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Abstract

The entropy and the interior volume of the Schwarzschild black hole is considered in
terms of Shannon’s mathematical theory of communication and van der Pauw’s theory
of sheet resistance-conductance.

1 Discrete binary signal space

In Shannon’s mathematical theory of communication, as presented in [1, 2], a discrete bi-
nary signal consists of a string of n binary samples (‘off’ or ‘on’ values). Each of the 2n

distinct signals form a distinct vector in an n dimensional flat space (signal space). Where
x1, x2, ..., xn are the n binary samples in an individual signal, the length of the signal vector
in the nD signal space is

d =

√√√√ n∑
m=1

x2
m. (1)

Note that the signal space is not quite the same as the familiar state space from quantum
field theory: Although there is a one-to-one mapping between the 2n discrete binary signals
and the 2n states (both are effectively defined by the same data – the samples – and as such
are effectively the same thing), each state would instead be represented by a distinct unit
length vector in a flat space of 2n dimensions (the state vectors, altogether, would form the
set of 2n orthonormal basis vectors for the state space).

In this paper we will assume that ‘on’ ≡ ‘1’. As for the numerical value corresponding
to ‘off’, we have to make a choice between ‘0’ and ‘-1’:

1. If ‘off’ ≡ ‘0’, then the lengths of the signal vectors can be any one of
√

0,
√

1,
√

2, ...,
√
n.

The distribution of the 2n signal vector lengths is given by the binomial coefficient “n
choose k”, where k is the number of ‘on’ samples per signal (or equivalently, the number
of ‘off’ samples per signal, due to a symmetry of the distribution). For large n, this
signal vector length distribution can be reasonably approximated via the continuous
normal distribution, which is much more computationally efficient.
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2. Otherwise, if ‘off’ ≡ ‘−1’, then the lengths of the signal vectors are always d ≡
√
n. In

this case, the tips of all of the 2n signal vectors are constrained to a single (n−1)D shell
in the nD signal space. Altogether, the 2n signal vectors form a perfect binary tree in
the nD signal space, where a branching in the signal tree occurs once per dimension.

In this paper we will assume that ‘off’ ≡ ‘−1’.
In Shannon’s theory, the value n ≡ d2 is a measure of power. This paper will use

geometrized units, where c ≡ G ≡ h̄ ≡ kb ≡ 1, and so measures of power are dimensionless
(units of length / length). Incidentally, measures of electric potential are also dimensionless
(units of length / length).

2 van der Pauw sheet resistance-conductance

The event horizon radius and event horizon area of a Schwarzschild black hole [3] is

Rs = 2Ebh, (2)

A = 4πR2
s . (3)

The binary entropy of a Schwarzschild black hole is

S =
A

4h̄ ln 2
=

πR2
s

h̄ ln 2
=

4πE2
bh

h̄ ln 2
. (4)

The Bekenstein-Hawking temperature of a Schwarzschild black hole is

T =
h̄

8πEbh

. (5)

Note that even though the value of h̄ is set to unity, it is still a dimensionful constant (units
of length2) and so it has been explictly written out in the equations in order to make the
dimension (or lack thereof) of each equation clear.

What may or may not be immediately obvious about the entropy and temperature equa-
tions is that:

1. The event horizon is a two-dimensional sheet.

2. The entropy is dimensionless (units of length2 / length2), which is dimensionally equiv-
alent to resistance-conductance (both also have units of length2 / length2).

3. The factor π/ ln 2 is van der Pauw’s constant from his theory of sheet resistance-
conductance, and so the entropy is similar to resistance-conductance in terms of how
to calculate the numerical magnitude.

As such, we have a choice to make as to whether we shall interpret the entropy to be a
measure of sheet resistance or a measure of sheet conductance. Given that an increase in
conductance is generally related to a decrease in temperature, it seems more likely that the
entropy is a measure of sheet conductance.
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Assuming that n ≡ S, the signal shell ‘radius’ d ≡
√
n is related to the event horizon

radius and the van der Pauw constant by

d = Rs

√
α/h̄. (6)

An individual signal is related to the black hole energy and the van der Pauw constant by a
dimensionless integer constant (units of length3 / length3)

h̄(x2
1 + x2

2 + x2
3 + ...+ x2

n)

αE2
bh

= 4, (7)

which may or may not be related to the dimension of (3 + 1)D spacetime. As such, it is
possible that the geometry of the signal space may be related to the geometry of spacetime,
as least as far as the coordinate radius Rs is concerned, and at most as far as the dimension
of spacetime itself is concerned.

Altogether, if the interpretation of the units and the numerical magnitude of the entropy
given here is correct, then even a Schwarzschild black hole – with zero net electric charge –
possesses an electrical property such as conductance.

Some discussion on black hole superconductivity and temperature can be found in [5, 6].
Some discussion of thermodynamic models of gravity can be found in [7, 8, 9, 10, 11]. Some
discussion of the relation between Shannon’s theory and quantum measurement/uncertainty
can be found in [2, 12, 13], which were the direct inspiration for considering the possible
relation between Shannon’s theory, sheet resistance-conductance, and black holes.

3 Finite volume and volume derivative of the black

hole interior

In Shannon’s theory, it is often noted that as the dimension n of signal space increases, the
majority of the volume of the space becomes more and more distributed toward the (n−1)D
shell at ‘radius’ d =

√
n in an exponentially increasing way. This can be stated generically

in terms of the volume ratio
Vol(n, r)

Vol(n, r
2
)

= 2n. (8)

For instance: Where n = 2, the ‘volume’ ratio for a 2D disk of radius r = 1 and a 2D disk
of radius r = 1/2 is 22 = 4. Where n = 3, the ratio is 23 = 8. Where n = 4, the ratio is
24 = 16. As such, as the dimension increases, the majority of the volume becomes more and
more distributed toward the (n − 1)D shell at radius r = 1 in an exponentially increasing
way. This is also reflected by the fact that the volume equation is proportional to rn, and
that its derivative with respect to r is proportional to rn−1. Where z is a positive integer,
the factorial is

z! =

{
1, z = 0∏z

m=1 m, z > 0
. (9)

For large z, the factorial can be reasonably approximated via Stirling’s approximation, which
is much more computationally efficient. The Gamma function is

Γ(z) = (z − 1)!. (10)
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For half-integers, the Gamma function is

Γ1/2(z + 1/2) =
√
π

(2z)!

z!4z
. (11)

The volume of an zD ball of radius r is proportional to rz

Vol(z, r) =

{
πz/2rz

Γ(z/2+1)
, z mod 2 = 0

πz/2rz

Γ1/2([z+1]/2)
, z mod 2 = 1

, (12)

and the derivative of the volume with respect to r is proportional to rz−1

dVol(z, r)

dr
= Vol(z, r)

z

r
. (13)

In the previous section, we highlighted the possibility that the coordinate radius Rs in
spacetime is related to the coordinate ‘radius’ d in signal space. In this section, we will
consider the possibility that the volume (and/or the derivative of the volume) of the black
hole interior is also related to the signal space.

For instance, in the paper [14], an effectively time-independent total interior volume of
(4/3)πR3

s is calculated (also see [15]). If we wish to use this calculation as a starting point,
then at most the signal space would only affect the derivative of the volume. For instance,
where z = n and r ≤ Rs

Volbh(r) =
4

3
πR3

s

Vol(n, d[r/Rs])

Vol(n, d)
. (14)

For n = 3, the volume derivative would be the same as flat 3D space – the volume ratio
from Eq. (8) holds as Volbh(Rs)/Volbh(Rs/2) = 23. On the other hand, for n = 1 and n = 2
the volume would contract near the centre of the black hole – the volume ratio would be
Volbh(Rs)/Volbh(Rs/2) < 23. For n ≥ 4 the volume would instead contract near the event
horizon – the volume ratio would be Volbh(Rs)/Volbh(Rs/2) > 23. As such, for n ≥ 4, the
contraction of space near the event horizon would accelerate anything within the black hole
toward the event horizon, somewhat like how the contraction of space near the event horizon
in the black hole exterior causes anything outside of the black hole to accelerate toward the
event horizon. We take this to mean that for n ≥ 4 that all of the black hole’s ‘matter’ would
not reside at a singularity at the centre of the black hole, but rather at the event horizon.
As for n ≤ 3, the ‘matter’ may very well reside at the centre of the black hole, but at least
both the volume and the volume derivative are always finite – no central singularity arises.
Similarly, we could consider the possibility that the state space affects the derivative of the
volume. For instance, where z = 2n and r ≤ Rs

Volbh(r) =
4

3
πR3

s

Vol(2n, r/Rs)

Vol(2n, 1)
, (15)

which would simply serve to increase the degree of the contraction of space near the event
horizon much more rapidly than the case where z = n.
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If we do not wish to use the calculation from [14] as a starting point, then the signal
space would affect not only the volume derivative, but also the volume itself. For instance,
where z = n and r ≤ Rs

Volbh(r) = Vol(n, d[r/Rs]). (16)

Similarly, for state space, where z = 2n and r ≤ Rs

Volbh(r) = Vol(2n, r/Rs). (17)

In this case where z = 2n, the total interior volume of the black hole all but vanishes as 2n

increases toward infinity (the black hole would be hollow, though not quite in the same way
as presented in [16]).

In any case under consideration, both the volume and the volume derivative of the black
hole interior are always finite – no central singularity arises. In most cases (where z ≥ 3), it
is found that the black hole’s ‘matter’ would reside not at the centre of the black hole, but
rather at the event horizon of the black hole. In any case, where z is taken to be an integer,
we find that the volume (and/or the volume derivative) is quantized. At the very least, the
possibility that the geometry of the signal (or state) space may be related to the geometry
of spacetime, as far as the volume and the volume derivative of the black hole interior is
concerned, leads to black hole interior solutions that do not suffer from the singularities that
afflict standard general relativity.
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