} 

 
be the general neutrosophic 2  5 matrix ring of special dual 
like numbers under the natural product n.  S is of infinite order.   
 

P = 1 2 5

6 7 10

a a ... a
a a ... a

 
 
 

 ai  Z  I; 1  i  10}  S 

 
is only a subring which is not an ideal of S.  
 
 S has zero divisors, units, idempotents.   
 

Clearly 
1 1 1 1 1
1 1 1 1 1
 
 
 

  S is the unit in S. 

 
I I I I I
I I I I I
 
 
 

in S is an idempotent; 

 

y = 
I 0 1 I 0
0 I 1 I I
 
 
 

  S is also an idempotent of S. 

 
 
Example 4.10:  Let  
 

P = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
    

 ai  Z4  I; 1  i  12} 
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be the general 4  3 matrix neutrosophic special dual like 
number ring of finite order.  P is commutative.  P has units, 
idempotents,  and zero divisors.  
 

I43 = 

1 1 1
1 1 1
1 1 1
1 1 1

 
 
 
 
 
 

  P is the unit of P. 

  
Now we proceed onto study neutrosophic general 

polynomial ring of special dual like elements of dimension two. 
 
Example 4.11:  Let  
 

P = i
i

i 0
a x








  ai  Z  I; I2 = I} 

 
be the general neutrosophic polynomial ring of special dual like 
numbers.  P has ideals and subrings which are not ideals. 
 
Example 4.12:  Let  
 

S = i
i

i 0
a x








  ai  Z8  I; I2 = I} 

 
be the general neutrosophic polynomial ring of special dual like 
numbers.  S has zero divisors and ideals. 
 
Example 4.13:  Let  
 

S = i
i

i 0
a x








  ai  R  I; I2 = I} 

 
be the general neutrosophic polynomial ring of special dual like 
numbers.  S has subrings which are not ideals. 
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For take  

P = i
i

i 0
a x








  ai  Z  I; I2 = I}  S; 

P is only a subring of S and is not an ideal of S. 
 
Example 4.14:  Let  
 

S = i
i

i 0
a x








  ai  Z7  I } 

 
be the general neutrosophic polynomial ring of special dual like 
numbers.   
 
Example 4.15:  Let  
 

S = i
i

i 0
a x








  ai  R  I; I2 = I} 

 
be the general neutrosophic polynomial of special dual like 
numbers can S have irreducible polynomials. 
 
 Now having seen polynomial general neutrosophic ring of 
special dual like numbers, we now proceed onto give a different 
representation for the general ring of matrix neutrosophic 
special dual like numbers. 
 
Example 4.16:  Let  
M = {(x1, x2, x3) + (y1, y2, y3)I | I2 = I , xi, yj  R; 1  i, j  3}  
be the neutrosophic general ring of special dual like numbers.  
 
 Consider N = {(a1, a2, a3) | a1 = x1 + y1I; a2 = x2 + y2I and a3 
= x3 + y3I, xi, yj  R; 1  i, j  3, I2 = I}; N is also a 
neutrosophic general ring of special dual like numbers. 
 
 Clearly N and M are isomorphic as rings, for define  
 : M  N by   ((x1, x2, x3) + (y1, y2, y3)I) 
 



148 Special Dual like Numbers and Lattices 
 

 
 
 = (x1 + y1I, x2 + y2I, x3 + y3I). 
 
It is easily verified  is a ring isomorphism. 
 
By considering  : N  M given by  (x1 + y1I, x2+y2I, x3+y3I)  
 
 = (x1, x2, x3) + (y1, y2, y3)I we see  is an isomorphism from 
N to M. 
 
 Thus N and M are isomorphic, that is we say M and N are 
isomorphically equivalent so we can take M is place of N and 
vice versa.  Hence we can work with a m  n matrix with entries 
from Z  I (R  I or Q  I or Zn  I) or A + BI where A 
and B are m  n matrices with entries from Z (or R or Q or Zn). 
 
 We will only illustrate this situation by some examples. 
 
Example 4.17:  Let  
 

M = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
 
 

 ai  Z25  I; 1  i  9; I2 = I} 

 
be the general neutrosophic ring of 3  3 matirces of special 
dual like numbers. 
 
 Take  
 

N = 
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

x x x y y y
x x x y y y I
x x x y y y

   
      
   
   

 xi, yj   Z5; 

 
1  i , j  9; I2 = I} 
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be the general ring of neutrosophic matrix special dual like 
numbers. 
 
 We see  : M  N defined by 
 
 

 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
 
 

 =  
1 1 2 2 3 3

4 4 5 5 6 6

7 7 8 8 9 9

x y I x y I x y I
x y I x y I x y I
x y I x y I x y I

   
    
    

 

 

= 
1 2 3

4 5 6

7 8 9

x x x
x x x
x x x

 
 
 
 
 

 + 
1 2 3

4 5 6

7 8 9

y y y
y y y
y y y

 
 
 
 
 

I  N. 

 
 

 Clearly  is a ring isomorphism. 
 
 Consider  : N  M given by  
 

 
1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

x x x y y y
x x x y y y I
x x x y y y

    
        
        

 

  

= 
1 1 2 2 3 3

4 4 5 5 6 6

7 7 8 8 9 9

x y I x y I x y I
x y I x y I x y I
x y I x y I x y I

   
    
    

. 

 
 

  is again a ring isomorphism thus N  M and M  N.  So 
we say M can be replaced by N and vice versa. 
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Example 4.18:  Let  
 

S =

1

2

3

4

5

6

a
a
a
a
a
a

 
 
 
 
 
 
 
 
  

 ai = xi + yiI; xi, yi  Z11; 1  i  6; I2 = I, 

 
that is ai  Z11  I} be the general ring of neutrosophic 
column matrix of special dual like elements.  
  
Take  
 

P = 

1 1

2 2

3 3

4 4

5 5

6 6

x y
x y
x y

I
x y
x y
x y

   
   
   
       
   
   
   
      

 xi, yi  Z11; 1  i, j  6; I2 = I} 

 
be the general ring of column matrix coefficient neutrosophic 
special dual like number. 
 
 Clearly  : S  P defined by 
 
 

 

1

2

3

4

5

6

a
a
a
a
a
a

  
  
  
  
  
  
  
      

 = 

1 1

2 2

3 3

4 4

5 5

6 6

x y I
x y I
x y I
x y I
x y I
x y I

  
    
  
    
  
      

 = 

1 1

2 2

3 3

4 4

5 5

6 6

x y
x y
x y

I
x y
x y
x y

   
   
   
   

   
   
   
   
      

  P, 
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 is a ring isomorphism that is S  P. 
 
 Similarly  : P  S can be defined such that;  
 



1 1

2 2

3 3

4 4

5 5

6 6

x y
x y
x y

I
x y
x y
x y

    
    
    
    

    
    
    
            

 = 

1 1

2 2

3 3

4 4

5 5

6 6

x y I
x y I
x y I
x y I
x y I
x y I

  
    
  
    
  
      

  S; 

 
thus  is an isomorphism of rings and P  S.  Thus as per need S 
can be replaced by P and vice versa.   
 

Finally it is a matter of routine to check if 
 

M = 
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
 
 

 ai  Q  I; 1  i  30} 

 
be the general ring of neutrosophic matrix of special dual like 
numbers and if  
 

N = 
1 2 10

11 12 20

21 22 30

x x ... x
x x ... x
x x ... x

 
 
 
 
 

 + 
1 2 10

11 12 20

21 22 30

y y ... y
y y ... y
y y ... y

 
 
 
 
 

I 

 
where xi, yj  Q, 1  i, j  30, I2 = I} 

 
be the general neutrosophic matrix ring of special dual like 
numbers then M is isomorphic with N.  Hence we can use M in 
place of N or vice versa as per the situation. 
 
 Now finally we show the same is true for polynomial rings 
with matrix coefficients. 
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 For if p(x) = i
i

i 0
a x




  with ai = xi + yiI; 0  i  n then  

 

p(x) = 
n

i
i

i 0
x x


  + 

n
i

i
i 0

y Ix

  = 

n
i

i
i 0

x x

  + 

n
i

i
i 0

y x I


 
 
 
  

 
for xi, yi  Q (or Z or R or Zn). 

 Similarly if  

p(x) = 
n

i
i

i 0
a x


  with ai = 

1 1

2 2

3 3

4 4

x y I
x y I
x y I
x y I

 
  
 
 

 

 = 

1

2

3

4

x
x
x
x

 
 
 
 
 
 

 + 

1

2

3

4

y
y

I
y
y

 
 
 
 
 
 

 

 
for xj, yk  Q (or Z or R or Zn); 1  j, k  4; 0  i  n. 

 

Thus p(x) = i
i

i 0
a x




  = 

1

2 i

i 0 3

4

x
x

x
x
x





 
 
 
 
 
 

  + 

1

2 i

i 0 3

4

y
y

I x
y
y





  
  
  
  
     

  

 

= 

i
1
i

i2
i

i 0 3
i
4

x
x x
x
x





 
 
 
 
  
 

  + 

i
1
i

i2
i

i 0 3
i
4

y
y

x I
y
y





  
  
  
  
      

 . 

 
 Similar results hold good for row neutrosophic matrices, 
rectangular neutrosophic matrices or square neutrosophic 
matrices as coefficient of the polynomials.  Hence as per need 
we can replace one polynomial ring by its equivalent 
polynomial ring and vice versa.  
 
 All properties of rings can be derived for general 
neutrosophic rings of special dual like numbers.  This is left as 
an exercise to the student as it can be realized as a matter of 
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routine.  Now we can also build using the neutrosophic dual like 
numbers a + bI (a, b  R or Q or Z or Zn) vector spaces. 
 
 Let  
V = {(a1, a2, …, a15) | ai = xi + yiI; 1  i  15, I2 = I, xi, yi  Q} 
be the general neutrosophic vector space of special dual like 
numbers over the field Q.   
 

We see V is also a general neutrosophic linear algebra of 
special dual like numbers. 
  

This definition and the properties are a matter of routine 
hence left as an exercise to the reader.  So we provide only 
some examples of them. 
 
Example 4.19:  Let  
 

V = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

 
 
  
 
   

 ai  Q  I; 1  i  15} 

 
be a general neutrosophic vector space of special dual like 
numbers over the field Q.  Infact using the natural product n of 
matrices. V is a linear algebra of neutrosophic special dual like 
numbers. 
 
Example 4.20:  Let  
 

W = 

1

2

15

a
a

a

 
 
    


 ai  Z19  I; 1  i  15} 
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be the general neutrosophic vector space of special dual like 
numbers over the field Z19. 
 
Example 4.21:  Let  
 

P = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai  R  I; 1  i  9} 

 
be the general neutrosophic Smarandache vector space of 
special dual like numbers over the Smarandache ring R  I. 
 
 The eigen values and eigen vectors associated with P can be 
special dual like numbers from R  I. 
 
 All other properties like basis, dimension, subspaces, direct 
sum, pseudo direct sum, linear transformation and linear 
operator can be found in case of general neutrosophic vector 
spaces of special dual like numbers which is a matter of routine 
and hence is left as an exercise to the reader. 
 
 Now we can also define neutrosophic general semiring / 
semifield of special dual like numbers and also the concept of 
general neutrosophic vector spaces of special dual like numbers.   
 

We only illustrate them by some examples as they are direct 
and hence left for the reader as an exercise. 
 
Example 4.22:  Let M = {(a1, a2, a3) | ai = xi + yiI where ai   
R+  {0}  I , 1  i  3, I2 = I} be the general semiring of 
neutrosophic special dual like numbers.  
 

Clearly M is not a semifield as M has zero divisors, 
however M is a strict semiring. 
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Example 4.23:  Let  
 

W = 

1

2

3

4

5

a
a
a
a
a

 
 
  
 
   

 ai = xi + yiI, xi, yi  Z+  {0}, I2 = I, 1  i  5} 

 
be the general neutrosophic semiring of special dual like 
numbers under the natural product n.  Clearly W is not a 
semifield. 
 
Example 4.24:  Let  
 

T = 1 2

3 4

a a
a a

 
 
 

 ai = xi + yiI, xi, yi  Q+  {0}, 1  i  4} 

 
be the general neutrosophic non commutation semiring of 
special dual like numbers.  T is not a general neutrosophic 
semifield. 
 
Example 4.25:  Let  
 

S = 

1 2 12

13 14 24

25 26 36

37 38 48

a a ... a
a a ... a
a a ... a
a a ... a

 
 
    

 ai = xi + yiI, 

 
xi, yi  Z+  {0}, 1  i  48} 

 
be the general neutrosophic special dual like number semiring 
under natural product.  S has zero divisors, so is not a semifield. 
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Example 4.26:  Let  
 

S = 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
  

 ai = xi + yiI, xi, yi  Z+, 

 

1  i  12}  
0 0 0 0
0 0 0 0
0 0 0 0

  
  
  
    

 

 
be the general special neutrosophic semivector space over the 
semifield Z+  {0} of special dual like numbers.  
 
 Clearly M under the n is a linear algebra. 
 
 Also M is a semifield. 
 
 
Example 4.27:  Let  
 

T = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai = xi + yiI, xi, yi  Q+, 

 

1  i  9, I2 = I}  
0 0 0
0 0 0
0 0 0

  
  
  
    

 

 
be the semifield of general neutrosophic special dual like 
numbers only under n, under usual product ,  T is only a 
semidivision ring. 
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Example 4.28:  Let W = {(a1, a2, a3, a4) | ai = xi + yiI, xi, yi  R+; 
1  i  4}  {(0, 0, 0, 0)} be a semifield of general neutrosophic 
special dual like numbers. 
 
Example 4.29:  Let  
 

V = 1 2 10

11 12 20

a a ... a
a a ... a

 
 
 

 ai = xi + yiI, 

  
xi, yi  R+  {0}  I , 1  i  20} 

 
be the semiring of neutrosophic special dual like numbers under 
natural product n.  V is not a semifield however V is a general 
neutrosophic semilinear algebra of special dual like numbers 
over the semifield R+  {0}. 
 
 Infact V is a strong Smarandache semilinear algbera of 
neutrosophic special dual like numbers over the Smarandache 
general neutrosophic ring of special dual like numbers. 
 
Example 4.30:  Let  
 

B = 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
 
 

 ai = xi + yiI,  

 
xi, yi  R+  {0}, 1  i  12} 
 

be the general semilinear algebra of special dual like numbers 
over the semifield Z+  {0}.  
 
 All properties related with semivector spaces / semilinear 
algebras of special dual like numbers over the semifield like 
basis, dimension, semilinear transformation, semilinear 
operator, semilinear functions, direct sum of semivector 
subspaces and pseudo direct sum of semivector spaces can be 
derived in case of these new structure.  As it is direct it is 



158 Special Dual like Numbers and Lattices 
 

considered as a matter of routine and hence is left as an exercise 
to the reader. 
 
 Now can we have higher dimensional neutrosophic special 
dual like numbers.  We construct them in the following.   
 

Let  
    R (g1, g2) = {x1 + x2g1 + x3g2 | g1 = (I, I, I) and g2 = (I, 0, I)} is 
a three dimensional neutrosophic special dual like number. 
 
   For if a = 3 + 4 (I, I, I) + 2(I, 0, I) 
 

and b = –1 + 3 (I, I, I) – 7 (I, 0, I) are in R (g1, g2) then  
 
 a + b = 2 + 7 (I, I, I) – 5 (I, 0, I)  
 
and a  b = –3 – 4 (I, I, I) – 2 (I, 0, I) + 9 (I, I, I) +12 (I, I, I)  +  
6 (I, 0, I) – 21 (I, 0, I) – 28 (I, 0, I) – 14 (I, 0, I) 
 
 = –3 + 17 (I, I, I) – 49 (I, 0, I)  R(g1, g2).   
 

It is easily verified R(g1, g2) is a general ring of 
neutrosophic special dual like numbers of dimension three.   

 
Likewise we can build many three dimensional 

neutrosophic special dual like numbers. 
 

For Q (g1, g2) = {a1 + a2g1 + a3g2 | ai  Q; 1  i  3,  
 

g1 = 
I I
I 0
0 I

 
 
 
  

 and g2 = 
I I
I I
I I

 
 
 
  

, I2 = I}; (Q(g1, g2), n, +) 

 
is a general neutrosophic using of special dual like numbers. 
 
Example 4.31:  Let W = {Z (g1, g2)} = {a1 + a2g1 + a3g2) | ai  
Z; 1  i  3, g1 = (I, I, I, I, I) and g2 = (0, I, 0, I, 0)} be a three 
dimensional special dual like number general neutrosophic ring. 



Special Dual like Neutrosophic Numbers  159 
 
 
 
Example 4.32:  Let M = {Q(g1, g2)} = {a1 + a2g1 + a3g2 where ai 

 Q; 1  i  3; g1 = 
I 0
0 I
 
 
 

 and g2 = 
I I
I I

 
 
 

; be a three 

dimensional neutrosophic special dual like number ring where 
g1 n g2 = g1.  Clearly M under the usual product is also M is a 
three dimensional neutrosophic special dual like number ring of 
g1  g2 = g2.   
 
 However both rings are different. 
 
 In this matter we can define any desired dimensional 
neutrosophic special dual like numbers; we give only examples 
of them. 
 
Example 4.33:  Let Z(g1, g2, g3) = {a1 + a2g1 + a3g2 + a4g3 | ai  
Z, 1  i  4 with g1 = (I, I, I, I, I, I), g2 = (I, 0, I, 0, I, 0) and g3 = 
(0, I, 0, I, 0, I) where 2

ig  = gi, i = 1, 2, 3; g1g2 = (I, 0, I, 0, I, 0), 
g2g3 = (0, 0, 0, 0, 0, 0) and g1g3 = (0, I, 0, I, 0, I)} be a four 
dimensional neutrosophic general special dual like number ring. 
 
Example 4.34:  Let Z(g1, g2, g3, g4, g5) = {a1 + a2g1 + a3g2 + a4g3 
+ a5g4 + a6g5 | ai  Z; 1  i  6; g1 = (I, 0, 0, 0, 0), g2 = (0, I, 0, 0, 
0) g3 = (0, 0, I, 0, 0), g4 = (0, 0, 0, I, 0) and g5 = (0, 0, 0, 0, I)} be 
the general neutrosophic ring of six dimensional special dual 
like numbers. 
 
Example 4.35:  Let  
 

Z7 (g1, g2, g3, g4, g5, g7, g8) = {a1 + a2g1 + … + a9g8, aj  Z7; 
 

1  j  9, g1 = 
I 0 0 0
0 0 0 0
 
 
 

,  g2 = 
0 I 0 0
0 0 0 0
 
 
 

, 

 

g3 = 
0 0 I 0
0 0 0 0
 
 
 

, g4 =
0 0 0 I
0 0 0 0
 
 
 

, g5 = 
0 0 0 0
I 0 0 0
 
 
 

, 
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g6 = 
0 0 0 0
0 I 0 0
 
 
 

, g7 = 
0 0 0 0
0 0 I 0
 
 
 

 and 

 

g8 = 
0 0 0 0
0 0 0 I

 
 
 

 

 
be the nine dimensional general neutrosophic ring of special 
dual like numbers of finite order.  
 

Thus we can construct any n-dimensional neutrosophic ring 
of special dual like numbers. 
 
 We can also have semirings / semifield of neutrosophic 
special dual like numbers of desired dimension.   
 

We will only illustrate this situation by some examples. 
 
Example 4.36:  Let  
 

S = {a1 + a2g1 + a=g2 + a4g3 + a5g4 | ai  R+  {0}; 
 

1  i  5, g1 = 
I 0
0 0
 
 
 

,  g2 = 
0 I
0 0
 
 
 

, g3 = 
0 0
I 0
 
 
 

  

 

and g4 = 
0 0
0 I

 
 
 

 

 
be a five dimensional neutrosophic dual like number semiring.  
Clearly S is only a semiring and not a semifield. 
 
Example 4.37:  Let  
 

S = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 + a8g7 | 
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ai  Z+  {0}; 1  i  8, g1 = 

I
0
0

0

 
 
 
 
 
 
  


, g2 = 

0
I
0

0

 
 
 
 
 
 
  


, 

 

g3 = 

0
0
I
0

0

 
 
 
 
 
 
 
 
  



, g4 = 

0
0
0
I
0

0

 
 
 
 
 
 
 
 
 
  



, g5 = 

0
0
0
0
I
0

0

 
 
 
 
 
 
 
 
 
 
 
  



, g6 = 

0
0
0
0
0
I
0
0

 
 
 
 
 
 
 
 
 
 
 
  

, g7 = 

0
0

0
I
0

 
 
 
 
 
 
 
 
  


, g8 = 

0
0

0
I

 
 
  

 
 
  

   

 
be the eight dimensional neutrosophic special dual like number 
semiring.  Clearly S is not a semifield. 
 
 Now having seen examples of any higher dimensional 
neutrosophic special dual like numbers we can as a matter of 
routine construct semivector spaces and vector spaces of higher 
dimensional neutrosophic special dual like numbers. 
 
Example 4.38:  Let  
 

V = 

1

2

3

4

a
a
a
a

 
 
    

 ai = x1 + x2g1 + x3g2 + x4g3, 1  i  4, xi  Q, 

 
g1 = (I, 0, 0), g2 = (0, I, 0) and g3 = (0, 0, I)} 

 
be a special neutrosophic four dimensional vector space of 
special dual like numbers over the field Q. 
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Example 4.39:  Let  
 

T = 

1 2 3

4 5 6

7 8 9

10 11 12

a a a
a a a
a a a
a a a

 
 
    

 ai = x1 + x2g1 + x3g2 + x4g3 + 

x5g4 + x6g5; 1  i  12, xj  Z19, 1  j  6, 
  

g1 = 

I 0
0 0
0 0
0 0

 
 
 
 
 
 

, g2 = 

0 I
0 0
0 0
0 0

 
 
 
 
 
 

, g3 = 

0 0
I 0
0 0
0 0

 
 
 
 
 
 

, g4 = 

0 0
0 I
0 0
0 0

 
 
 
 
 
 

 

 

g5 = 

0 0
0 0
0 0
I 0

 
 
    

 

 
be the general neutrosophic for six dimensional vector space of 
special dual like numbers over the field Z19.  T is a finite order. 
 
Example 4.40:  Let  
 

S =  1 2 3 4

5 6 7 8

a a a a
a a a a

 
 
 

 ai = x1 + x2g1 + x3g2 + x4g3 + 

 
x5g4 + x6g5 + x7g6 + x8g7 + x9g8 where 1  i  8, xj  Q+  {0}, 

 

1  j  9 with g1 = 
I 0 0
0 0 0
0 0 0

 
 
 
  

, g2 = 
0 I 0
0 0 0
0 0 0

 
 
 
  

, 
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g3 = 
0 0 I
0 0 0
0 0 0

 
 
 
  

, g4 = 
0 0 0
I 0 0
0 0 0

 
 
 
  

, g5 = 
0 0 0
0 I 0
0 0 0

 
 
 
  

, 

 
 

g6 = 
0 0 0
0 0 I
0 0 0

 
 
 
  

,  g7 = 
0 0 0
0 0 0
I 0 0

 
 
 
  

 and g8 = 
0 0 0
0 0 0
0 I 0

 
 
 
  

 

 
be a general neutrosophic nine dimensional semivector space of 
special dual like numbers over the semifield Q+  {0}. 
 
Example 4.41:  Let  
 

M = 1 2 5

6 7 10

a a ... a
a a ... a

 
 
 

 ai = x1 + x2g1 + x3g2 + x4g3 + 

 
x5g4 + x6g5 + x7g6;  1  i  10, 
 

xj  x24; 1  j  7; g1 = 
I 0
0 0
0 0

 
 
 
  

, g2 = 
0 I
0 0
0 0

 
 
 
  

, g3 = 
0 0
I 0
0 0

 
 
 
  

, 

 

g4 = 
0 0
0 I
0 0

 
 
 
  

, g5 = 
0 0
0 0
I 0

 
 
 
  

 and g6 = 
0 0
0 0
0 I

 
 
 
  

 

 
be a general neutrosophic seven dimensional Smarandache 
vector space over the S-ring Z24 of special dual like numbers. 
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Example 4.42:  Let  
 

M = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai = x1 + x2g1 + x3g2 + x4g3 

 
with g1 = (0, 0, 0, I), g2 = (0, 0, I, 0) g3 = (0, I, 0, 0) and 

 
g4 = (I, 0, 0, 0), xj   Q+  {0}  I 1  j  4, 1  i  9} 

 
be a general neutrosophic strong semivector space of special 
dual like numbers over the semifield Q+  {0}  I. 
 
 Clearly under the natural product n; M is a strong 
semilinear algebra over the Q+  {0}  I.  Likewise with 
usual product , M is a strong non commutative semilinear 
algebra over Q+  {0}  I.   
 

Thus working with properties of these structures is 
considered as a matter of routine and this task is left as an 
exercise to the reader. 
 



 
 
 
 
 
Chapter Five 
 
 

 
 
MIXED DUAL NUMBERS 
 
 
 
 
 In this chapter we proceed onto define the new notion of 
mixed dual numbers.  We say x = a1 + a2g1 + a3g2 is a mixed 
dual number if 2

1g  = g1 and 2
2g  = 0 with g1g2 = g2 g1= g1 (or g2 

or 0 where g1, g2 are known as the new elements and a1, a2, a3  
R (or Q or Z or Zn).   
 

First we will illustrate this situation by some examples. 
 

Example 5.1:  Let S = {a1 + a2g1 + a3g2 | ai  Q,  1 i  3,  
g1 = 4, g2 = 6; 4, 6  Z12; 2

1g  = g1 (mod 12) and 2
2g  = 0 (mod 

12)} be a mixed dual number collection.  
 
Example 5.2:  Let T = {a1 + a2g1 + a3g2 | ai  Z,  1 i  3, g1 = 9 
and g2 = 6 in Z12 with 2

1g  = g1 (mod 12) and 2
2g  = 0 (mod 12) 

g1g2 = 9  6 = 54  6 (mod 12)} be the mixed dual number. 
 
 Mixed dual numbers should have minimum dimension to be 
three. 
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Example 5.3:  Let S = {a1 + a2g1 + a3g2 | ai  Q,  1  i  3,  
g1 = 5 and g2 = 10  Z20, 2

1g = 5 (mod 20)and 2
2g  = 0 (mod 20)} 

be the mixed dual number. 
 
 Consider x = 5 + 3g1 + 2g2 and y = 3 – 4g1 + 5g2 in S. 
 
   x + y = 8 – g1 + 7g2  S. 
 
 x  y = (5 + 3g1 + 2g2)  (3–4g + 5g2)  
 

  = 15 + 9g1 + 6g2 – 20g1 – 12g1 – 8g2 + 25g2 + 15g2 + 0 
  
    = 15 – 23g1 + 32g2  S. 
 
Example 5.4:  Let P = {a1 + a2g1 + a3g2 | ai  Z, 1  i  3,  
g1 = 21 and g2 = 14 in Z28.  Clearly 2

1g  = g1 (mod 28) and  
2
2g  = 0 (mod 28) g1g2 = g1 = g2g1 (mod 28)}.  P is a mixed dual 

number. 
 
Example 5.5:  Let W = {a1 + a2g1 + a3g2 | ai  Z, 1  i  3,  
g1 = 9, g2 = 12  Z36 are new elements such that 2

1g  = g1 (mod 
26) and 2

2g  = 144 = 0 (mod 36) and g1g2 = g2g1 = 0 (mod 36)}; 
W is a mixed dual number. 
 
 Take x = –2 + g1 + g2  and y = 5 + 7g1 + 10g2 in W.  
 

x + y = 3 + 8g1 + 11g2. 
 
 x  y  = (–2 + g1 + g2)  (5 + 7g1 + 10g2) 
 
     = –10 – 14g1 – 20g2 + 5g1 + 7g1 + 0 + 5g2 + 0 + 0 
 
     = –10 – 2g1 – 15g2  W.  
 
 We wish to give structures on these mixed dual numbers. 
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 Let S = {a + bg1 + cg2 | a, b, c  C or Z or Q or R or Zn; 

2
1g = g1 and 2

2g  = 0, g1g2 = g2g1 = g1 or g2 or 0} be the collection 
of mixed dual numbers. 
 
 S is a general ring of mixed dual numbers denoted by  
C(g1, g2) or Z(g1, g2) or R(g1, g2) or Q(g1, g2) or Z(g1, g2). 
 
 Clearly C(g1)  C(g1, g2) and C(g1) is a two dimensional 
special dual like number. 
 
 Also C(g2)  C(g1, g2) and C(g2) is a two dimensional dual 
number.  C  C(g1, g2).  The same result is true if C is replaced 
by R or Z or  Q or Zn. 
 
 We will illustrate this situation by some examples. 
 
Example 5.6:  Let S = {a + bg1 + cg2 | a, b, c  Q; g1 = 16 and 
g2 = 20 in Z40, 2

1g = 16 = g1 (mod 40) and 2
2g  = 0 (mod 40),  

g1g2 = g2g1 = 320  0 (mod 40)} be a three dimensional mixed 
dual numbers. (S, +, ) is a general ring of three dimensional 
mixed dual numbers. 
 
Example 5.7:  Let P = {a + bg1 + cg2 | a, b, c  Z; g1 = 22 and 
g2 = 33  Z44, 2

1g = 0 (mod 44) and 2
2g  = 33 (mod 44),  

g1g2 = g2g1 = 22 (mod 44)} be the three dimensional mixed dual 
number general ring. 
 
Example 5.8: Let T = {a + bg1 + cg2 | a, b, c  Q, g1 = 12,  
g2 = 16  Z48 2

1g  = 122 = 0 (mod 48) and 2
2g  = 16 (mod 28), 

g1g2 = g2g1 = 0 (mod 48)} be a three dimensional general ring of 
mixed dual numbers. 
 
Example 5.9:  Let M = {a + bg1 + cg2 | a, b, c  Z7, g1 = 13,  
g2 = 26  Z52, 2

1g = g1 (mod 52) and 2
2g  = 0 (mod 52),  

g1g2 = g2g1 = 26 (mod 52)} be the three dimensional general 
ring of mixed dual numbers. 
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Example 5.10:  Let M = {a + bg1 + cg2 | a, b, c  Z; g1 = 30 and 
g2 = 40  Z60, 2

1g = 0 (mod 60)  and 2
2g  = 40 (mod 60),  

g1g2 = g1g2 = 0 (mod 60} be a general ring of mixed dual 
numbers. 
 
Example 5.11:  Let M = {a + bg1 + cg2 | a, b, c  R; g1 = 34 and 
g2 = 17  Z68 we see  2

1g  = 0 (mod 68)  and 2
2g  = 17 (mod 68)} 

be the  general ring of mixed dual numbers. 
 
 Clearly  g1g2 = g1 = g2g1 (mod 68); we have several subrings 
of mixed dual numbers. 
 
Example 5.12:  Let M =  {a + bg1 + cg2 | a, b, c  Z20; g1 = 36 
and g2 = 48  Z72 such that 2

2g  = 0 (mod 72), 2
1g = 0 (mod 72), 

g1g2 = g2g1 = 0 (mod 72)}, M is a three dimensional dual 
number general ring. 
 

Now we proceed onto study the mixed dual numbers 
generated from Zn, where n = 4m, m any composite number. 

 
THEOREM 5.1:  Let Z4m be the ring, m any composite number. 
Z4m has element g1, g2 such that  2

1g  = g1 (mod 4m)  and 2
2g  = 0 

(mod 4m), g1g2 = g2g1 = 0 or g1 or g2 (mod 4m).  Thus g1, g2 
contribute to mixed dual number. 
 
 The proof is direct by exploiting number theoretic methods 
hence left as an exercise to the reader. 
 
Example 5.13:  Let S = {a1 + a2g1 + a3g2 + a4g3 | ai  Q; 1  i  
4, g1 = 4, g2 = 6 and g3 = 9  Z12; 92 = 9 (mod 12), 62  0 (mod 
12) 42 = 4 (mod 12) 6  9  6 (mod 12), 4  6  0 (mod 12),  
4  9 = 0 (mod 12)}.  S is a four dimensional mixed number. 
 
 Let x = 5 + 3g1 + 2g2 – 4g3 and y = 6 – g1 + 5g2 + g3  S,  
 
      x + y = 11 + 2g1 + 7g2 – 3g3  S. 
 



Mixed Dual Numbers  169 
 
 
 x  y = (5 + 3g1 + 2g2 – 4g3)  16 – g1 + 5g2 + g3) 
    = 30 + 18g1 + 12g2 – 24g3 – 5g1 – 3g1 + 0 + 0 +  

25g2 + 0 + 0 – 20g2 + 5g3 + 3  0 + 2g2 – 4g3 
 
         = 30 + 10g1 + 19g2 – 23g3  S. 
 
 We can have higher dimensional mixed dual number also. 
 
Example 5.14:  Let P = {a1 + a2g1 + a3g2 + a4g3 | ai  R, 1  i  
4, g1 = 16, g2 = 20 and g3 = 25  Z40, 2

1g = 16 (mod 40), 2
2g = 0 

(mod 40) and 2
3g  = 25 (mod 40), g1g2 = 16  20  0 (mod 40),  

g1  g2 = 0 (mod 40), g2  g3 = 20  25  20 (mod 40)} be a four 
dimensional mixed dual number. 
 
Example 5.15:  Let S = {a1 + a2g1 + a3g2 + a4g3 + a5g4 | ai  R,  
1  i  5, g1 = 16, g2 = 20, g3 = 40, g4 = 60  Z80, 2

1g = g1 = 16 
(mod 80), 2

2g = 202  = 0 (mod 80) and 2
3g  = 402 = 0 (mod 80) 

and 2
4g  = 602 = 0 (mod 80). g1g2 = 0 (mod 80), g2g3 = 0 (mod 

80), g1g3 = 0 (mod 80), g3g4 = 0 (mod 80), g1g4 = 0  (mod 80), 
g2g4 = 0 (mod 80)} be a five dimensional mixed dual number. 
 
Example 5.16:  Let P = {a1 + a2g1 + a3g2 + a4g3 + a5g4 | ai  Z19, 
1  i  5, g1 = 12, g2 = 16, g3 = 24 and g4 = 36  Z48, 2

1g = 122 = 
0 (mod 48), 2

2g = 162  = 16 (mod 48), 2
3g = 242 = 0 (mod 48) and 

2
4g  = 362 = 0 (mod 48), 12.16 g1g2 = 0 (mod 48), g1.g3 = 12.24  

0 (mod 48),  g1g4 = 12.36  0 (mod 48), g2g3 = 0 (mod 48), 
g2.g4  0 (mod 48) and g3.g4 = 0 (mod 48)} be a five 
dimensional mixed dual number. 
 
Example 5.17:  Let us consider S = {a1 + a2g1 + a3g2 + a4g3 + 
a5g4 + a6g5 | ai  Q, 1  i  6, g1 = 16,  2

1g = 16 (mod 120), g2 = 
25,  2

2g = 25 (mod 120), g3 = 40, 2
3g = 40 (mod 120) g4 = 60  2

4g  
= 0 (mod 120), g5 = 96, 2

5g = 96 (mod 120) belong to Z120}.  S is 
a general ring of 6 dimensional mixed dual numbers. 
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 Clearly g1 g2  g3 = 40 (mod 120). 
 
       g1g3 = g3 (mod 120) 
       g1  g4 = 0 (mod 120) 
       g1  g5 = g5 (mod 120) 
       g2  g3 = g3 (mod 120) 
       g2  g4 = g4 (mod 120) 
       g2  g5 = 0 (mod 120) 
       g3  g4 = 0 (mod 120) 
       g3  g5 = 0 (mod 120) and 
       g4  g5 = 0 (mod 120). 
 
 Thus P = {0, g1, g2, g3, g4, g5)  Z120 is a semigroup under 
product and is defined as the mixed dual number component 
semigroup of Z120. 
 
Example 5.18:  Let S = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + 
a7g6 + a8g7  with ai  Q, 1  i  9, g1 = 16, g2 = 60, g3 = 96,  
g4 = 120, g5 = 160, g6 = 180 and g7 = 225 in Z240} be a general 
ring of mixed dual numbers of dimension eight. 
       2

1g = 162 = 16 (mod 240),   
2
2g = 602 = 0 (mod 240),  
2
3g = 962 = 96 (mod 240),  
2
4g = 1202 = 0 (mod 240),  
2
5g = 1602 = 160 (mod 240), 
2
6g = 1802 = 0 (mod 240), 

and 2
7g  = 2252 = 225 (mod 240). 

 
g1g2 = 16  60 = 0 (mod 240), 
g1g3 = 16  96 = 96 (mod 240), 
g1g4 = 16  120 = 0 (mod 240), 
g1g5 = 16  160 = 160 (mod 240), 
g1  g6 = 16  180 = 0 (mod 240), 
g1  g7 = 16  225 = 0 (mod 240), 
g2  g3 = 60  96 = 0 (mod 240), 
g2  g4 = 60  120 = 0 (mod 240), 
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g2  g5 = 60  160 = 0 (mod 240), 
g2  g6 = 60  180 = 0 (mod 240), 
g2  g7 = 60  225 = 60 (mod 240), 
g3  g4 = 96  120 = 0 (mod 240), 
g3  g5 = 96  160 = 0 (mod 240), 
g3  g6 = 96  180 = 0 (mod 240), 
g3  g7 = 96  225 = 0 (mod 240), 
g4  g5 = 120  160 = 0 (mod 240), 
g4  g6 = 120  180 = 0 (mod 240), 
g4  g7 = 120  225 = 120 (mod 240), 
g5  g6 = 160  180 = 0 (mod 240), 
g5  g7 = 160  225 = 0 (mod 240) and 
g6  g7 = 180  225 = 0 (mod 240). 

 
Thus P = {0, g1, g2, …, g7}  Z240 is a mixed dual number 
semigroup component of Z240.   

 
In view of this we propose the following problem. 
 
If Zn (n = p1p2 … pt each pi’s distinct).  Find the  cardinality 

of the mixed dual component semigroup of Zn. 
 
 Now  having seen examples of mixed dual general ring of 
n-dimension we just proceed to give methods of construction of 
such rings of any desired dimension.  We give a method of 
constructing any desired dimensional general ring of mixed dual 
number component semigroup of Zn. 
 
 Suppose S = {0, g1, …, gt | g1, …, gk are nil potentelements 
of order two and gk+1, …, gt are idempotents we take m tuples 
x1, …, xm with xj’s either all idempotents or all nilpotents of 
order two in such a way xi, xj = xi if i = j in case xi is an 
idempotent tuple xixj = 0 if i = j in case xj’s are nilpotent of 
order two xi  xj = xk, xk is either nilpotent of order two or 
idempotent if i  j}. 
 
 That is if xi = (g1, …, gr) and xj = (gs, …, gp), 1  r, s, p  t 
then xixj = xk = {gq, gs, …, gl) is such that every component in xk 
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is either nilpotent of order two or idempotent ‘or’ used in the 
mutually exclusive sense, 1  p, s, …, l  t. 
 
 We will illustrate this situation by some examples. 
 
Example 5.19:  Let P = {g1, g2, …, g7, 0}  Z240 (given in 
example 5.18). 
 
 Consider x1 = (0, 16, 0, 0, 0), x2 = (16, 0, 0, 0, 0), x3 = (0, 0, 
16, 0, 0), x4 = (0, 0, 0, 16, 0), x5 = (0, 0, 0, 0, 16), x6 = (120, 0, 
0, 0, 0, 0), x7 = (0, 120, 0, 0, 0), x8 = (0, 0, 120, 0, 0), x9 = (0, 0, 
0, 120, 0), x10 = (0, 0, 0, 0, 120), x11 = (60, 0, 0, 0, 0), x12 = (0, 
60, 0, 0), x13 = (0, 0, 60, 0, 0), x14 = (0, 0, 0, 60, 0) and x15 = (0, 
0, 0, 0, 60). 
 
 Using S = {x1, x2, …, x15, (0, 0, …, 0)} we can construct a 
16 dimensional general ring of mixed dual numbers. 
 
 We can also instead of row matrices use the column 
matrices like  
 

x1 = 

96
0
0
0
0
0
0

 
 
 
 
 
 
 
 
 
  

,  x2 = 

0
96
0
0
0
0

 
 
 
 
 
 
 
 
  

, x3 =

0
0

96
0
0
0

 
 
 
 
 
 
 
 
  

, x4 = 

0
0
0

96
0
0

 
 
 
 
 
 
 
 
  

,  x5 =

0
0
0
0

96
0

 
 
 
 
 
 
 
 
  

, 

 

x6 = 

0
0
0
0
0

96

 
 
 
 
 
 
 
 
  

, x7 =

180
0
0
0
0
0

 
 
 
 
 
 
 
 
  

, x8 =

0
180

0
0
0
0

 
 
 
 
 
 
 
 
  

, x9 =

0
0

180
0
0
0

 
 
 
 
 
 
 
 
  

, x10 =

0
0
0

180
0
0

 
 
 
 
 
 
 
 
  

, 
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x11 =

0
0
0
0

180
0

 
 
 
 
 
 
 
 
  

, x12 =

0
0
0
0
0

180

 
 
 
 
 
 
 
 
  

, x13 = 

120
0
0
0
0
0

 
 
 
 
 
 
 
 
  

, x14 =

0
120

0
0
0
0

 
 
 
 
 
 
 
 
  

, x15 =

0
0

120
0
0
0

 
 
 
 
 
 
 
 
  

, 

 

x16 =

0
0
0

120
0
0

 
 
 
 
 
 
 
 
  

, x17 = 

0
0
0
0

120
0

 
 
 
 
 
 
 
 
  

 and x18 =

0
0
0
0
0

120

 
 
 
 
 
 
 
 
  

. 

 

Using P =

0
0
0
0
0
0

 
 
 
 
 
 
 
 
  

, x1, x2, …, x18} 

 
we can construct a general ring of eighteen dimensional 

mixed dual numbers where  
 

xi n xj = 

0
0
0
0
x
0

 
 
 
 
 
 
 
 
  

 under the natural product n. 

 
Finally we can find  
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x1 = 
120 0 0 0 0

0 0 0 0 0
 
 
 

, x2 =
0 120 0 0 0
0 0 0 0 0
 
 
 

, …, xn 

 

= 
0 0 0 0 0
0 0 0 0 96
 
 
 

 

 
using natural product n we can find a n dimensional general 
ring of mixed dual numbers. 
 

Thus we mainly get mixed dual numbers Zn. 
 
However we are not aware of getting mixed dual numbers 

by any other way. We feel if we can find linear operator in 
Hom(V,V) such that Ti o Ti = Ti or OT, zero operator and if 2

iT  
= Ti and 2

jT  = 0 then Ti o Tj = Tj o Ti = 0 or Tk where Tk is again 
an idempotent operator or a nilpotent operator of order two.  
This task is left as an open problem to the reader.  

 
Now having introduced the concept of mixed dual numbers, 

we proceed onto introduce the notion of fuzzy special dual like 
numbers and fuzzy mixed dual numbers. 
 

Let [0, 1] be the fuzzy interval. 
 

Let g1 be a new element such that 2
1g  = g1 we call x = a + bg1 

with a, b  [0, 1] to be a fuzzy special dual like number of 
dimension two.  Clearly if x = a + bg1 and y = c + dg1, a, b, c, d 
 [0, 1] are two fuzzy special dual like numbers then x + y and 
x  y in general need not be again a fuzzy dual like number for a 
+ c and bc + ad + bd may or may not be in [0, 1], we over come 
this problem by defining min or max of x, y.   
 

For if x = 0.03 + 0.4g1 and y = 0.1 + 0.7g1 the min (x, y) = 
0.03 + 0.4g, and max (x, y) = 0.1+ 0.7g1.   
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Thus if S = {a + bg1 | a, b  [0, 1] and 2
1g  = g1 is a new 

element}, then {S, min} and {S, max} are general semigroups 
of dimension two of special dual like number.   

 
We will first illustrate this situation by some examples.  

 
Example 5.20:  Let A = {a + bg | a, b  [0, 1] g = 4  Z6} be 
the general semigroup of fuzzy special dual like numbers under 
min or max operation of dimension two. 
 
Example 5.21:  Let W = {x + yg | x, y  [0, 1], g = 4  Z12} be 
the general semigroup of fuzzy special dual like number under 
max operation of dimension two. 
 
Example 5.22:  Let  
 

M = {x + yg | x, y  [0, 1] and g = 

3
4
4
3
4

 
 
 
 
 
 
  

3, 4  Z6} 

 
be the general fuzzy semigroup of special dual like number 
under max operation of dimension two. 
 
Example 5.23:  Let  
 

M = 

1

2

3

4

a
a
a
a

 
 
    

 ai = xi + yig with xi, yi  [0, 1]; 1  i  4,  

g = 7  Z14} 
 

be the general fuzzy semigroup of special dual like number 
under max operation. 
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Example 5.24: Let  
 

P = 
1 2 3 4

5 6 7 8

9 10 11 12

a a a a
a a a a
a a a a

 
 
 
  

 ai = xi + yig with 

 
xi, yi  [0, 1]; 1  i  12, g = (7, 8, 8, 7, 8) 7, 8  Z14} 

 
be the general fuzzy semigroup of special dual like number 
under max operation. 
 
Example 5.25: Let  
 

S = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

a a a
a a a
a a a
a a a
a a a
a a a

 
 
 
 
 
 
 
 
  

 ai = xi + yig with xi, yi  [0, 1]; 

 

1  i  18, g = 

11 12 0
12 11 12
12 11 0
11 12 11

 
 
 
 
 
 

11, 12  Z22} 

 
be the general fuzzy semigroup of special dual like number 
under min operation of dimension two. 
 
 Now we proceed onto give examples of higher dimension 
general fuzzy semigroup of special dual like number. 
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Example 5.26:  Let  
 

M = {a + bg1 + cg2 + dg3 | a, b, c, d  [0, 1];  
 

g1 = 
11 12 11
0 11 0

 
 
 

, g2 = 
12 0 11
11 0 12
 
 
 

 and g3 = 
11 12 0
11 0 12

 
 
 

 

 
be the general fuzzy semigroup of special dual like number of 
dimension four. 
 
Example 5.27:  Let T = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 | ai 
 [0, 1]; 1  i  6; g1 = (13, 0, 0, 14), g2 = (0, 13, 0, 0), g3 = (0, 
0, 0, 14), g4 = (0, 0, 13, 0) and g5 = (13, 0, 0, 0) are idempotents 
13, 14  Z26} be the general fuzzy semigroup of special dual 
like number of dimension six.  
 
Example 5.28:  Let  
 

S = 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

a a a
a a a
a a a
a a a
a a a

 
 
  
 
 
  

 ai = x1 + x2g1 + x3g2 + x4g3 + x5g4 

+ x6g5 + x7g6, 1  i  15, xj  [0, 1], 1  j  7,  
 

 
 
 
 
        gp  L = 
 
 
 
 
1  p  6} be the general fuzzy semigroup of special dual like 
numbers of dimension seven under max (min) operation.  







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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Example 5.29:  Let  
 

T = 1 2 8

9 10 16

a a ... a
a a ... a

 
 
 

 ai = x1 + x2g1 + x3g2, 

 
1  i  16, xs  [0, 1], 1  j  3,  

 
 
 
 
    g1, g2  L = 
 
 
 
 
be the general fuzzy semigroup of special dual like numbers of 
dimension three under max operation.  
 
 Now we proceed onto give examples of general fuzzy 
semigroup of mixed dual numbers.  
 
Example 5.30:  Let  
M = {a1 + b1g1 + c1g1 | a, b, c  [0, 1] g1 = 6 and g2 = 4  Z12} 
be the general fuzzy semigroup of mixed dual number of 
dimension three.  2

1g = 62 = 0 (mod 12) and 2
2g  = 4 = g2 (mod 

12). Finally g1g2 = g2g1 = 0 (mod 12). 
 
Example 5.31:  Let S = {x1 + x2g1 + x3g2 + x4g3 | xi  [0, 1]  
1  i  4; g1 = 6, g2 = 4, g3 = 9  Z12; 2

1g = 62 = 0 (mod 12) and 
2
2g  = 42 = g2 (mod 12), 2

3g = 9 = g3 (mod 12), g1g2 = 0 (mod 12) 
g1g3 = 69 = 54 = 6 (mod 12), g2g3 = 4.9 = 36 = 0 (mod 12)} be 
the general fuzzy semigroup of mixed dual number of 
dimension four under min or max operation. 
 







 g2 

0 

g1 

1 
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Example 5.32:  Let  
P = {(a1, a2, a3) | ai  [0, 1]  [0, I]; 1  i  3} be a general 
fuzzy semigroup of neutrosophic special dual like numbers 
under min or max operation. 
 
Example 5.33:  Let  
 

M = 

1 2

3 4

19 20

a a
a a

a a

 
 
    

 
ai  [0, I]  [0, 1]; 1  i  20} 

 

be the general fuzzy semigroup of neutrosophic special dual like 
numbers under min or max operation. 
 
Example 5.34:  Let  
 

M = 1 2 16

17 18 32

a a ... a
a a ... a

 
 
 

ai  [0, 1]  [0, I]; 1  i  32} 

 
be the general fuzzy semigroup of neutrosophic special dual like 
numbers under min or max operation. 
 
 Thus fuzzy neutrosophic numbers under min or max 
operation are special dual like numbers.  
 
 Finally we see as in case of dual numbers we can in case of 
special dual like numbers and mixed dual numbers define the 
notion of natural class of intervals and operations on them to 
obtain nice algebraic structures. 
 
Example 5.35:  Let  
 

R = 
1 2

3 4

5 6

a a
a a
a a

 
 
 
  

ai  [0, I]  [0, 1]; 1  i  6} 
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be the general fuzzy semigroup of neutrosophic special dual like 
numbers under min or max operation. 
 
 Now we give examples of mixed dual numbers. 
 
Example 5.36:  Let M = {(a1, a2, a3, a4) | ai = x1 + x2g1 + x3g2, xj 

 [0, 1], 1  i  4, 1  j  3 g1 = 6 and g2 = 4  Z12; 2
1g = 0 and 

2
2g  = 12, g1g2 = 0 (mod 12)} be the general fuzzy semigroup of 

mixed dual numbers under min or max operation. 
 
Example 5.37:  Let  
 

T = 

1 2 3

4 5 6

28 29 30

a a a
a a a

a a a

 
 
    

  
ai = x1 + x2g1 + x3g2 + x4g3 with 

 
xj  [0, 1], 1  i  30, 1  j  4; g1 = 6 and 

 
g2 = 4 and g3 = 9  Z12} 

 
be the general fuzzy semigroup of  mixed dual number of 
dimension four under max or min. 
 
 
Example 5.38:  Let  
 

P = 1 2 10

11 12 20

a a ... a
a a ... a

 
 
 

ai = x1 + x2g1 + x3g2 + x4g3+ 

 
x5g4 + x6g5 + x7g6 + x8g7, 1  i  20 with xj  [0, 1], 1  j  8; 

 
g1 = 16 and g2 = 60 and g3 = 96, g4 = 120, g5 = 160, 

 
g6 = 180 and g7 = 225  Z240} 
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be the general fuzzy semigroup of  mixed dual number under 
max or min of dimension 8. 
 
 Finally just indicate how mixed dual number vector spaces, 
semivector spaces can be constructed through examples. 
 
Example 5.39:  Let  
 

P = 

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
    

ai = x1 + x2g1 + x3g2  where g1 = 6, 

 
g2 = 4  Z12, xj  Q; 1  i  8, 1  j  3; 2

1g = 0 (mod 12), 
 

2
2g = 4 (mod 12) and g1g2 = 0 (mod 12)} 

 
be the general vector space of mixed dual numbers over the 
field Q.  Infact M is a general linear algebra of mixed dual 
numbers over Q under the natural product n. 
 
Example 5.40:  Let P ={(a1, a2, …, a15) | ai = x1 + x2g1 + x3g2  + 
4g3 + x5g4 + x6g5 + x7g6 with xj  Q; 1  i  15, 1  j  7;  
 
 
 
 
 
  gp  L= 
 
 
 
1  p  6 be a vector space / linear algebra of special dual like 
numbers over the field Q}. 
 
 
 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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Example 5.41:  Let  
 

S = 1 2

3 4

a a
a a

 
 
 

ai = x1 + x2g1 + x3g2  + 4g3 + x5g4  + x6g5 

 
+ x7g6 + x8g7 with 1  i  4,  xj  R; 1  j  8; g1 = 16, 

 
g2 = 60, g3 = 96, g4 = 120, g5 = 160, g6 = 180 and 

 
g7 = 225 in Z240; 2

2g = 0, 2
1g = 16, 2

3g = 96, 2
4g = 0, 

 
2
5g  = 160, 2

6g = 0 and g7 = 225} 
 

be the general vector space of mixed dual numbers over the 
field R (or Q).  S is a non commutative linear algebra of mixed 
dual numbers over R (or Q) under usual product  and under n; 
S is a commutative linear algebra of mixed dual numbers over 
the field. 
 
 Study of basis, linear transformation, linear operator, linear 
functionals, subspaces, dimension, direct sum, pseudo direct 
sum, eigen values and eigen vectors are a matter of routine 
hence the reader is expected to derive / describe / define them 
with appropriate modifications. 
 
Example 5.42:  Let  
 

M =

1 2

3 4

21 22

a a
a a

a a

 
 
    

 
ai = x1 + x2g1 + x3g2  + x4g3, 1  i  22, 

 
xj  Q; 1  j  4; g1 = 4, g2 = 6 and g3 = 9 in Z12 and  

 
Q (g1, g2, g3) = x1 + x2g1 + x3g2 + x4g4 = ai} 
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be a Smarandache general vector space of mixed dual numbers 
over the Smarandache general ring of mixed dual numbers Q(g1, 
g2, g3). 
 
 Clearly M is a S-linear algebra over the S-ring, Q(g1, g2, g3) 
under the natural product n.  Further in general the eigen values 
and eigen vectors can be mixed dual numbers. 
 
Example 5.43:  Let  
 

S =  
1 2 8

9 10 16

17 18 24

a a ... a
a a ... a
a a ... a

 
 
 
  

ai  Q(g1, g2, g3, g4, g5, g6, g7), 

 
1  i  24, p = g1 = 16, g2 = 60, g3 = 96, g4 = 120, g5 = 160, 

 
g6 = 180, g7 = 225}  Z240 and ai = x1 + x2g1 + x3g2  + x4g3 

 
+ … + x8g7; 1  i  8,  xj  Q; 1  p  7} 

 
be the Smarandache general vector space (S-linear algebra 
under natural product ) of mixed dual numbers over the S-ring, 
Q(g1, g2, …, g7). 
 
 We now proceed onto give examples of semivector space of 
mixed dual numbers. 
  
Example 5.44:  Let  
 

S =  1 2 3 4

5 6 7 8

a a a a
a a a a

 
 
 

ai = x1 + x2g1 + x2g1 + x3g2; 

 
xj  Q+  {0}, 1  i  8, 1  j 3, g1 = 12 and g2 = 16 with 

 
2
1g  = 0 (mod 48), 2

2g = 16 (mod 48) in Z48} 
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be the general semivector space of mixed dual numbers over the 
semifield Z+  {0}. 
 
Example 5.45:  Let  
 

W =  

1 2 3

4 5 6

28 29 30

a a a
a a a

a a a

 
 
    

  
ai = x1 + x2g1 + x2g1 + … + x8g7 

 
with 1  i  30, xj  Z+  {0}, 1  j  8; 

   
T = {0, g1, g2, …, g7}  Z240} 
 

be the general semivector space of mixed dual number over the 
semifield Z+  {0}. 
 
Example 5.46:  Let  
 

M =  
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

ai = x1 + x2g1 + x2g1 +  x3g2 + x4g3 

 
with 1  i  9, xj  Q+  {0}, 1  j  4, g1 = 6, g2 = 4 

  
and g3 = 9  Z12} 

 
be a general S-semivector space of mixed dual numbers over the 
Smarandache semiring. 
 
 P = {(Q+  {0}) (g1, g2, g3) = x1 + x2g1 + x3g2 + x4g3 with xj 
 Q+  {0}, g1, g2, g3  Z12 g1 = 6, g2 = 4 and g3 = 9}.  In this 
case M is a Smarandache semilinear algebra over P.  Further the 
eigen values and eigen vectors associated with any T : M  M 
can be mixed dual numbers.  
 



Mixed Dual Numbers  185 
 
 
Example 5.47:  Let  
 

S =  

1

2

10

a
a

a

 
 
    


ai = x1 + x2g1 +… +  x8g7  with 1  i  10, 

 
xj  Z11, 1  j  8, g1 = 16, g2 = 60, g3 = 96, g4 = 120, 

 
g6 = 160  and g7 = 225  Z240} 
 

be the vector space of mixed dual numbers over the field Z11.  
S is not only finite dimensional but S has only finite number of 
elements in it. 
 
Example 5.48:  Let  
 

S =  1 2 15

16 17 30

a a ... a
a a ... a

 
 
 

ai = x1 + x2g1 + x3g2 +  x4g3 

 
with 1  i  30, xj  Z25, 1  j  4, g1 = 6, g2 = 4 and 

 
g3 = 9 in Z12} 

 
be the Smarandache general vector space of mixed dual 
numbers over the S-ring Z25. 
 
 For all these semivector spaces, semilinear algebras and 
finite vector spaces of mixed dual numbers we can derive all 
properties with no difficulty.  Thus this task is left as an 
exercise to the reader. 
 
 Now we indicate how intervals of special dual like numbers 
and mixed dual like numbers are constructed and the algebraic 
structures defined on them.  
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 Let No(S) = {(ai, aj) | ai, aj  S = {x1 + x2g1 with x1, x2  Q 
(or Z or Zn or R or C) 2

1g = g1 is a new element}} be the natural 
class of open intervals with special dual like numbers. 
 
 Similarly we can define closed intervals, open-closed 
intervals and closed-open intervals of special dual like numbers 
of any dimension. 
 
 We will illustrate this situation first by some examples. 
 
Example 5.49:  Let M = {[a, b] | a, b  Q(g1, g2, g3) = {x1 + 
x2g1 + x3g2 + x4g3 | xi  Q, 1  i  4, g1 = 6, g2 = 9 and g3 = 4  
Z12}} be the closed interval general ring of mixed dual numbers. 
 
Example 5.50:  Let P = {(a, b] | a, b  R  I} be the open-
closed intervals general ring of neutrosophic special dual  like 
numbers. 
 
Example 5.51:  Let W = {[a, b) | a, b  S = {x1 + x2g1 + x3g2 | xi 
 Q; 1  i  3, g1 = 10, g2 = 6  Z30}} be the general ring of 
closed-open interval special dual like numbers of dimension 
three. 
 
Example 5.52:  Let T = {(a, b) | a, b  S = {x1 + x2g1 + x3g2 + 
x4g3 + x5g4 + x6g5 + x7g6 | xj  R, 1  j  7,  
 
 
 
 
 
     gk  L=  
 
  
 
 
1  k  6}} be the seven dimensional open interval general ring 
of special dual like numbers.  
 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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Example 5.53:  Let P = {[a, b) | a, b  S = {x1 + x2g1 + x3g2 + 
x4g3 + x5g4 where g1 = 16, g2 = 96, g3 = 160, g4 = 225  Z240, xi 
 Z, 1  i  5}} be the closed-open interval general ring of 
special dual like numbers. 
 
Example 5.54:  Let M = {(a1, a2, …, an) | ai = [xi, yi]  where xi, 
yi  S = {x1 + x2g1 + x3g2 | x1, x2, x3  Q,    
 
 
 
   
    g1, g2  L = 
 
 
1  i  n}} be the closed interval row matrix general ring of 
special dual like numbers.  
 
Example 5.55:  Let  
 

P =  

1 2

3 4

11 12

a a
a a

a a

 
 
    

 
ai = (ci, di] with ci, di  S = {x1 + x2g1 + 

 
x3g2 +  x4g3  + x5g4 | xj  Q, 1  j  4, g1 = 16, g2 = 96, 

 
g3 = 160 and g4 = 225  Z240} 1  i  12} 

 
be the open-closed interval column matrix general ring of 
special dual like numbers. 
 
Example 5.56:  Let  
 

B =  1 2

3 4

a a
a a

 
 
 

ai = [c, d] with c, d  S 

= {x1 + x2g1 + x3g2 +  x4g3  | xt  Q, 1  t  4,  







 g2 

0 

g1 

1 
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    gj  L = 
 
 
 
 
 
1  j  3}} be the closed interval square matrix general non 
commutative ring of special dual like numbers. 
 
Example 5.57:  Let  
 

S = i
i

i 0
a x








  ai = (di, ci], di, ci  P = {x1 + x2g1 + x3g2 + 

 
x4g3 + x5g4 + x6g5 + x7g6 where xj  Q, 1  j  7 and  

 
 

 
 
            ; 
 
  gp  L = 
 
 
 
 
1  p  6}} be the open-closed interval general polynomial ring 
of special dual like numbers. 
 
 These interval rings has zero divisors, units, idempotents, 
subrings and ideals.  All properties can be derived which is a 
matter of routine.  
 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 







 g2 

0 

g1 

1 

 g3 
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Example 5.58:  Let  
 

T = i
i

i 0
a x








  ai = (c, d], c, d S =  

{x1 + x2g1 + … + x12g11  |  xj  Z,  
 

 
 
 
  
                      gp  L =  
 
 
 
 
 
1  j  12 and 1  p  11}} be the closed-open interval 
coefficient polynomial general ring of special dual like 
numbers. 

 
Example 5.59:  Let S = {[a, b) | a, b  P = {x1 + x2g1 + x3g2 + 
x4g3 + x5g4 | xi  Q+  {0}, 1  i  5,    
 
 
 
 
    gj  L = 
 
 
 
 
1  j  4}} be the closed open-interval general semiring of 
special dual like numbers.  
 
 Clearly S is not a semifield.  
 
Example 5.60:  Let S = {(a, b) | a, b  P = {x1 + x2g1 + x3g2 + 
x4g3 + x5g4 | xi  Z+  {0}, g1 = 16, g2 = 120, g3 = 96 and g4 = 













1 

g1 

g2 

g3 
 

g4 

0 















1 

g1 

g2 

g3 
 

g10 

g11 

0 


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225  Z240,  1  i  5}} be the open interval general semiring of 
special dual like numbers.  
 
Example 5.61:  Let S = {(a1, a2, a3, a4) | ai  P = {x1 + x2g1 + 
x3g2 + x4g3 + x5g4 + x6g5 + x7g6 | xi  Q+  {0},1  j  6,  
      
 
 
 
 
 
   gp  L = 
 
 
 
 
 
where 1  p  6}} be the interval row matrix general semiring 
of special dual like numbers.   
 
 Clearly M is not a semifield only a smarandache semiring. 
 
Example 5.62:  Let  
 

T = 

1

2

9

a
a

a

 
 
    


 ai = [c, d]; c, d  S = {x1 + x2g1 + x3g2 | xj  

 
Z+  {0}, 1  j  3 and g1 = 6, g2 = 10  Z30}, 1  i  9} 

 
be the column interval matrix semiring of special dual like 
numbers. 
 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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Example 5.63:  Let T = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 where  aj = [c, d]; c, d 

 P = {x1 + x2g1 + x3g2 + x4g3 + … + x16g15 where gt be 
elements of a chain lattice with 17 elements xi  Z+  {0}; 1  i 
 16, 1  t  15}, 1  j  9} be a closed square interval matrix 
general semiring of special dual like numbers.  W is a non 
commutative semiring under usual product  of matrices where 
as a commutative ring under the natural product n of matrices.  
 
Example 5.64:  Let  
 

M = 
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
  

  ai = (c, d]; c, d  S = {x1 + x2g1 +  

 
x3g2 + x4g3 +  x5g4 |  xj  R+  {0}; 1  j  5, g1 = 16, 

 
g2 = 96, g3 = 160 and g4 = 225  Z240}; 1  i  30} 

 
be the rectangular matrix of open-closed interval general 
semiring of special dual like numbers.  Clearly the usual product 
of matrices cannot be defined on M.  M is not a semifield has 
zero divisors. 
 

Example 5.65:  Let S = i
i

i 0
a x








  ai = (c, d], c, d  P = {x1 + 

x2g1 + … + x18g17 | xj  Z+  {0}, 1  j  18 and gp are elements 
of chain lattice of order 19, 1  p  17}} be the closed interval 
coefficient polynomial semiring of special dual like numbers. 
 
Example 5.66:  Let M = {(a1, a2, a3, …, a10) | ai = [c, d); c, d  S 
= {x1 + x2g1 + x3g2 + x4g3 + x5g4 | xj  Q,  1  j  5, g1 = 16 g2 = 
96, g3 = 160, and g4 = 225  Z240}, 1  i  10} be the interval 
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row matrix general vector space of special dual like numbers 
over the field Q. 
 
 Likewise we can define interval column matrix general 
vector space / linear algebra of special dual like numbers, 
interval rectangular matrix general vector space / linear algebra 
of special dual like numbers and interval matrix general vector 
space/ linear algebra of special dual like numbers.   
 

The reader is expected to give examples of all these cases. 
 
Example 5.67:  Let  
 

T = 1 2 3

4 5 6

a a a
a a a

 
 
 

  ai = (c, d]; c, d  S = {x1 + x2g1 + 

 
x3g2 |  xj  Z+  {0}; 1  j  3, g1 = 6, g2 = 10  Z30}} 

 
be the closed open interval general semivector space of special 
dual like numbers over the semifield Z+  {0}. 
 

Likewise semivector spaces of row matrices, column 
matrices and square matrices with interval entries can be 
constructed.  This task is also left to the reader. 
 

Example 5.68:  Let T = 

1 2 3

4 5 6

16 17 18

a a a
a a a

a a a

 
 
    

  
 ai = (c, d]; c, d  {x1  

 
+ x2g1 +…+ x20g19 |  xj  Z150, 1 1  j  20, gp  L, L a chain 
lattice of order 21, 1  p  19}, 1  i  18} be a Smarandache 
vector space rectangular matrix of intervals of special dual like 
numbers over the S-ring Z150. 
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Example 5.69:  Let P = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 where  aj = [c, d]; c, d  

 
 S ={x1 + x2g1 + x3g2 + x4g3 + x5g4 | xj  Z19, 1  j  5, g1 = 16, 
g2 = 96, g3 = 160 and g4 = 225  Z240}, 1  i  9} be a square 
matrix with closed intervals entries.  P is a general vector space 
of special dual like numbers over the field Z19. 
 
 Now we can also construct intervals of mixed dual numbers.  
This is also considered as a matter of routine.  So we only give 
some examples so that interested reader can work in this 
direction. 
 
Example 5.70:  Let W = {[a, b] | a, b  P = { x1 + x2g1 + x3g2 + 
… + x8g7 | xi  Q, g1 = 16, g2 = 60, g3 = 96, g4 = 160, g5 = 180 
and g6 = 120 and g7 = 225  Z240}}.  W is a general ring of 
natural  class of closed intervals of mixed dual numbers.  
 
Example 5.71:  Let S = {(a, b] | a, b  P = {x1 + x2g1 + … + 
x20g19 | xi  R, 1  i  20, gp  L, L a chain lattice of order 21,  
     
 
 
 
 
 
 
 
 
 
 
1  p  19}} be the general ring of open-closed intervals of 
special dual numbers. 
 
 Using chain lattices or distributive lattices one cannot 
construct mixed dual numbers. 
 











1 

g1 

g2 
 

g19 

0 


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Example 5.72:  Let M = {(a, b) | a, b  S = {x1 + x2g1 + x3g2 + 
x4g3 | xi  Q, 1  i  4 and g1 = 6, g2 = 4 and g3 = 9  Z12}} be 
the general ring of open intervals of mixed dual numbers. 
 
Example 5.73:  Let S = {(a, b] | a, b  P = {x1 + x2g1 + x3g2 + 
x4g3 + x5g4 + x6g5 + x7g6 + x8g7 | xi  Z200, 1  i  8 and g1 = 16, 
g2 = 60, g3 = 120, g4 = 96, g5 = 160, g7 = 180 and g6 = 225  
Z240}} be the open-closed interval general ring of mixed dual 
numbers. 
 
Example 5.74:  Let S = {(a, b) | a, b  P = {x1 + x2g1 + x3g2 | xi 
 Z, 1  i  3, g1 = 6 and g2 = 4  Z12}} be the open interval 
general ring of mixed dual numbers. 
 
     Let x = (3+5g1+g2, 7g2+5) and  y = (–7+8g2,5+g1+3g2)  S. 
 
 Now x + y = (–4 + 5g1 + 9g2, 10+g1 + 10g2)  S; 
 
 x  y = ((3 + 5g1 + g2)  (–7 + 8g2), (7g2+5) (5 + g1 + 3g2) 
 
 = (–21 – 35g1 – 7g2 + 24g2 + 40g1g2 + 8 2

2g  + 35g2 +  
   25 + 7g1g2 + 5g1 + 21 2

2g  + 15g2) 
 
 = (–21 – 35g1 + 25g2, 25 + 5g1 + 71g2)  

( 2
2g = g2 and g1g2 = 0).  

 
 x  y  S.  This is the way operations ‘+’ and ‘’ are 
performed on S 

Example 5.75:  Let S = 

1

2

3

4

a
a
a
a

 
 
    

 ai = (c, d); c, d  P = {x1 + x2g1  

 
+ x3g2 + x4g3 + x5g4|  xi  Z7; 1  i  5, g1 = 12, g2 = 16, g3 = 24, 
g4 = 36   Z48}, 1  j  4} be the general ring of open interval 
matrices of mixed dual number. 
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 Clearly cardinality of S is finite.  
 

Example 5.76:  Let S = 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a

 
 
 

 aj = [c, d);  

 
c, d  S = {x1 + x2g1 + x3g2 + x4g3 |  xi  Q; 1  i  4, g1 = (6, 6, 
6), g2 = (4, 4, 4), g3 = (9, 9, 9), 4, 6, 9  Z12} 1  j  10} be the 
closed - open interval matrix ring of mixed dual number. 
 
Example 5.77:  Let W = {(a1, a2) | aj = (c, d]; c, d  P = {x1 + 
x2g1 + x3g2 |  xi  Z5; 1  i  3 and  g1 = 14 and g2 = 21  Z28}, 1 
 j  2} be the open-closed interval general ring of mixed dual 
numbers. 
 

Example 5.78:  Let T = 

1 2 3

4 5 6

28 29 30

a a a
a a a

a a a

 
 
    

  
 aj = [c, d]; 1  i  

30, c, d  P = {x1 + x2g1 + x3g2 + x4g3 + … + x8g7 |   xi  R;  
1  j  8, g1 = 16, g2 = 60, g3 = 96, g4 = 120, g5 = 160, g6 = 180 
and g7 = 225  Z240}, 1  i  30} be the closed-open interval 
general ring of 10  3 matrices of mixed dual numbers. 
 
Example 5.79:  Let L = {(a1, a2, a3) | aj = (c, d]; c, d  {x1 + 
x2g1 + x3g2  |   xi  Z6; 1  i  3, g1 = 6, g2 = 4  Z12};  1  j  3} 
be the open-closed  interval general ring of mixed dual numbers. 
 
 Let x = ((3 + 2g1 + g1 + 3g2], (4 + 5g2, g1 + 4],  

(3g1 + g2, 3g2 + 4g1 + 1]) and  
 

y = ((2 + g1, g2 + 4], (3g1 + g2, g2], (0, 4g1]) be in L. 
 
x + y = [(5 + 3g1 + g2, g1 + 4g2 + 4], (4 + 3g1, g1 + g2 + 

    4], (3g1 + g2, 1+ 3g2 + 3g1])  L 
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x  y = ((3 + 2g1 + g2, g1 + 3g2]  (2 + g1, g2 + 4],  

(4 + 5g2, g1 + 4] (3g1 + g2, g2],  
(3g1 + g2, 3g2 + 4g1 + 1] (0, 4g1]) 

 
  = ((6 + 3g1 + 2 2

1g  + 2g1 + g1g2, g1g2 + 4g1 +  
3 2

2g  + 12g2], (12g1 + 42 + 15g1g2 +  
5 2

2g , g1g2 + 4g2], (0, 12g1g2 +  
16 2

1g  + 4g1]) 
 

 = (6 + 3g1, 4g1 + 3g2], (2g1 + 3g2, 4g2],  
(0, 4g1])  L. 

 
Thus L is a ring. 
 

Example 5.80:  Let S = {[a, b] | a, b  P = {x1 + x2g1 + x3g2 + 
x4g3 + x5g4 | xi  Z+  {0}, 1  i  5, g1 = 12, g2 = 16, g3 = 24, 
g4 = 36  Z48}} be the closed interval general semiring of mixed 
dual numbers. 
 
Example 5.81:  Let M = {(a1, a2) | ai = [c, d), c, d  S = {x1 + 
x2g1 + x3g2 + x4g3 + x5g4 + x6g5 | xj  Z+  {0}, 1  j  6, gp  L 
= a chain lattice of order seven 1  p  5}, 1  i  2} be the 
closed open interval general semiring of mixed dual numbers. 
 
Example 5.82:  Let  
 

T = 1 2 8

9 10 16

a a ... a
a a ... a

 
 
 

 ai = [c, d), c, d  S = {x1 + x2g1 + 

 
x3g2 + x4g3 + x5g4 + x6g5 + x7g6 + x8g7 with xj  Q+  {0}, 

 
1  j  8, g1 = 16, g2 = 60, g3 = 96, g4 = 120, g5 = 160, 

 
g6 = 180, and g7 = 225  Z240}, 1  i  16} 
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be the open-closed interval rectangular matrix of semiring of 
mixed dual numbers.  Clearly T is not a semfield of mixed dual 
numbers.  
 
 Now we see we can build as in case of special dual like 
numbers in case of mixed dual numbers also vector spaces and 
semivector spaces / linear algebra of intervals.  This work is left 
for the reader, however we give problems in this regard in the 
last chapter of this book. 
 
 Finally we can have fuzzy interval mixed dual numbers and 
fuzzy interval special dual like numbers and they are fuzzy 
semigroups under max or min operations. 
 
 We will illustrate this situation by some examples. 
 
Example 5.83:  Let S = {[a, b) | a = x1 + x2g1 + x3g2  and b = y1 
+ y2g1 + y3g2 where xi, yj  [0, 1], 1  i, j  3, g1 = 6 and g2 = 4 
 Z12} be the closed-open interval fuzzy semigroup of mixed 
dual number under max or min operation. 
 
Example 5.84:  Let  
M = {(a, b) | a = x1 + x2g1 + x3g2 + x4g3 + x5g4 + x6g5 + x7g6 and 
 
 B = y1 + y2g1 + … + y7g6 where xi, yj  [0, 1], 1  i, j  7 
and   
 
 
 
 
    gp  L= 
 
 
  
 
 
1  p  6}} be the open interval fuzzy semigroup of special dual 
like numbers under min (or max) operator. 
 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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Example 5.85:  Let S = {(a1, a2, a3, a4) | ai = [c, d], c, d  P = 
{x1 + x2g1 + … + x9g8 | xj  [0, 1], 1  j  9 and gp  L; L a 
chain lattice of order 10 given by L = {1 > g1 > g2 > …> g8 > 0}, 
1  p  8}, 1  i  4} be the closed interval general fuzzy 
semigroup of special dual like numbers under min or max 
operation. 
 

Example 5.86:  Let W = 

1

2

10

a
a

a

 
 
    


 ai = [c, d), c, d  S = {x1 +  

 
x2g1 + x3g2 + x4g3 | xj  [0, 1], 1  j  4 and g1 = 6, g2 = 4 and g3 
= 9  Z12}; 1  i  10} be the closed open interval general fuzzy 
semigroup of mixed dual numbers for in x  y = min {x, y}, we 
take min {x1, y1} + min {x2, y2} 2

1g  + min {x3y3} 2
2g  + … +  

min {x2, y3}g1  g2 and so on be it min or max operation we 
take only gigj (product modulo 12), 1  i, j  3. 
 

Example 5.87:  Let P = 
1 2 12

13 14 24

25 26 36

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai = (c, d], c, d  

 
 {x1 + x2g1 + x3g2 + x4g3+ x5g4 + x6g5 + x7g6 + x8g7 v with xj  
[0, 1], 1  j  8 and g1 = 16, g2 = 60, g3 = 120, g4 = 96, g5 = 180, 
g7 = 160 and g8 = 225  Z240}, 1  i  36} be the open closed 
interval fuzzy semigroup of mixed dual numbers. 
 
 Interested reader can construct more examples; derive 
related properties as most of the results involved can be derived 
as a matter of routine. 
 



 
 
 
 
 
Chapter Six 
 
 

 
 
APPLICATIONS OF SPECIAL DUAL LIKE 
NUMBERS AND MIXED DUAL NUMBERS 
 
 
 
 
 Only in this book the notion of special dual like number is 
defined. In a dual number a + bg1 we have 2

1g  = 0; a and b reals 
and in special dual like number a + bg we have g2 = g; a and b 
reals.  Certainly special dual like numbers will find appropriate 
applications once this concept becomes popular among 
researchers.  For we have the neutrosophic ring R  I or Q  
I or Z  I or Zn  I happens to be special ring.  Thus where 
ever neutrosophic concepts are applied certainly the special dual 
like number concept can be used.  We view I only as an 
idempotent of course not as an indeterminate. 
 
 Since to generate special dual like numbers distributive 
lattices are used certainly these concepts will find suitable 
applications.  Further we also make use of the modulo integers 
in the construction of special dual like numbers.  Keeping all 
these in mind, researchers would find several applications of 
this new number. 
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 Finally the notion of mixed dual numbers exploits both the 
concept of special dual like numbers and dual numbers, so 
basically the least dimension of mixed dual numbers are three. 
 
 For if x = a + bg1 + cg2  g1 and g2 two new elements such 
that 2

1g  = 0, 2
2g  = g2 and g1g2 = g2g1 = 0 or g1 or g2 and a, b, c 

are reals then we define, x to be a mixed dual number. 
 
 It is pertinent to mention here we cannot use lattices to 
construct mixed dual numbers.   
 
 The only concrete structure from where we get mixed dual 
numbers are from Zn, n not a prime n = 4m.  So we think this 
new numbers will also find applications only when this concept 
becomes popular and more research in this direction are taken 
up by researchers. Also this study forces more research on the 
modulo integers Zn, n a composite number. 
 



 
 
 
 
 
Chapter Seven 
 
 

 
 
SUGGESTED PROBLEMS 
 
 
 
 In this chapter we suggest 145 number of problems of 
which some are simple exercise and some of them are difficult 
or can be treated as research problems. 
 
1. Discuss some properties of special dual number like rings. 
 
2. Is M = {a + bg | a, b  Q; g = 10  Z15} be a semigroup 

under . Enumerate a few interesting properties 
associated with it. 

 

3. Let S = 

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
    

 ai = xi + yig with xi, yi  Q; 1  i  8,  

 

g = 
3 4 4 3
4 3 3 4
 
 
 

, 3, 4  Z6} be the ring of special dual 

like numbers under natural product n. 
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(i) Find subrings in S which are not ideals of S. 
(ii) Find ideals of S. 
(iii) Find zero divisors in S. 
(iv) Show ideals of S form a modular lattice. 

 
4. Show if S = {a + bg | a, b  R, g2 = g = 3  Z6} is the 

special dual like number ring then any x  y in S need not 
in general be of the form a + bg; b, a  R. 

 
(i) Can S have zero divisors? 
(ii) Can a + bg have inverse? (a, b  R \ {0}). 
(iii) Can x = a + bg  S be an idempotent?  (with a, b  

R \ {0}). 
 
5. Enumerate the special properties enjoyed by Zn(g). 
 
6. Let S = {a + bg | a, b  Z7 g = 11  Z22} be the special 

dual like number ring. 
 

(i) Find subrings of S which are not ideals?  (is it 
possible). 

(ii) Find the cardinality of S. 
(iii) Does S contain subring? 
(iv) Can S have zero divisor or idempotents? 

 
7. Is (Q (g), +, ) where g = 9  Z12 an integral domain? 
 

8. Let Z(g) = {a + bg | a, b  Z and g = 

1 1
1 0
0 1
1 1
0 0

 
 
  

 
 
  

 be a 

special dual like number ring. 
 

(i) Can Z(g) have idempotents? 
(ii) Can Z(g) have ideals? 
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9. Let S = Zp(g) = {a + bg | a, b  Zp, g2 = g} be the special 

dual like number ring (p a prime). 
(i) Can S have subrings which are not ideals? 
(ii) Can S have zero divisors? 
(iii) Can a + bg, a, b  Zp \ {0} have inverse? 
(iv) Can S have idempotents of the form a + bg, a, b   

Zp \ {0}? 
 

10. Find the orthogonal subrings of S given in problem 9. 
 
11. Let S = {(x1, x2, x3, x4, x5) + (y1, y2, y3, y4, y5)g | xi, yi  

Q, 1  i  5, g = 4  Z6} be the special dual like number 
ring. 
(i) Prove S have zero divisors. 
(ii) Can S have idempotents? 
(iii) Find ideal of S. 
 

12. Let M = 

1 2

3 4

5 6

7 8

9 10

a a
a a
a a
a a
a a

 
 
  
 
 
  

 ai = xi + yig where xi, yi  Q; 1  i 

 10, g = (3, 4, 3, 4, 4, 3, 4) with 3, 4  Z6} be a special 
dual like ring under the natural product n. 

 
(i) Do the zero divisors of M form an ideal? 
(ii) Does M contain a subring which is not an ideal? 
 

13. Let M = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

a a a a
a a a a
a a a a
a a a a

 
 
    

 ai = xi + yig where xi, yi 

 Z31; 1  i  16, g = 
3 4 5
4 3 4
 
 
 

, 3, 4  Z6} be a special 

dual like ring under the natural product . 
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(i) Show M is non commutative. 
(ii) Find zero divisors of M. 
(iii) What is the cardinality of M? 
(iv) Is M a S-ring? 

 
14. In M in problem 13 is under natural product n distinguish 

the special features of M under n and under . 
 

15. Let P = 
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai = xi + yig where xi, yi  

Z3; 1  i  30, g = 
1 1
0 1
 
 
 

, g n g = g} be the special dual 

like number ring under the natural product n. 
 

(i) Find the number of elements in P. 
(ii) Find subrings which are not ideals in P. 

 
16. Describe some of the special features enjoyed by special 

dual like number vector spaces V over the field Q or R. 
 
17. Let V = {a + bg | a, b  R, g2 = g, g the new element} be 

the special dual like number vector space over the field R. 
(i) Find a basis of V over R. 
(ii) Write V as a direct sum of subspaces.  
(iii) Find L(V,R) = {all linear functional from V to R}.  

What is the algebraic structure enjoyed by L(V,R)? 
 

18. Let W = 1 2

3 4

a a
a a

 
 
 

 ai = xi + yig where xi, yi  Q; 1  i  

4, g =7  Z14} be the special dual like number vector 
space over the field Q. 

 
(i) Is W a linear algebra under usual matrix product?  
(ii) Find a basis of W over Q as a vector space as well 

as a linear algebra. 
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(iii) Is the dimension of W the same as a vector space or 
as a linear algebra? 

(iv) Write W as a pseudo direct sum of subspaces. 
 

19. Let P = 

1 2 1 2

3 4 3 4

5 6 5 6

7 8 7 8

a a b b
a a b b

g
a a b b
a a b b

   
   
            

 ai , bj  Z7, 1  i, j  8; 

g = 13  Z26} be a linear algebra of special dual numbers 
under the natural product n over Z7.  

 
(i) Find Hom (P, P). 
(ii) Find a basis of P over Z7. 
(iii) Find the number of elements in P. 

 

20. Let M =  

1 2 8

9 10 16

17 18 24

25 26 32

a a ... a
a a ... a
a a ... a
a a ... a

 
 
    

 ai  = xi + yig with xi, yi  

Z11, 1  i  32; g = 

4
3
4
3
4

 
 
 
 
 
 
  

4, 3  Z6} be a special dual like 

number vector space over the field 11. 
 

(i) Find dimension of M over Z11. 
(ii) Find the number of elements in M. 
(iii) If on M we define the natural product n, what is 

the dimension of M as a linear algebra over Z11? 
(iv) Find L (M, Z11). 
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21. Let  

S = {a + bg | a, b  Z+  {0}, g = (13, 14), 13, 14  Z26} 
be the semiring. 
(i) Can S be a semifield? 
(ii) Is S a strict semiring? 
(iii) Can S have zero divisors? 

 

22. Let M = 

1

2

3

4

a
a
a
a

 
 
    

 ai = xi + yig where xi, yi  Q+  {0}; 1  

i  4, g = (17, 18, 17, 18), 17, 18  Z34} be the semiring. 
(i) Does M contain subsemirings which are not ideals? 

(ii) Can T = 

1

2

a
a
0
0

 
 
    

 ai = xi + yig with xi, yi  Q+  {0};  

1  i  2, g = (17, 18, 17, 18), 17, 18  Z34}  M be 
a semiideal of M? 

(iii) Suppose W = 
1

2

0
0
a
a

 
 
    

 ai = xi + yig with xi, yi   

Q+  {0}; 1  i  2, g = (17, 18, 17, 18), 17, 18  
Z34}  M; can W be a semiideal such that T and W 
are orthogonal? 

 
23. Give an example of a general semifield of special dual 

like numbers. 
 

24. Let P = {a + bg | a, b  Z+, g = 
5 6 5 6
6 5 6 5
 
 
 

; 5, 6  

Z10}  {0} be the semified of special dual like numbers. 
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(i) Can P have subsemifields? 
(ii) Can P have subsemirings? 

 

25. Let M = 
1

2

3

a
a
a

 
 
 
  

 ai = xi + yig where xi, yi  Q+ ; g = 
13
14
13

 
 
 
  

; 

13, 16  Z26 1   i  3}  
0
0
0

  
  
  
    

be the semiring of 

special dual like numbers under natural product n. 
 

(i) Can M be a semifield? 
(ii) Can M have semiideals? 
(iii) Can M have subsemirings? 
 

26. Give an example of a general semiring of special dual like 
numbers which is not a semifield. 

 

27. Let M = 1 2

3 4

a a
a a

 
 
 

 ai = xi + yig with xi, yi  R+; 1  i  

4, g = (5, 6), 5, 6  Z10}  
0 0
0 0

   
  
   

 be the general 

semiring of special dual lime numbers under the usual 
product . 

 
(i) Can M be a semifield? 
(ii) Is M a S-semiring? 
(iii) Can M have right semiideals which are not left 

semiideals? 
 

28. Suppose M in problem (27) is under natural product n 
what can we say about M? 
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29. Let P = {x + yg | x, y  Q+, g = (1 0 0 1 1 1 0)}  {0} be 

the semifield of special dual like numbers.  Study the 
special features enjoyed by P. 

 

30. Let P = 
1 2 3 12

13 14 15 24

25 26 27 36

a a a ... a
a a a ... a
a a a ... a

 
 
 
  

with ai = xi + yig  

 
where xi, yi  Z+; 1  i  36, g = 3  Z6}   
 

0 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0

  
  
  
    

be a semiring of special dual like 

numbers. 
 

(i) Can Z+  S?  Justify. 
(ii) Can Z+g  S?  Justify. 
(iii) Can S have subsemifield? 

 
31. Find all the idempotents of Z46. 
 
32. Find all the idmepotents of Z12. 
 

(i) Are the idempotents in Z12 orthogonal? 
(ii) Do the set of idempotents of Z12 form a semigroup 

under product? 
 

33. Find all the idempotents of Z30. 
(i) How many idempotents does Z30 contain? 
(ii) Do the set with 0 form a semigroup under product? 

 
34. Find the number of idempotents in Z105. 
 
35. Let Zn be such that n = p1 p2 ... pt; t < n and each pi is a 

prime and pi  pj if i  j. 
(i) Find all the idempotents in Zn. 
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(ii) What is the order of the semigroup of idempotents 
of Zn with zero? 

(iii) Are the idempotents of Zn orthogonal? 
 
36. Let Z4900 be the ring of modulo integers.  Find the number 

of idempotents in Z4900. 
 

(i) Hence or otherwise find the number of idempotents 
in 2 2 2

1 2 3p ,p ,p
Z  each pi is a distinct  prime; i = 1, 2, 3. 

(ii) Further if nn n t1 2
t1 2p ,p ,...,p

Z  be the ring of integers pi  pj 

if i  j are distinct primes; ni  2; 1  i  t.  Find the 
number of idempotents in nn n t1 2

t1 2p ,p ,...,p
Z . 

 
37. Prove Zp, p a prime cannot have idempotents, other  than 

0 and 1. 
 
38. Prove using 5, 6, 0 of Z10 we can build infinitely many 

idempotents which can be used to construct special dual 
like numbers. 

 
39. Study the special dual like number semivector space / 

semilinear algebra. 
 
40. Let V = {(a1, a2, …, a5) | ai = xi + yig where xi, yi  Z+; 1 

 i  5, g = 7  Z14}  {(0, 0, …, 0)} be a semivector 
space over the semifield F = {a + bg | a, b  Z+}  {0}. 
(g = 7  Z14). 

 
(i) Find a basis for V. 
(ii) Is V finite dimensional over F? 
(iii) If F is replaced by Z+  {0}; will V be finite 

dimensional? 
(iv) Is V a semilinear algebra over F? 
(v) What is dimension of V as a semilinear algebra? 
(vi) Write V as a direct sum of semivector spaces.  

 
41. Can 2p

Z  have idempotents, p a prime? 
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42. Let S = 

1 2

3 4

5 6

7 8

a a
a a
a a
a a

 
 
    

ai = xi + yig ; g = 10  Z30,  xi, yi   

 

Z+; 1  i  8}  

0 0
0 0
0 0
0 0

  
  
         

 be the semivector space of  

 
special dual like numbers over the semifield  
F = {a+bg | a, b  Z+, g = 10  Z10}  {0}. 

 
(i) Find a basis of S over F. 
(ii) Can S be made into a semilinear algebra? 
(iii) Study the special features enjoyed by S. 

 
43. Find the algebraic structure enjoyed by HomF(S, S), S 

given in problem 42. 
 
44. Find the properties enjoyed by  

L(S, F) = {all linear functional from S to F}, S given in 
problem (42). 

 

45. Let M = 1 2 3 10

11 12 13 20

a a a ... a
a a a ... a

 
 
 

ai = xi + yig ; g = 17  

 

 Z34,  xi, yi  Q+; 1  i  20}  
0 0 0 ... 0
0 0 0 ... 0

   
  
   

 be 

 
the semivector space over the semifield S = {a + bg | a, b 
 Q+}  {0} of special dual like numbes.   
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P = 

1 2 3

4 5 6

19 20 21

a a a
a a a

a a a

 
 
    

  
ai = xi + yig ; g = 17  Z38,  xi, yi   

 

Q+; 1  i  21}  

0 0 0
0 0 0

0 0 0

  
  
         

  
 be the semivector space  

 
over the semifield S = {a + bg | a, b  Q+}  {0}. 

 
(i) Find Hom (M, P). 
(ii) Study the algebraic structure enjoyed by Hom(M, 

P). 
(iii) Study the properties of Hom(M, M) and Hom(P, P) 

and compare them. 
(iv) Study L(M, S) and L(P, S) and compare them. 
(v) What will be the change if S is replaced by Z+  

{0}? 
(vi) Study (i), (ii) and (iii) when S is replaced by Z+  

{0}. 
 
46. Let  

S = i
i

i 0
a x








  ai = xi + yig ; g = 4  Z6,  xi, yi  Z+  {0}} 

be the semivector space of special dual like numbers over 
the semifield  
F = {a + bg | a, b  Z+; 4 = g  Z6}  {0}. 

 
(i) Find dimension of S over F. 
(ii) Find a basis of S over F. 
(iii) Find HomF(S, S) 
(iv) Find L(S, F). 
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47. Determine some interesting features enjoyed by special 

set vector spaces of special dual like numbers. 
 

48. Let M = {(a1, a2), 
1

2

3

a
a
a

 
 
 
  

, 1 2

3 4

a a
a a
 
 
 

 ai = xi + yig ; g = (4,  

 
3, 4, 3), 4, 3  Z6,  xi, yi  Q; 1  i  4} be the special set 
vector space of special dual like numbers over the set 3Z 
 5Z. 

 
(i) Find Hom (V, V). 
(ii) Find L(V, 3Z  5Z). 

 
49. Let T = {a + bg1, c + dg2, e + fg3 | a, b, c, d, e, f  Q; g1 =  
 

(7, 8, 7, 8), g2 = 

5
6
5
6

 
 
 
 
 
 

 and g3 = 
13 14
0 13

 
 
 

, 7, 8  Z14, 5, 6   

 
Z10 and 13, 14  Z26} be a special set vector space of 
special dual like numbers over the set S = 3Z  7Z  11Z. 

 
(i) Find set special vector subspaces of T over S. 
(ii) Write T as a direct sum of set special vector 

subspaces over S. 
(iii) Find HomS(T, T). 
(iv) Find L(T, S). 
 

50. Let W = {a + bg1, 1 2

3 4

a a
a a
 
 
 

 a, b  Z+  {0},  

g1 = 
11 11
12 12
 
 
 

, 11, 12  Z22, ai = xi + yi g2 with xi, yi   
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Q+  {0} 1  i  4, g2 = 
7 8 7 8
8 7 8 7
 
 
 

, 7, 8  Z14} be a  

 
special set semivector space over the set S = 3Z+  5Z+  
{0} of special dual like numbers. 

 
(i) Find HomS(W, W). 
(ii) Find L(W, S). 
(iii) Can W have a basis? 
(iv) Write W as a pseudo direct sum of special set 

semivector subspaces of W over S. 
 

51. Let V = {(a1, a2, a3, a4), 
1 1 2 3

2 4 5 6

3 7 8 9

a a a a
a , a a a
a a a a

   
   
   
      

 ai = xi + yig  

 
xi, yi  R+  {0}, g = 4  Z6} 1  i  9}  and  

 

M = 

1

1 2 5 2 1 2

6 7 10 3

8

a
a a ... a a a a

, ,
a a ... a 0 a

a

  
                  


 ai = xi + yig,   

 
g = 4  Z6, xi, yi  Q+  {0}, 1  i  10} be special set 
semivector spaces of special dual like numbers over the 
set S = 3Z+  5Z+  {0}. 

 
(i) Find HomS(V, M). 
(ii) Study Hom (V, V) and Hom (M, M) and compare 

them. 
(iii) Study L(V, S) and L(M, S) and compare them. 
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52. Prove M = {A + Bg | A and B are m  n matrices with  
 

entries from Q and g = 

4 0 4 3
3 4 0 4
4 3 0 3
3 0 3 0

 
 
 
 
 
 

, 3, 4  Z6} and S  

 
= {(aij)m n where aij = cij + dij g where cij, dij Q; 1  i  m  
 

and 1  j  n , g = 

4 0 4 3
3 4 0 4
4 3 0 3
3 0 3 0

 
 
 
 
 
 

 3, 4  Z6} as general  

 
ring of special dual like numbers are isomorphic. 
 
(i) If M and S are taken as vector spaces of special 

dual like numbers over the field Q are they 
isomorphic? 

 
53. Is it possible to get any n-dimensional special dual like 

numbers; n arbitrarty positive integer? 
 
54. Find some special properties by n-dimensional special 

dual like numbers. 
 
55. What is the significance of using lattices in the 

construction of special dual like numbers? 
 
56. Give some applications of n-dimensional special dual like 

numbers? 
 
57. What is the advantage of using n-dimensional special dual 

like numbers instead of dual numbers? 
 
58. Prove C(g1, g2) = {a + bg1 + cg2 | a, b, c  C(complex 

numbers)  
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 g1, g2  L = 
 
 
 
 is a general ring of special dual like numbers of 

dimension  three. 
 
59. Study some special features enjoyed by C(g1, g2, …, gt) = 

{x1 + x2g1 + … + xt+1gt | xj  L; 1  j  t + 1. gk  L =   
 
 
  
        1  k  t} 
 
 
 
 
 
 
60. Study the 5  3 matrices with entries from C(g1, g2, g3, g4) 

where gi  L =  
 
        1  i  4,  
 
 
 
 
 
 
 
 
61. Obtain some interesting properties about lattice ring RL 

where L is a distributive lattice of finite order n and R a 







 g2 

0 

g1 

1 













1 

g1 

g2 

g3 
 

g4 

0 













1 

g1 

g2 

g3 
 

gt 

0 


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commutative ring with unit.  Show RL is a (n–1) special 
dual like number ring. 

 

62. Let ZL = i i
i

a a m





  a, ai  Z, mi  L =     

 
 
 
 
 
 
 1  i  8} be the lattice ring. 

(i) What is dimension of ZL as a special dual like 
number ring? 

(ii) Can ZL have ideals of lesser dimension? 
(iii) Can ZL have 4-dimension special dual like ring? 
(iv) Can ZL have zero divisor? 
(v) Is ZL an integral domain? 
 

63. Let Z84 be the ring of integers.  Find all idempotents of 
Z84.  Is that collection a semigroup under multiplication 
modulo 84? 

 
64. Give an example of a 8-dimensional general ring of 

special dual like numbers. 
 
65. Give an example of a 5-dimensional general semiring of 

special dual like numbers. 
 
66. Give an example of a finite 5- dimensional general ring of 

special dual like numbers. 
 
67. Is Z8 (g1, g2, g3, g4) = { a1 + a2g1 + a3g2 + a4g3 + a5g4 | ai  

Z8, 1  i  5, gj  L,    
 
 
 
 













1 

m1 

m2 

m3 
 

m8 

0 





Suggested Problems  217 
 
 
 
 
 
 
 
 
  
 
 
 
 1  j  4} a general 5-dimensional special dual like 

number ring? 
 
68. Let S = { a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 | ai  

Z25, 1  i  7, and     
 
 
 
  
         gj  L = 
 
 
 
 
 1  j  6} be the general seven dimensional special dual 

like number ring. 
 
(i) Find the number of elements in S. 
(ii) Can S have ideals which are 3-dimensional? 
(iii) Can S have 2- dimensional subring? 
(iv) Can S have zero divisors? 
(v) Can S have units? 

 
69. Let P = { a1 + a2g1 + a3g2 + a4g3 + a5g4  | ai  Z7, 1 i  5, 

g1 = (1, 0, 0, 0), g2 = (0, 1, 0, 0) g3 = (0, 0, 1, 0) and  
g4 = (0, 0, 0, 1)} be the special dual like number general 
ring. 
(i) Prove P is a S-ring. 
(ii) Can P have zero divisors? 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 

 g2 

1 

g1 







g3 

g4 

0 


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(iii) Give examples of subrings which are not ideals. 
 

70. Let M = { a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 | ai  Z3;  
 

1  i  3; g1 = 
3 0
0 4
0 0

 
 
 
  

, g2 =
4 0
0 3
0 0

 
 
 
  

 g3 = 
0 4
3 0
0 0

 
 
 
  

  

 

g4 = 
0 3
4 0
0 0

 
 
 
  

, g5 = 
0 0
0 0
4 3

 
 
 
  

 where 4, 3  Z6} be the special 

dual like number ring. 
 
(i) Find the number of elements in M 
(ii) Can M have zero divisors? 
(iii) Can a1+a2g1 (a1, a2  Z3 \ {0}) be an idempotent in 

M? 
(iv) Can  x in M have x–1 such that xx–1 = 1 (x  Z3) ? 
 

71. Let S = { a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 | ai   
 

Z+  {0}, 1  i  6, g1 = 

2
0
0
0

 
 
 
 
 
 

, g2 = 

2
2
0
0

 
 
 
 
 
 

, g3 = 

0
0
2
0

 
 
 
 
 
 

  

 

g4 = 

0
2
2
2

 
 
 
 
 
 

, g5 = 

0
0
0
2

 
 
 
 
 
 

; 2  Z4} be a general semiring of 

special dual like numbers. 
(i) Is S a S-semiring? 
(ii) Can S have zero divisors? 
(iii) Is S a semifield? 
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72. Let S = {a1 + a2g1 + a3g2 + a4g3 + a5g4 + a6g5 + a7g6 + a8g7 

| ai  Z+, 1  i  8; 
  

 g1  = 

1 0
0 0
0 0
0 0
0 0

 
 
 
 
 
 
  

, g2 = 

0 1
0 0
1 1
0 0
0 0

 
 
 
 
 
 
  

, g3 = 

0 0
1 0
0 0
1 0
0 0

 
 
 
 
 
 
  

 g4 = 

0 0
0 1
0 0
0 0
0 0

 
 
 
 
 
 
  

,  

 

 g5 = 

0 0
0 0
0 0
0 0
1 0

 
 
 
 
 
 
  

, g6 = 

0 0
0 0
0 0
0 0
0 1

 
 
 
 
 
 
  

 and g7 = 

0 0
0 0
0 0
0 1
0 0

 
 
 
 
 
 
  

  

  
 under natural product n, gi’s are idempotents and gj n gk  
 

 = 

0 0
0 0
0 0
0 0
0 0

 
 
 
 
 
 
  

 if j  k}  {0} be a general semiring of special  

 
 dual like numbers. 

(i) Is S a semifield? 
(ii) Can S have semiideals? 
(iii) Can S have subsemifields? 
(iv) Is S a S-semiring? 
 

73. Let P = i
i

i 0
a x








  ai = (0, 0, …, 1, 0, …, 0), a1 = (1, 0, … 

0) and a2 = (0, 1, 0, 0, …0) of 9 tuples} be the 
polynomials with idempotent coefficient  
(i) Prove (P, +) is not a semigroup. 
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(ii) Is (P, ) a semigroup? 
(iii) Can the semigroup (P, x) have ideals? 
(iv) Can P have zero divisors? 
 

74. Let S = 

1 2

3 4

5 6

7 8

g g
g g
g g
g g

 
 
    

 gi  {0, 3, 4}  Z6, 1  i  8} be a  

 
semigroup under natural product n. 
(i) Prove S is finite? 
(ii) Find ideals in S. 
(iii) Find zero divisors in S. 
(iv) Can S have subsemigroups which are not ideals? 

          
75. Let S = 

1 2 3 4 1 2 3 4 1 2 3 4
1 2

5 6 7 8 5 6 7 8 5 6 7 8

x x x x y y y y z z z z
g g

x x x x y y y y z z z z
            
     

             

 
1 2 3 4 1 2 3 4 1 2 3 4

3 4 5
5 6 7 8 5 6 7 8 5 6 7 8

c c c c a a a a d d d d
g g g

c c c c a a a a d d d d
     

      
     

  
ai, xj, yk, zp, ct, ds  Q+, 1  i, j, k, p, t, s,  8, gj  L where  
L is     

 
 
  
 
 
 
 
 
 
 
 
 















1 

g1 

g2 

g3 
 

g4 

g5 

0 
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          1  i  5}
0 0 0 0
0 0 0 0

   
  
   

be the semiring of special  

 
 dual like numbers. 
 

(i) Is S a semifield? 
(ii) Can S have subsemifields? 
(iii) Can S have zero divisors? 

 

76. Let M = 1 2 3 4

5 6 7 8

A A A A
A A A A

 
 
 

  

Ai = i i i
1 2 1 6 5x x g ... x g   ; 1  i  8, 1

jx   Q+, 1  j  6  
   and gk  L =       

 
 
 
 
 
 
 
 
 
 

 1  k  5}  
0 0 0 0
0 0 0 0

   
  
   

 be the general semiring  

 
 of special dual like numbers. 

(i) Is M a semifield? 
(ii) Can M have zero divisors? 
(iii) Is M a strict semiring? 
(iv) Can M be isomorphic to S given in problem (75) 

 
77. Show if idempotents are taken form distributive lattice of 

order 9 and if  
 S = {x1 + x2g1 + … + x9g7 | xi  Q; 1  i  8, gj  L, 1  j 

 7} be the general ring of special dual like numbers then 















1 

g1 

g2 

g3 
 

g4 

g5 

0 
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x  y under the operation  of gi and gj is different from x 
 y under the operation ‘’ of gi and gj. 

 
78. Verify problem 77 if Q is replaced by Q+  {0}.  
 
79. Obtain some interesting properties enjoyed by vector 

space of special dual like numbers over a field F. 

80. Let V = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

 ai = x1 + x2g1 + x3g2 + x4g3 + 

x5g4; 1  i  9; xj  Z11, 1  j  5 and      
 
 
 
 
     gk  L =   ; 1  k  4} 
 
 
 
 
 be a special vector space of dual like numbers over the 

field Z11. 
(i) Find the number of elements in V. 
(ii) What is the basis of V over Z11? 
(iii) Write V as a direct sum of subspaces. 
(iv) What is the algebraic structure enjoyed by 

11ZHom (V,V) ? 

(v) If T : V  V is such that T
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

  
  
  
    

 = 

2

1 3

4

0 a 0
a 0 a
0 a 0

 
 
 
  

; find the eigen values of T and eigen 

vectors of T. 
 













1 

g1 

g2 

g3 
 

g4 

0 
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81. Let V = 

1

2

8

a
a

a

 
 
    


 ai = x1 + x2g1 + x3g2 + x4g3 ; 1  i  8,  

 
xj   Q, g1 = (3, 0, 4), g2= (0, 3, 0) and g3 = (0, 4, 0); 3, 4 
 Z6, 1  j  4} be a special vector of special dual like 
numbers over the field Q. 
 
(i) Find a basis of V over Q. 
(ii) Write V as a pseudo direct sum. 

(iii) Suppose W1 = 

1

2

a
a

0

 
 
    


 ai = x1 + x2g1 + x3g2 + x4g3 ; 

1  i  2, g1 = (3 0 4), g2 (0 3 0), g3 = (0, 4, 0), 3, 4  
 

          Z6, 1  j  4}  V,  W2 = 

1

2

0
0
a
a
0
0
0
0

 
 
 
 
 
        

a1, a2   
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              Q(g1, g2)}  V, W3 = 
1

2

0
0
0
0
a
a
0
0

 
 
 
 
 
        

a1, a2  Q(g1, g2)}       

              

              V  and W4 = 

1

2

0
0
0
0
0
0
a
a

 
 
 
 
 
        

a1, a2  Q(g1, g2)}  V are  

 
subspaces of V.  Find projections E1, E2, E3 and E4 
of V on W1, W2, W3 and W4 respectively and show 
projection contribute to special dual like numbers. 
Verify spectral theorem E1, E2, E3 and E4 by  
suitable and appropriate operations on V. 
 

82. Let V = {(a1, a2, a3, a4) | ai  Q(g1, g2); 1  i  4,    
 
 
 
       g1, g2L= 
 
 
 
 







 g2 

0 

g1 

1 



Suggested Problems  225 
 
 
 be a Smarandache special vector space of special dual like 

numbers over the S-ring Q(g1, g2). 
(i) Find a basis of S over Q(g1, g2). 
(ii) Write S as a direct sum of subspaces. 
(iii) Find Hom(S, S). 
(iv) Find L(S, Q(g1, g2)). 
(v) Show eigen values can also be special dual like 

numbers. 
 

83. Let M = 1 2 6

7 8 12

a a ... a
a a ... a

 
 
 

 ai = x1 +x2g1 + x3g2 + x4g3  

  
 + x5g4 + x6g5 + x7g6, 1  i  12 ai  Z12(g1, g2, …, g6) 

where  
 
 
 
 
 
     gj  L= 
 
 
 
 
 be a Smarandache vector space of special dual like 

numbers over the S-ring; Z12 (g1, g2, …, g6), 
(i) Find the number of elements in M. 
(ii) Find a basis of M over Z12 (g1, …, g6).  
(iii) Write M as a direct sum. 
(iv) Find Hom (M, M). 
(v) Find L (M, Z12, (g1, g2, …, g6)). 

 
83. Let V = {(a1, a2, …, a7) | ai  Q+(g1, g2)  {0}, 1  i  7},  
 
 
 
 g1, g2  L= 
 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 







 g2 

0 

g1 

1 
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 be the special dual like number semivector space over the 

semifield Q+  {0}. 
(i) Find a basis of V over Q+  {0}. 
(ii) Study the algebraic structure enjoyed by  

Hom(V, V). 
(iii) Study the set L (V, Q+  {0}) if f : V  Q+  {0} 

is given by f (a1, a2, … a7) = 1 2 7
1 1 1(x x ... x )    

where ai = i i i
1 2 1 3 2x x g x g  ; 1  i  7.   

          Does  f  L (V, Q+  {0})? 
 

84. Let S = 

1 2

3 4

11 12

a a
a a

a a

 
 
    

 
 ai  Z+(g1, g2, …, g6), 1  i  12  

   
 
 
  
            , 
           gj  L= 
 
 
 
 
 1  j  6} be a strong special semibivector space of 

special dual like numbers over the semifield  
 Z+(g1, g2, …, g6)  {0}. 

(i) Find a basis of S over Z+(g1, g2, …, g6)  {0}. 
(ii) Find Hom(S, S).  For at least one T  Hom (S, S). 

find eigen values and eigen vectors associated with 
T. 

(iii) Write S as a direct sum of special semivector 
subspaces of special dual like numbers. 

(iv) Can S be made into a semilinear algebra by 
defining n, the natural product? 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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86. Let S = i
i

i 0
a x








  ai  Z7(g1, g2) where g1, g2  L    

 
 
 
 
 
 
 
  be a vector space special dual like numbers over the field 

Z7. 
(i) Find dimension of V over Z7. 
(ii) Can V be written as a direct sum? 
(iii) Find Hom(V,V). 
(iv) Study the structure of L(V, Z7). 
 

87. What happens if in problem (86) Z7 is replaced by the S-
ring, Z7(g1, g2), that is V is a Smarandache vector space of 
special dual like numbers over the S-ring Z7(g1, g2). 

 

88. Let P = i
i

i 0
a x








  ai  Q (g1, g2, …, g6) where gj  L = 

   
 
 
 
 
 
 
 
 
 1  j  6} be a special vector space of special dual like 

numbers over the field Q. 
(i) Find a basis of P over Q. 
(ii) What is the dimension of P over Q? 
(iii) Can P be a linear algebra ? 







 g1 

0 

g2 

1 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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89. Study P in problem 88 as a S-vector space of special dual 

like numbers over the S-ring Q(g1, g2, …, g6). 
 

90. Let S = i
i

i 0
a x








  ai  Q+(g1, g2)  {0}, g1, g2,  L = 

    
 
 
 
 
 
 
 
 be a semivector space of special dual like numbers over 

the semifield Q+  {0}. 
(i) Find a basis of V over S. 
(ii) Write S as a direct sum of semivector subspaces. 
(iii) If S is a linear algebra can S be written as a direct 

sum of semilinear algebras? 
(iv) Study the algebraic structure enjoyed by Hom(S, S). 
(v) Is Z20  I, a general neutrosophic ring of special 

dual like number? 
(vi) Characteristize some of the special features of 

special dual like numbers. 
 
93. Can Z56 have idempotents so that a + bg1, g1  Z56 \ {0, 1} 

is an idempotent contributing to special dual like 
numbers? 

 
94. Does Zn for any n have a subset S such that S is an 

idempotent semigroup of Zn? 
 
95. Find all the idempotent in Z48. 
 
96. Is 0, 16, 96, 160 and 225 alone are idempotents of Z240?  

Does S = {0, 16, 96, 160, 225}  Z240 form a semigroup? 







 g2 

0 

g1 

1 
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97. Let S = 1 2 3 4 5

6 7 8 9 10

a a a a a
a a a a a

 
 
 

 ai  P = {x1 + x2tg1 +  

 
x3g2 | xj  Q, 1  j  3, g1 = 4 and g2 = 9  Z12}, 1  i  
10} be a general vector  space of special dual like 
numbers over the field Q. 
(i) Find a basis of S over Q? 
(ii) What is the dimension of S over Q? 
(iii) Find Hom (S, S). 
(iv) Find eigen values and eigen vectors for some T  

Hom (S, S) such that T2= (0). 
(v) Write P as a direct sum of subspaces. 

 

98. Let M = 

1

2

3

4

a
a
a
a

 
 
    

 ai  R  I, 1  i  4} be a general  

vector space of neutrosophic special dual like numbers 
over the field R. 
(i) Find dimension of M over R. 
(ii) Find a basis of M over R. 
(iii) Find the algebraic structure enjoyed by Hom(M, 

M). 

(iv) If T : M  M be defined by T 

1

2

3

4

a
a
a
a

 
 
 
 
 
 

 = 

1

2

a
0
a
0

 
 
 
 
 
 

 find  

 
          eigen values and eigen vectors associated with T. 
 

99. Let S = i
i

i 0
a x








  ai  Z11  I, I2 = I} be the general ring  

 
of neutrosophic polynomial of special dual like numbers. 
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(i) Can S have zero divisors? 
(ii) Can S have units? 
(iii) Is S a Smarandache ring? 
(iv) Can S have ideals? 
(v) Can S have subrings which are not ideals? 
(vi) Can S have idempotents? 
 

100. Let P = i
i

i 0
a x








  ai  Z12  I, I2 = I} be the general ring  

 
of neutrosophic polynomial of special dual like numbers. 
 
(i) Prove P has zero divisors? 
(ii) Find ideals of P. 
(iii) Find subrings in P which are not ideals of P. 
(iv) Can P have idempotents? 
(v) Prove P is a S-ring. 
(vi) Does p(x) = x2 – (7+3I)x + 0 (5+3I) reducible in P? 

 

101. Let S = i
i

i 0
a x








  ai  R  I; I2 = I} be the general ring  

 
of neutrosophic polynomial of special dual like numbers. 

 
(i) Does S contain polynomials which are irreducible 

in S? 
(ii) Find the roots of the polynomial (3+4I)x3 + (5–3I)x2 

+ 7Ix – (8I – 4). 
 

(iii) Is T = i
i

i 0
a x








  ai  Z  I; I2 = I}  S an ideal of 

S? 
 

(iv) Can S have zero divisors? 
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102. Let  W = i

i
i 0

a x







  ai  Q  I; I2 = I} be the general  

 
ring of neutrosophic polynomial of special dual like 
numbers over the field Q. 
(i) Find subspaces of W. 
(ii) Is W infinite dimensional? 
(iii) Can linear functional from W to Q be defined? 
(iv) Can eigen values of any linear operator on T be a 

neutrosophic special dual like numbers? 
 
103. Let S = {(a1, a2, …, a10) | ai = x1 + x2g1 + x3g2 where 1  i 

 10, xj  Q  I; 1  j  3 g1 = 9 and g2 = 4  Z12} be 
the general neutrosophic ring of special dual like 
elements. 
(i) Find ideals of S. 
(ii) Prove S has zero divisors. 
(iii) Prove S has idempotents. 
(iv) Does S contain subrings which are not ideals? 

 

104. Let V = 
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a
a a a a a
a a a a a

 
 
 
  

 ai Q+I; 1  i  

  15} be a general vector space of neutrosophic semivector    
  space over the semiring S = Z+  I  {0}. 

(i) Find a basis of V over S. 
(ii) What is a dimension of V over S? 
(iii) Find Hom(V, V) = {T : V  V all semilinear 

operators on V} and the algebraic structure enjoyed 
by it. 

(iv) Can f : V  S be defined?  Find L (V,S). 
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105. Let W = 
1 2 3

4 5 6

7 8 9

a a a
a a a
a a a

 
 
 
  

  ai  Q+  {0}  I; 1  i  9}  

be a general semivector space of neutrosophic special 
dual like numbers over the semifield S = Z+{0} {I}. 
(i) Find dimension of W over S. 
(ii) Find the algebraic structure enjoyed by L(W,S). 
(iii) Can W be written as a direct sum of semivector 

subspaces? 
(iv) Is W a linear semialgebra on W by define usual  

product of matrices? 
 

106. Let W = 
1 2

3 4

5 6

a a
a a
a a

 
 
 
  

  ai = x1 + x2g1 + x3g2 + x4g3 + x5g4 +  

 
   x6g5 + x7g6 where xj  Q, 1  j  7 and   

 
 
 
 
     gp  L = 
 
 
 
 
 
 1  p  6} be the general vector space of special dual like 

numbers over the field Q. 
(i) Find dimension of S over Q. 
(ii) Find HomQ(S, S).  
(iii) Can a eigen value of T : S  S be special dual like 

numbers? 
 







 g4 

0 

g6 

g2 

g5 





 g3 g1 

1 
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107. Let M = {x0 +  x1g1 + x2g2 + x3g3 + x4g4 + x5g5 + x6g6 |  

xi  Q; 0  i  6 and g1 = (I, 0,0,0,0,0), g2 = (0, I,0,0,0,0) 
g3 = (0, 0,I,0,0,0), g4 = (0, 0,0,I,0,0) g5 = (0, 0,0,0,I,0) and 
g6 = (0,0,0,0,0,I) with I2 = I} be a general linear algebra of 
neutrosophic special dual like numbers over the field Q. 
(i) Find dimension of M over Q. 
(ii) Find a basis of M over Q. 
(iii) Write M as a pseudo direct sum of subspaces of M 

over Q. 
(iv) Find Hom(M, M). 
(v) Find L(M, Q). 

 
108. Find P = {x1 + x2g1 + x3g2 + x4g3 + x5g4 | xi  Z13; 1  i  

5, g1 = (I, 0, 0, 0), g2 = (0, I, 0, 0), g3 = (0, 0, I, 0) and g4 = 
(0, 0, 0, I)} be a general vector space of neutrosophic 
special dual like numbers over the field Z13. 
(i) Find the number of elements in P. 
(ii) Find dimension of P over Z13. 
(iii) Find a basis of P over Z13. 
(iv) Can P have more than one basis over Z13? 
(v) How many basis can P have over Z13? 
 

109. Let F = { Z37  I } be the general neutrosophic ring of 
special dual like numbers. 
(i) Find order of F. 
(ii) Is F a S-ring? 
(iii) Find ideals in F. 
(iv) Can F have subrings which are not ideals? 
(v) Can F have zero divisors? 
(vi) Can F have idmepotents other than I? 

 

110. Let A = 1 2 3 4

5 6 7 8

x x x x
x x x x

 
 
 

 xj = a1 + a2g1 + a3g2 + x4g3  

where ai  Q, 1  i  4, 1  j  8, g1 = 6, g2 = 9 and g3 = 4 
 Z12} be the general ring of mixed dual numbers. 
(i) Can A have zero divisors? 
(ii) Find idemponents in A? 
(iii) Prove A is a commutative ring. 
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111. Let A = 
1 2 10

11 12 20

21 22 30

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai   Z12  I ; 1  i  30,  

 
I2 = I} be the general neutrosophic matrix ring of special 
dual like numbers. 
(i) Find zero divisors of S. 
(ii) Can S have subrings which are not ideals? 
(iii) Find ideals of S. 
(iv) Can S have idempotents? 
(v) Does S contain Smarandache zero divisors? 
 

112. Let T = 

1

2

12

a
a

a

 
 
    


 ai  Z7  I; 1  i  12} be the general  

 
neutrosophic ring of special dual like numbers. 
(i) Find the numbers of elements in T. 
(ii) Can T have idemponents? 
(iii) Give some special features enjoyed by T. 
(iv) Does T contain Smarandache ideals? 
 

113. Let A = 1 2 15

16 17 30

a a ... a
a a ... a

 
 
 

 ai  (c, d] c, d  {x1 +  

 
x2g1 + x3g2 + x4g3 + x5g4 + x6g5 + x7g6 + x8g7 | xj  [0, 1], 
1  j  8, g1 = 16, g2 = 60, g3 = 96, g4 = 120, g5 = 160, g6 = 
180 and g7 = 225  Z240}, 1  i  30}  be a closed open 
interval fuzzy semigroup of mixed dual numbers under 
min. 
(i) Find zero divisors in M. 
(ii) Can M have idempotents? 
(iii) Can every elements in M be an idempotent? 
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(iv) Find ideals in M. 
(v) Can M have subsemigroup which are not ideals? 
 

114. Find some interesting properties associated with interval 
fuzzy semigroup of mixed dual numbers. 

 
115. Obtain some applications of interval fuzzy semigroups of 

special dual like numbers under min (or max operation). 
 
116. Let P = {x1 +x2g1 + x3g2 + … +x18g17 | xj  [0, 1], 1  j  

18, gp  L = chain lattice of order 19} be the general 
fuzzy semigroup of special dual like numbers under min 
operation. 
(i) Find fuzzy subsemigroups of P which are not fuzzy 

ideals. 
(ii) Find ideals in P. 
(iii) Under min operation can P have zero divisors? 
(iv) If max operation is performed on P can P have zero 

divisors? 
 

117. Obtain any interesting property / application enjoyed by 
general fuzzy semigroup of special dual like numbers. 

 Let M = {[a, b] | a, b  S = {x1 + x2g1 + x3g2 + x4g3 + x5g4 
where xi  Q+  {0}, 1  i  5, gp  L, L a chain lattice 
of order six, 1  p  4} be a general closed interval 
semivector space over the semifield T = Q+{0}. 
(i) Find a basis of M over T. 
(ii) Find Hom(M, M). 
(iii) Find L(M, T). 

 
118. Let V = {(a1, a2] | ai = x1 + x2g1 + x3g2 + x4g3; 1  i  2, xj 

 Z127, 1  j  4,   
 
 
            gp  L =    1  p  3} 
 
 
 
 











1 

g1 

g2 

g3 

0
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 be a general vector space over the field Z127 of special 

dual like numbers. 
 (i) Find a basis of V over over Z127. 
 (ii) Write V as a direct sum. 
 (iii) Find T : V  V so that T-1 does not exist. 
 (iv) How many elements does V contain? 
 (v) Find L(V, Z127). 
 

119. Is every ideal in P = i
i

i 0
a x








  ai  Z19  I } principal?  

Justify. 
 

120. Can S = i
i

i 0
a x








  a1 = xi +x2g1 + x3g2 + x4g3 + x5g4 + x6g5 

with xp  R, gj  L; 1  j  5, 1  p  6} have S-ideals? 
 

121. Let W = 

1 1

2 2

3 3

4 4

x y
x y

I
x y
x y

   
   
            

xi, yj  Q; 1  i, j  4} be the  

  
 neutrosophic general ring of special dual like numbers. 
 (i) Find ideals of W. 
 (ii) Does W contain S-subrings which are not ideals? 
 (iii) Can W have S-idempotents? 
 

122. Let P = 
1 2 5 1 2 5

6 7 10 6 7 10

11 12 15 11 12 15

x x ... x y y ... y
x x ... x y y ... y I
x x ... x y y ... y

   
      
      

 xi,  

 
 yi  R; 1  i, j  15} be a general neutrosophic ring of 

special dual like numbers. 
(i) Find ideals of P. 
(ii) Does P have S zero divisors? 
(iii) Prove P is isomorphc to  
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S = 
1 1 2 2 5 5

6 6 7 7 10 10

11 11 12 12 15 15

x y I x y I ... x y I
x y I x y I ... x y I
x y I x y I ... x y I

   
    
    

 where  

 
xi, yi  R, 1  i  15} as a ring of special dual like 
numbers. 

 

123.   Let R = i
i

i 0
a x








  ai  = 

1 1

9 9

x y I

x y I

 
 
 
  

 ; xi, yi  Q, 1  i  9}  

 
 be a general neutrosophic polynomial ring of special dual 

like numbers. 
(i) Prove R has zero divisors. 
(ii) Can R have S-zero divisors?  
(iii) Is R a S-ring? 
(iv) Can R have S-subrings which are not ideals? 

 

124. Let M = 
1 2 7

8 9 14

15 16 21

a a ... a
a a ... a
a a ... a

 
 
 
  

 ai   Q  I  1  i  21}  

 
 be a general vector space over Q of special neutrosophic 

dual like number over Q. 
(i) Find a basis of M over Q. 
(ii) Find subspaces of M so that M is a direct sum of 

subspaces. 
(iii) Find Hom(M,M). 
(iv) Find L(M, Q). 
(v) If Q is replaced  Q  I , M is a S-vector space find 

L (M, Q  I ). 
(vi) Find S-basis of M over Q  I. 

 
125. Obtain some special properties enjoyed by general vector 

spaces of special dual like numbers of n-dimension n > 2. 
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126. Obtain some special features enjoyed by general 

semilinear algebra of special dual like numbers of t-
dimension, t  3. 

 
127. Study problems (126) and (125) in case of mixed dual 

numbers of dimension > 2. 
 
128. Let S = Z8 (g1, g2, g3) = {x1 + x2g1 + x3g2 + x4g3 | xi  Z8, 

1  i  8, g1 = 6, g2 = 4 and g3 = 9  Z12}, study the 
algebraic structure enjoyed by S. 

 
129. Find the mixed dual number semigroup component of 

Z112. 
 
130. Study the mixed dual number semigroup component of 

Z352. 
 
131. Study the semigroup mixed dual number component of 

Z23p, where p is a prime. 
 
132. Study the semigroup mixed dual number of component of 

Z64m where m is a odd and not a prime. 
 
133. Compare problems (131) and (132) (that is the nature of 

the mixed semigroups). 
 
134. Study the general ring of mixed dual numbers of 

dimension 9. 
 
135. Can any other algebraic structure other than modulo 

integer Zn contribute to mixed dual numbers? 
 
136. Show we can have any desired dimensional general ring 

of special dual like numbers (semiring or vector space or 
semivector space). 

 
137. Obtain some special properties enjoyed by fuzzy 

semigroup of mixed dual numbers. 
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138. Let M = {x1 + x2g1 + … + x20g19 | xi  Z+  {0}; 1 i  20 

and gj  L a chain lattice of order 21, 1  j  19} be a 
semivector space over the semifield S = Z+  {0} of 
special dual like numbers. 
(i) Find a basis of M over S. 
(ii) What  is the dimension of M over S? 
(iii) Can M have more than one basis over S? 
(iv) Find Hom(M, M). 
(v) Find L(M, S). 

 
139.  Using the mixed dual number component semigroup of 

Z640 construct a general ring of mixed dual numbers with 
elements from Z3.  Study the properties of this ring. 

 
140. Give an example of a Smarandache general ring of mixed 

dual numbers. 
 
141. Study the properties of open-closed interval general ring 

of mixed dual numbers. 
 
142. Characterize all Zn which has mixed dual numbers 

semigroup component. 
 
143. Characterize those Zn which has idempotent semigroup. 
 
144. Characterize those Zn which has no idempotent (when n 

not a prime). 
 
145. Characterize those Zn which has no mixed dual number 

semigroup component (n not a prime n  2tp). 
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