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Abstract 

The Standard Model for particle physics (SM) is a nonlinear field theory in which both Yang-Mills and Higgs 

bosons are self-interacting objects. Their classical or quantum evolution is inevitably sensitive to the transition from 

order to chaos. With few noteworthy exceptions, the mainstream of theoretical particle physics has ignored the 

dynamical contribution of chaos in Quantum Field Theory. Here we point out that quantum corrections to the 

classical interaction of the Higgs with gauge bosons may lower the threshold for the onset of chaos and destabilize 

the vacuum in the low or intermediate TeV scale. The inability of the vacuum to survive in this energy region 

provides a straightforward solution for the fine-tuning problem. It also implies that perturbative estimates on 

vacuum stability well above the LHC scale are likely to be invalid.  
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1. Introduction and motivation  

By construction, the SM represents a nonlinear field theory in which Yang-Mills (YM) and 

Higgs bosons are self-interacting. Nonlinear dynamics of such objects is present at both classical 

and quantum levels. The chaotic attributes of YM fields have been known and studied since the 

beginning of the eighties. Chaos was first analyzed in the classical limit of the YM theory [1-3] 
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and it was shown to exist in both the continuum and lattice formulations of the theory. 

Particularly, for homogeneous gauge field configurations [4], it was found that spontaneous 

symmetry breaking triggers the transition to chaos (TC) with the rise of the energy density [5,6], 

whereas the dynamics of YM fields in the absence of spontaneous symmetry breaking remains 

chaotic at any density of energy [7]. The emergence of chaos in classical dynamics of the SU(2) 

x U(1) theory was numerically explored in [8]. Follow-up research was focused on understanding 

the TC in the semi-classical regime of quantum mechanics (QM) [9, 10] as well as in quantum 

field theory (QFT) [11, 12]. The investigation of chaos in classical gauge theory has later 

targeted on a number of specific problems. One of them was confirming the effect induced by 

the Higgs scalar on the chaotic dynamics of classical YM theory. It was shown that the Higgs 

scalar regularizes the dynamics of gauge fields at low energy densities [13]. It was also 

discovered that quantum fluctuations of gauge fields leading to symmetry breaking via the 

Coleman–Weinberg mechanism [14] tend to stabilize chaotic dynamics of spatially 

homogeneous systems of YM and Higgs fields at low energy densities [15]. The connection 

between the chaotic dynamics of a classical field theory and the instability of the one-loop 

effective action of the associated QFT was analyzed in [16].  

Surprisingly, except for isolated studies like the ones previously cited, mainstream theoretical 

models in particle physics have largely ignored the implications of chaos in QFT. The goal of 

our report is to contribute to a reversal of this trend.  We emphasize here that one-loop 

corrections to the classical interaction of the Higgs with W, Z bosons or photons are likely to 

lower the threshold for the TC and destabilize the vacuum in the low or intermediate TeV scale. 

By default, a rapidly decaying vacuum in this energy region offers straightforward explanations 

for the long-standing problems of fine-tuning and ultraviolet stability of the SM.  
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Our report is organized as follows: section two reviews the Higgs potential and the fine-tuning 

problem of the SM. Estimates on vacuum stability based on extrapolation of the SM near the 

Planck scale are briefly addressed in section three. Section four highlights details on the TC in 

the di-boson and di-photon Higgs channels. Implications for the fine-tuning problem and for the 

ultraviolet stability of the vacuum are elaborated upon in the last section.  

This work represents a continuation of several studies initiated by the author in [17-20]. It is 

preliminary in nature and calls out for further clarifications and revisions. Concurrent efforts may 

refute, amend or consolidate our findings.  

2. Stability of the Higgs potential and the fine-tuning problem 

Electroweak (EW) symmetry in the SM is broken by a scalar field having the following doublet 

structure [20]: 
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Here, G+ and 0G represent the charged and neutral Goldstone bosons arisen from spontaneous 

symmetry breaking, H is the SM Higgs boson, v ≈ ( ) 246EWO M GeV= is the Higgs vacuum 

expectation value (vev) and EWM stands for the EW scale. Symmetry breaking is caused by the 

Higgs potential, whose form satisfies the requirements of renormalizability and gauge-invariance 

 2 2( )V µ λ+ += Φ Φ+ Φ Φ  (2.2) 

with λ ≈ O(1) and 2µ ≈ 2( )EWO M . A vanishing quartic coupling ( 0λ = ) represents the critical 

value that separates the ordinary EW phase from an unphysical phase where the Higgs field 

assumes unbounded values. Likewise, the coefficient 2µ plays the role of an order parameter 
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whose sign describes the transition between a symmetric phase and a broken phase. Minimizing 

the Higgs potential yields a vev given by  

 
2

2v ( )µ
λ= −  (2.3) 

where the physical mass of the Higgs is  

 2 2 22 v 2HM λ µ= − =  (2.4) 

The renormalized mass squared of the Higgs scalar contains two contributions 

 2 2 2
0µ µ µ= + ∆  (2.5) 

in which 2
0µ  represents the ultraviolet (bare) value. This mass parameter picks up quantum 

corrections 2µ∆  that depend quadratically on the ultraviolet cutoff Λ  of the theory. Consider  

for example the contribution of radiative corrections to 2µ from top quarks. The complete one-

loop calculation of this contribution reads 
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in which tλ and tM  are the Yukawa coupling and mass of the top quark.  If the bare Higgs mass 

is set near the cutoff 2 2
0 ( )Oµ = Λ , then 2µ∆ ≈ 3510− GeV. This large correction must precisely 

cancel against 2
0µ  to protect the EW scale. This is the root cause of the fine-tuning problem, 

which boils down to the implausible requirement that 2
0µ  and 2µ∆ should offset each other to 

about 31 decimal places.    
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Closely related to the fine-tuning problem is the question of whether the SM remains valid all the 

way up to the Planck scale ( )PlM . This question is non-trivial because it depends on how the 

Higgs quartic coupling λ  behaves at high energy scales. Competing trends are at work here, 

namely [21, 22]: 

1) Radiative corrections from top quarks drop λ at higher scales, while those from the self-

interacting Higgs grow λ at higher scales. 

2) If λ is too large at the EW scale, the Higgs loops dominate and λ diverges at some 

intermediate scale called the Landau pole. However, if λ is too small at the EW scale, the 

top loops dominate, λ runs negative at some intermediate scale which, in turn, makes the 

potential unbounded from below and destabilizes the vacuum. 

3. Radiative corrections and vacuum stability  

Within the SM, the value of the physical Higgs mass HM ≈ 125 GeV hinted by recent LHC data 

falls at the border of vacuum stability which, in turn, implies a vanishing quartic coupling near 

the PlM  . A recent study [23] has undertaken a complete perturbative analysis on the vacuum 

stability, including the two-loop threshold correction to λ  at the EW scale due to QCD and top 

quark couplings. It led to a couple of outcomes: 

1) Vacuum instability develops around an RG scale of 1110crµ = GeV. 

2) Both parameters of the Higgs potential (2.2) assume near quasi-critical values about crµ  

 2µ << PlM ,  ( )crλ µ  ≈ 0 (3.1) 

It was concluded that 2) hints at the possibility that the SM behaves as a statistical system 

approaching criticality near crµ [23].  
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The next section attempts to refute this conclusion. We find that critical behavior and the 

approach to chaos in the SM are bound to occur at a scale significantly lower than crµ .  

4. Transition to chaos in Higgs interactions (to follow) 

4.1) Ref. [8]: 
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4.2) Ref. [16]: 
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4.3) Ref. [13-15] 
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Relation Context Critical energy density (GeV4) Critical energy(GeV) 

(4.1) classical YM-Higgs 1.529 x 108 O (102) 

(4.2) quantum M-Higgs 4.658 x 107 O (10) 
(4.3) quantum YM-Higgs 4.581 x 108 O (102) 

 

4. Conclusions and open issues (to follow) 

 

References (to follow) 


