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Abstract. We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕
(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum
field theory. The problem of the basis rotations and that of the selection of phases in the Dirac-
like and Majorana-like field operators are considered. The discrete symmetries properties (P, C,
T) are studied. The corresponding dynamical equations are presented. In the (1/2,0)⊕ (0,1/2)
representation they obey the Dirac-like equation with eight components, which has been first
introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown
by Ziino). The particular attention has been paid to the questions of chirality and helicity (two
concepts which are frequently confused in the literature) for Dirac and Majorana states. We further
review several experimental consequences which follow from the previous works of M.Kirchbach
et al. on neutrinoless double beta decay, and G.J.Ni et al. on meson lifetimes.
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I. MAJORANA-LIKE SPINORS.

During the 20th century various authors introduced self/anti-self charge-conjugate 4-
spinors (including in the momentum representation), see, e. g., [1, 2, 3, 4]. Later, these
spinors have been studied in Refs. [5, 6, 7, 8, 9]. The authros found corresponding
dynamical equations, gauge transformations and other specific features of them. On
using C = −eiθ γ2K , the anti-linear operator of charge conjugation (K is the com-
plex conjugation operator) we define the self/anti-self charge-conjugate 4-spinors in the
momentum space Cλ S,A(p) = ±λ S,A(p) , CρS,A(p) = ±ρS,A(p). The Wigner matrix is
Θ[1/2] =−iσ2 , and φL, φR can be boosted with ΛL,R matrices.

Such definitions of 4-spinors differ, of course, from the original Majorana definition
in the x-representation ν(x) = 1√

2
(ΨD(x) + Ψc

D(x)), Cν(x) = ν(x) that represents the
positive real C− parity only. However, see [8], “for imaginary C parities, the neutrino
mass can drop out from the single β decay trace and reappear in 0νββ , a curious
and in principle experimentally testable signature for a non-trivial impact of Majorana
framework in experiments with polarized sources."

The rest λ and ρ spinors can be defined in analogious way with the Dirac spinors:
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Thus, in this basis with the appropriate normalization (“mass dimension") the ex-
plicite forms of the 4-spinors of the second kind λ

S,A
↑↓ (p) and ρ
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As claimed in [4], λ and ρ 4-spinors are not the eigenspinors of the helicity. Moreover,
λ and ρ are NOT the eigenspinors of the parity, as opposed to the Dirac case (P = γ0R,
where R = (x→−x)). The indices ↑↓ should be referred to the chiral helicity quantum
number introduced in the 60s, η = −γ5h, Ref. [10]. The normalizations of the spinors
λ

S,A
↑↓ (p) and ρ

S,A
↑↓ (p) have been given in the previous works.

The dynamical coordinate-space equations are:1

iγµ
∂µλ

S(x)−mρ
A(x) = 0 , iγµ

∂µρ
A(x)−mλ

S(x) = 0 , (7)

iγµ
∂µλ

A(x)+mρ
S(x) = 0 , iγµ

∂µρ
S(x)+mλ

A(x) = 0 . (8)

These are NOT the Dirac equation. However, they can be written in the 8-component
form. One can also re-write the equations into the two-component form. Thus, one
obtains the equations of Ref. [11] equations. Similar formulations have been presented
by M. Markov [12], and by A. Barut and G. Ziino [3]. The group-theoretical basis for
such doubling has been given in the papers by Gelfand, Tsetlin and Sokolik [13], who
first presented the theory in the 2-dimensional representation of the inversion group in
1956 (later called as “the Bargmann-Wightman-Wigner-type quantum field theory" in
1993).

1 Of course, the signs at the mass terms depend on, how do we associate the positive- or negative-
frequency solutions with λ and ρ .



The Lagrangian is
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The connection with the Dirac spinors has been found [6, 8]. We can see that the two
sets are connnected by the unitary transformations, and this represents itself the rotation
of the spin-parity basis.

It was shown [6] that the covariant derivative (and, hence, the interaction) can be
introduced in this construct in the following way ∂µ → ∇µ = ∂µ − igŁ5Aµ , where Ł5 =
diag(γ5 − γ5), the 8×8 matrix. In other words, with respect to the transformations

λ
′(x)→ (cosα− iγ5 sinα)λ (x) , λ

′
(x)→ λ (x)(cosα− iγ5 sinα) , (10)

ρ
′(x)→ (cosα + iγ5 sinα)ρ(x) , ρ

′(x)→ ρ(x)(cosα + iγ5 sinα) (11)

the spinors retain their properties to be self/anti-self charge conjugate spinors and the
proposed Lagrangian [6] remains to be invariant. This tells us that while self/anti-self
charge conjugate states have zero eigenvalues of the ordinary (scalar) charge operator
but they can possess the axial charge (cf. with the discussion of [3] and the old idea of
R. E. Marshak – they claimed the same).

Next, due to the fact that the transformations
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with the 2× 2 matrix Ξ defined in Ref. [4], ΞΛR,L(p← 0)Ξ−1 = Λ∗R,L(p← 0) , and
corresponding transformations for λ A, do not change the properties of bispinors to be
in the self/anti-self charge-conjugate spaces, the Majorana-like field operator (b† ≡ a†)
admits additional phase (and, in general, normalization) transformations νML ′(xµ) =
[c0 + i(τ · c)]νML †(xµ), where cα are arbitrary parameters. The τ matrices are defined
over the field of 2×2 matrices. One can parametrize c0 = cosφ and c = nsinφ and, thus,
define the SU(2) group of phase transformations. One can select the Lagrangian which
is composed from the both field operators (with λ spinors and ρ spinors) and which
remains to be invariant with respect to this kind of transformations. The conclusion is:
it is permitted the non-Abelian construct which is based on the spinors of the Lorentz
group only (cf. with the old ideas of T. W. Kibble and R. Utiyama) .

The Dirac-like and Majorana-like field operators can be built from both λ S,A(p) and
ρS,A(p), or their combinations. It is interesting to note that

[
ν

ML
(xµ)±Cν

ML†
(xµ)

]
/2

lead naturally to the Ziino-Barut scheme of massive chiral fields, Ref. [3], if the former
are composed from λ S,A spinors. Recently, the interest to these models raised again [9,
15].



II. CHIRALITY AND HELICITY.

Ahluwalia [4] claimed "Incompatibility of Self-Charge Conjugation with Helicity
Eignestates and Gauge Interactions". I showed that the gauge interactions of λ and ρ 4-
spinors are different. As for the self/anti-self charge-conjugate states and their relations
to helicity eigenstates the question is much more difficult, see below. Either we should
accept that the rotations would have physical significance, or, due to some reasons, we
should not apply the equivalence transformation to the discrete symmetry operators.
As far as I understood [4] paper, the latter standpoint is precisely his standpoint. He
claimed [4]: “Just as the operator of parity in the ( j,0)⊕ (0, j) representation space is
independent of which wave equation is under study, similarly the operations of charge
conjugation and time reversal do not depend on a specific wave equation. Within the
context of the logical framework of the present paper, without this being true we would
not even know how to define self-/anti self conjugate ( j,0)⊕ (0, j) spinors."

Z.-Q. Shi and G. J. Ni promote a very extreme standpoint. Namely, “‘the spin states,
the helicity states and the chirality states of fermions in Relativistic Quantum Mechanics
... are entirely different: a spin state is helicity degenerate; a helicity state can be
expanded as linear combination of the chirality states; the polarization of fermions in
flight must be described by the helicity states" (see also his Conclusion Section [16]).
In fact, they showed experimental consequences of their statement: “the lifetime of
RH polarized fermions is always greater than of LH ones with the same speed in
flight". However, we showed that the helicity, chiral helicity and chirality operators are
connected by the unitary transformations. Do rotations have physical significance in
their opinion?

M. Markov wrote long ago [12] two Dirac equations with opposite signs at the mass
term

[
iγµ∂µ −m

]
Ψ1(x) = 0,

[
iγµ∂µ +m

]
Ψ2(x) = 0. In fact, he studied all properties

of this relativistic quantum model (while he did not know yet the quantum field theory
in 1937). Next, he added and subtracted these equations. What did he obtain?

iγµ
∂µ χ(x)−mη(x) = 0 , iγµ

∂µη(x)−mχ(x) = 0 , (14)

thus, χ and η solutions can be presented as some superpositions of the Dirac 4-spinors
u− and v−. These equations, of course, can be identified with the equations for λ

and ρ we presented above. As he wrote himself he was expecting “new physics"
from these equations. Sen Gupta [10] and others claimed that the solutions of the
equation (which follows from the general Sakurai method of derivation of relativis-
tic quantum equations and it may describe both massive and massless m1 = ±m2
states)

[
iγµ∂µ −m1−m2γ5]Ψ = 0 are not the eigenstates of chiral [helicity] operator

γ0(γ ·p)/p in the massless limit. However, in the massive case the above equation has
been obtained by the equivalence transformation of γ matrices. Barut and Ziino [3]
proposed yet another model. They considered γ5 operator as the operator of charge-
conjugation. Thus, the charge-conjugated Dirac equation has the different sign com-
paring with the ordinary formulation [iγµ∂µ + m]Ψc

BZ = 0, and the so-defined charge
conjugation applies to the whole system, fermions+electromagnetic field, e→−e in the
covariant derivative. The concept of the doubling of the Fock space has been developed
in Ziino works (cf. [13, 17]). In their case, see above, their charge conjugate states are at



the same time the eigenstates of the chirality.

Let us analize the above statements. The helicity operator is ĥ = 1
2
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)
.

However, we can do the equivalence transformation of the helicity ĥ-operator by the
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Then, applying other unitary matrix U3:1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 1
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we transform to the basis, where helicity is equal (within the factor 1
2 ) to γ5, the chirality

operator.
The author of [10] and others introduced the chiral helicity η = −γ5h, which is

equal (within the sign and the factor 1
2 ) to the well-known matrix α multiplied by n.

Again, U1(α ·n)U−1
1 = α3|n| , with the same matrix U1. And applying the second unitary

transformation:

U2α3U†
2 =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

α3

1 0 0 0
0 0 0 1
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we again come to the γ5 matrix. The determinats are: DetU1 = 1 6= 0, DetU2,3 =−1 6= 0.
Thus, helicity, chirality and chiral helicity are connected by the unitary transformations.

It is not surprising to have such a situation because the different helicity 2-
spinors can be also connected not only by the anti-linear transformation [14, 4]
ξh = (−1)1/2+heiαhΘ[1/2]K ξ−h, but the unitary transformation too. For instance, when
we parametrize the 2-spinors as in [19] we obtain

ξ↓ = Uξ↑ = ei(β−α)
(

0 e−iφ

−eiφ 0

)
ξ↑, ξ↑ = U†

ξ↓ = ei(α−β )
(

0 −e−iφ

eiφ 0

)
ξ↓ . (18)

To say that the 4-spinor is the eigenspinor of the chiral helicity, and, at the same time,
it is not! the eigenspinor of the helicity operator (and that the physical results would
depend on this) signifies the same as to say that rotations have physical significance on
the fundamental level.

III. CHARGE CONJUGATION AND PARITY FOR S = 1.

Several formalisms have been used for higher spin fields, e. g., [20, 21]. The 2(2S + 1)
formalism gives the equations which are in some sense on an equal footing with the



Dirac equation. For instance, for the spin-1 field the equation is [γµν pµ pν −m2]Ψ(x) =
0 , with the γµν being the 6x6 covariantly-defined matrices. However, it was argued later
that the signs before the mass terms should be opposite for charged particles of positive-
and negative- frequencies [22, 23]: [γµν pµ pν − ( i∂/∂ t

E )m2]Ψ(x) = 0 . Hence, Ahluwalia
et al. write: "The charge conjugation operation C must be carried through with a little
greater care for bosons than for fermions within [this] framework because of ℘u,v =±1
factor in the mass term. For the (1,0)⊕ (0,1) case, at the classical level we want

C :
(
γµν Dµ

+ Dν
+ + m2) u(x) = 0 →

(
γµν Dµ

−Dν
− − m2) v(x) = 0, (19)

where the local U(1) gauge covariant derivatives are defined as: Dµ

+ = ∂ µ +
iqAµ(x) , Dµ

− = ∂ µ − iqAµ(x)", Ref. [23].
"These results read [Ref. [4]]:

Sc
[1] = eiϑ c

[1]

(
0 Θ[1]
−Θ[1] 0

)
K ≡ C[1] K , Ss

[1] = eiϑ s
[1]

(
0 13
13 0

)
= eiϑ s

[1] γ00 . (20)

Note that neither Sc
[1/2] nor Sc

[1] are unitary (or even linear)." Θ[1] is the 3x3 representation
of the Θ[1/2] =−iσ2.

"For spin-1 ... the requirement of self/anti-self charge conjugacy cannot be satisfied.
That is, there does not exist a ζ [the phase factors between right- and left- 3-"spinors"]
that can satisfy the spin-1 ... requirement" Sc

[1] λ (pµ) = ±λ (pµ) , Sc
[1] ρ(pµ) =

±ρ(pµ)" (?). This is due to the fact that C2 = −1 within this definition of the charge
conjugation operator. "We find, however, that the requirement of self/anti-self conjugacy
under charge conjugation can be replaced by the requirement of self/anti-self conjugacy
under the operation of Γ5 Sc

[1] [precisely, which was used by Weinberg in Ref. [21] due
to the different choice of the equation for the negative-frequency 6-"bispinors"], where
Γ5 is the chirality operator for the (1, 0)⊕ (0, 1) representation space...

The requirement
[
Γ5 Sc

[1]

]
λ (pµ) = ±λ (pµ) ,

[
Γ5 Sc

[1]

]
ρ(pµ) = ±ρ(pµ) deter-

mines ζ S
λ

= +1 = ζ S
ρ for the self

[
Γ5 Sc

[1]

]
-conjugate spinors λ S(pµ) and ρS(pµ); and

ζ A
λ

= −1 = ζ A
ρ for the anti-self

[
Γ5 Sc

[1]

]
-conjugate spinors λ A(pµ) and ρA(pµ)".

The covariant equations for λ− and ρ− objects in the (1,0)⊕ (0,1) representation
have been obtained in Ref. [6]. under the certain choice of the phase factors in the
definition of left- and right- 3-objects.

On the quantum-field level we have to introduce the unitary operators for the charge
conjugation and the parity in the Fock space Uc

[S]Ψ[S](xµ)(Uc
[S])
−1 = C[S]Ψ

†
[S](x

µ),

U s
[S]Ψ[S](xµ)(U s

[S])
−1 = γ0Ψ[S](x′

µ

). For the spin S = 1/2 they can be find in the
well-known textbooks [25].

R. da Rocha et al. write [15]: "Now let one denotes the eigenspinors of the Dirac
operator for particles and antiparticles respectively by u±(p) and v±(p). The subindex
± regards the eigenvalues of the helicity operator (σ · p̂). The parity operator acts as
Pu±(p) = +u±(p), Pv±(p) = −v±(p), which implies that P2 = 1 in this case. The
action of C on these spinors is given [in textbooks [25]], which implies that {C,P}= 0,
[anticommutator].



On the another hand the parity operator P acts on ELKO by Pλ S
∓,±(p) =± iλ A

±,∓(p),
Pλ A
∓,±(p) = ∓ iλ S

±,∓(p), and it follows that [C,P] = 0 [when acting on the Majorana-
like states]." In the previous works of the 50s-60s, Ref. [26] it is this case which has
been attributed to the Q = 0 eigenvalues (the truly neutral particles). You may compare
these results with those of Refs. [4, 7, 27], where the same statements have been done
on the quantum-field level even at the earlier time comparing with [15]. The notation
for the 4-spinors used in the cited papers is a bit different. The acronym "ELKO" is
(almost) the synonym for the self/anti-self charge conjugated states (the Majorana-like
spinors). So, why the difference appeared in the da Rocha formulas comparing with my
previous results on the classical level? In my papers, see, e.g., Ref. [6, 7, 27], I presented
the explicite forms of the λ− and ρ− 2-spinors in the basis Ŝ3ξ (0) = ±1

2ξ (0). The
corresponding properties with respect to the parity (on the classical level) are different:

γ
0
λ

S
↑↓(pµ ′) =±iλ S

↓↑(pµ), γ
0
λ

A
↑↓(pµ ′) =∓iλ A

↓↑(pµ). (21)

It is easy to find the correspondence between "the new notation", Refs. [30, 15] and
the previous one. Namely, λ

S,A
↑ → λ

S,A
−,+, λ

S,A
↓ → λ

S,A
+,−. However, the difference is also

in the choice of the basis for the 2-spinors (!). As in Ref. [24], Ahluwalia, Grumiller
and da Rocha have chosen the well-known helicity basis (cf. [28, 19]). In my work of
2002 (published in 2004) I have shown that the helicity-basis 4-spinors satisfies the same
Dirac equation, the parity matrix can be defined in the similar fashion as in the spinorial
basis (according to the Itzykson-Zuber textbook [25]), but the helicity-basis 4-spinors
are not the eigenspinors of the parity (in full accordance with the claims made in the 4th
volume of the Landau course of theoretical physics and with the fact that [ĥ, P̂]+ = 0,
Ref. [29]). In this basis, the parity transformation (θ → π −θ , φ → π + φ ) lead to the
properties:

Rφ
−
L (0) = −iei(θ2−θ1)φ+

L (0) , Rφ
+
L (0) =−iei(θ1−θ2)φ−L (0), (22)

RΘ(φ−L (0))∗ = −ie−2iθ2φ
−
L (0) , RΘ(φ+

L (0))∗ = +ie−2iθ1φ
+
L (0). (23)

This opposes to the spinorial basis, where, for instance: Rφ
±
L (0) = φ

±
L (0). Further

calculations are straightforward, and, indeed, they can lead to [C,P]− = 0 when acting
on the "ELKO" states, due to [C,γ5]+ = 0.

In the (1,0)⊕ (0,1) representation the situation is similar. If we would like to extend
the Nigam-Foldy conclusion, Ref. [26] (about [C,P]− = 0 corresponds to the neutral
particles even in the higher spin case (?)) then we should use the helicity basis on
the classical level. However, on the level of the quantum-field theory (the “secondary"
quantization) the situation is self-consistent. As shown in 1997, Ref. [7, 27], we can
obtain easily both cases (commutation and anti-commutation) on using λ S,A 4-spinors,
which have been used earlier (in the basis column(1 0) column(0 1)).

IV. CONCLUSIONS.

We presented a review of the formalism for the momentum-space Majorana-like parti-
cles in the (S,0)⊕(0,S) representation of the Lorentz Group. The λ and ρ 4-spinors sat-
isfy the 8- component analogue of the Dirac equation. Apart, they have different gauge



transformations comparing with the usual Dirac 4-spinors. Their helicity, chirality and
chiral helicity properties have been investigated in detail. These operators are connected
by the given unitary transformations. At the same time, we showed that the Majorana-
like 4-spinors can be obtained by the rotation of the spin-parity basis. Meanwhile, several
authors have claimed that the physical results would be different on using calculations
with these Majorana-like spinors. Thus, the (S,0)⊕ (0,S) representation space (even in
the case of S = 1/2) has additional mathematical structures leading to deep physical con-
sequences, which have not yet been explored before. However, several claims made by
other researchers concerning with chirality, helicity, chiral helicity should not be consid-
ered to be true until the time when experiments confirm them. Usually, it is considered
that the rotations (unitary transformations) have no any physical consequences on the
level of the Lorentz-covariant theories.

Next, we discussed the [C,P]±= 0 dilemma for neutral and charged particles on using
the analysis of the basis rotations and phases.
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