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Abstract

A new unifying theory was recently proposed in the publication Arrange-
ment field theory - beyond strings and loop gravity -[3]. Such theory describes
all fields (gravitational, gauge and matter fields) as entries in a matricial su-
perfield which transforms in the adjoint representation of Sp(12,C'). In this
paper we show how this superfield is built and we introduce a new mechanism

of symmetry breaking which doesn’t need Higgs bosons.
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1 Introduction

A new unifying theory was recently proposed in the publication Arrangement field
theory - beyond strings and loop gravity -, edited by LAMBERT Academic Publishing|[3].

Such theory describes gravitational, gauge and matter fields by means of prob-
abilistic spin-networks, ie collections of vertices and edges where the existence of
any edge is regulated by a quantum amplitude. The best result of this approach is
the manifestation of gravity as a fictitious force which appears when a probabilistic
spin network is substituted by a medium state with fixed edges.

In this way the tetrad e is not a dynamical field but an appropriate function or
distribution. Conversely, the SO(1,3) connections remain dynamical fields as the
other Yang-Mills fields. However these define only a subensemble in the ensemble
of Sp(12,C) connections.

This group spontaneously appears in Arrangement Field Theory as a conse-
quence of its basilar assumptions, the same which correctly predict Black Hole
entropy.

Tangent space assumes SO(1,3) symmetry only when gravity decouples from
other forces. At that point also the real space-time can obtain the same symmetry.
This fact is coherent with no-go theorem of Coleman-Mandula [20], under which
“S-matrix is Lorentz invariant if and only if the action symmetry is SO(1,3)®
internal symmetries”.

We start in section 2 by constructing the Ricci scalar as the (totally contracted)
antisymmetrized second covariant derivative of Sp(12,C'). We show that the only
connections which contribute to this term are the SO(1,3) connections.

In section 3 we construct a kinetic term for Sp(12, C') gauge fields. We extract
the gravitational contribute, showing that it reproduces the topological term of
Gauss-Bonnet, so that the motion equations result unchanged.

In section 4 we embed Standard Model symmetry (SU(3) ® SU(2) ® U(1)) and



gravitational gauge symmetry (SO(1,3)) inside a larger Sp(12,C') symmetry.

Hence we assemble fermionic fields in such a way to fill up the adjoint repre-
sentation of this group. Doing this we discover an approximate (global) flavour
symmetry SU(3) ® SU(3).

In section 5 we combine bosonic and fermionic fields in a unique superfield
without need for new unseen particles.

In the last section we explicitly show the strangest prediction of theory, ie the
possibility to obtain an antigravitational force by means of electromagnetic fields

or other Yang-Mills fields.

2 Ricci scalar

In this section we define Ricci scalar in a modified Palatini formalism which makes
it suitable to describe gravity as a branch of an unified force.
To do this we need to introduce two little known extensions of complex num-

R

bers (sometimes called hyper-complex numbers) that are “Quaternions (H)” and

“Hyperions (Y)”.

2.1 Quaternions

We start by considering the ensemble of quaternions (H), an associative normed
division algebra over the real numbers. Such algebra was introduced by Hamilton

in 1843[4] and it’s completely defined by relations:

1) =—Ji=F jk=—-kj=1 ki=—ik=j

The base elements 1, j, k satisfy the same algebra of Pauli matrices and thus they



2.2 Hyperions

are good to describe rotations in the euclidean three-dimensional space. We think

about them as imaginary unities, so that a generic quaternion ¢ takes the form
g=a+ib+ jc+kf with a,b,c, f € R.

Pay attention that, dislike complex algebra, quaternionic algebra isn’t commutative

(in general pg # qp).

2.2 Hyperions

We define an extension of H by introducing a new imaginary unit I which satisfies

(L] =1, ] = [I,k] = 0

In this way a generic number assumes the form

U:a+]b+10+jd+ke+ljf+jlg+kjh7 a7b7cad767f7g7h€R

v=p+Iq, P, €R

We call this numbers “Hyperions” and we indicate their ensemble with Y. It’s easy

to see their correspondence with even products of Gamma matrices, explicitly

1 <~ YoYo = 1 [ <~ Y5 = Y0Y17Y273
i< 2 il < Y073

J S M3 J1 < Y72



2.2 Hyperions

k< v kI < vomn

Note that imaginary units i, 7, k,il, jI, kI satisfy the Lorentz algebra, with ¢, j, k

which describe rotations and i/, jI, kI which describe boosts.

Definition 1 (bar-conjugation) The bar-conjugation is an operation which ex-
changes I with —I (or ~vo with —7 in the yvy-representation). Explicitly, if v =
a+ Ib+ic+ jd+ ke + il f + jlg + kIh with a,b,c,d,e, f,g,h € R, then v =
a—Ib+ic+ jd+ke—ilf —jlg—kIh.

Definition 2 (pre-norm) The pre-norm is a complex number with I as imaginary
unit (we say “I-complex number”). Given an hyperion v, its pre-norm is |v| =

(vT0)Y/2. If v € H, its pre-norm coincides with usual norm (viv)/2.

Note that every hyperion v can be written in the polar form

v = |v|€za+jb+kc+zld+jle+klf a, b, c, d, e, f

|U|2 _ @TU _ |U|e—(z’a+jb+kc+i1d+j]e+klf)|U|€z‘a+jb+kc+ild+jle+klf — |U‘2.

Moreover, the norm of any hyperion v is the norm of its prenorm, indicated with

[l

Definition 3 (Hyper-unitary matrices) A square matriz U with elements in C

is called unitary matrix if it satisfies

Ut =00 = 1.

Unitary matrices nxn define a Lie group U(n) having real dimensions n®. Similarly,

a square matriz U with elements in H is called hyper-unitary if

Ut =00 = 1.



2.3 Ricci scalar with hyperions

Hyper unitary matrices with elements in H define a Lie group Sp(n) having real
dimensions n(2n + 1). Finally, a square matriz U with elements in Y is called
hyper-unitary if

TU=ur"=1.

Hyper unitary matrices with elements in Y define a Lie group

Sp(2n,C) having real dimensions 2n(2n + 1). It’s easy to see that Sp(n) is the
compact real form of Sp(2n,C). As consequence, any generator u in the sp(n) alge-
bra gives rise to a couple of generators (u, Iu) in the sp(2n,C) algebra. Moreover,

sp(2,C) = so(1,3) and sp(1) ~ su(2) ~ so(3).

2.3 Ricci scalar with hyperions

Given a gauge field w, in so(1,3) and a complex tetrad e/, we define

Ay = Wi W' = Re (el'eyn™) (1)
e = e""y9Ya et = et (v — —)

1
= glte” = elHey,y, = WY = ZRe [tr(éwe”)}

Note that our definitions are the same to require A" = —A in the hyperions frame-

work. We claim that Ricci scalar can be written as

R(z) = —%tr ((8“/1” —0,A, + A A)) é”‘e”)

To verify our statement we expand first the commutator



2.3 Ricci scalar with hyperions

(A A = WPwl (YW Yeva = VeVava )
1
= §WE”W§d (Ya{V6> Ye}Va — YelVa> Ya } Vo) +
1 ab .cd
+-wi Wi (ValVe, Vel Ya — YelVas ValTb)

2 I

ab, . d

_ ab
= (wu Wy, — W,

bef ) (Vava) +

1
-I——wzbwﬁd (5abcd56fg h%7 ﬂg%)

4!
a a D
= W W) ®7am + W) 35 (2)

In the last line we have defined w'2) = 5abcdw,‘jd. Hence

abv
1
R(z) = —gtr‘(%%%%) (0,@3” - 0,,wa + (W, wy]“b) eferedr —
1
_gtT(%%%)wzbwiﬁ)eTcu e (3)

Consider now the relations

1
Ztr(%%%’yd) = NabNed — Nacbd + NadTbe

tr(vsmYye) =0

We obtain

R(z) = (9w — 0,,wa + [wpy wi]?) eltey

which is the usual definition.
We can move freely from matrices v to hyperions, substituting ¢r with 4. In this

way



2.4 Ricci scalar in the new paradigm

1 _
R(z) = —5(0MAV—8VAM+[AM,AV])dW

1
= —é[vﬂ, v, |ete”

Vi = Out+ A, Ayt eY
ef/ = Reell+1TIme}
e' = Ree +il Ree'® + jI Reel + kI Reet +

+I1Ime™ —iIme® — jImet? — kIme

By definition (1) we have AT = —A. Moreover, when it acts on reasonable Hilbert

spaces, the operator 0 is equal to —0. This implies VL = —V,, and then

1
R(z) = §[VL,VV]ET“6”

2.4 Ricci scalar in the new paradigm

We now suppose that gravity gauge group SO(1,3) is only a subgroup in a bigger
Sp(12,C). Gauge field for Sp(12,C) are 6 x 6 matrices A with entries in Y. The
SO(1,3) subgroup has 6 generators which are the complex unities i, j, k, [, [ j, Ik
in tr(AY) =" A"

We verify that other fields don’t contribute to the following generalized Hilbert

Einstein lagrangian:

1 —
LHE = §t7" [VL, V,/] éTMeV‘ (4)



2.4 Ricci scalar in the new paradigm

Expanding the covariant derivatives we obtain

1 i At ) iy sty v
Lyp = 5;{a;AV —0,Al" + [Al, A)"} ere

1 — _
_ T T T
= 5{8#157’ Ay, = Optr Al + [tr Al tr A,] +
+ ) C[AlF AR — AR ATy efrer
ik

Note that [AT# A%7] is equal to zero when i # j and then

S UIA AT = S T[A)E AT = [tr A tr A,).

a ¥

For what follows we write Lyg = % Zij Ri{;ﬁij efre” with

i sijat . - _
R}, = &Y0itr A, —6"o,tr A}, + [tr Al tr A, +

£ [ARAb kAT
i, kA1, j#k

(5)

Rffy is thus a generalization of curvature tensor. Consider now any skew hermitian
matrix W, with elements W7 = A% for i # j and WY = 0 for i = j. It belongs
to the subalgebra of sp(12,C') made by all null track generators. This means that
commutators between null track generators are null track generators too. In this

way

> (A Al = tr[WELW,] = 0.
i,j7i

Hence we can delete the mixed term in Lgg.



1 _ -
Lyp = E{Qttr A, — Oy tr AL + [tr AL, tr A]yetre”

1.& g —t a\ V[, .a
= IV Ve (e (o)
= R. (6)
G _GT el
Here V = —V' is the gravitational covariant derivative V = 0 + tr A. As we have

claimed, we see that gauge fields in R are only the diagonal ones. Conversely, we’ll
show that other gauge fields in the Standard Model correspond to non diagonal

components.

3 The kinetic term

Until now we have obtained no terms which describe gauge interactions. In this
section we find a such term, with the condition that it hasn’t to change Einstein

equations. One option is as follows:

Lep = —tr [V],V,]é"e” [V, Vs]el*e’ (7)

We use newly the correspondence between (1, 1,4, j,k,il,jI,kI) and gamma ma-

trices:

1
Lep = _Ztr(7a7b707f7g7h7m7n)'

(VL Vel [V, V) e

Here we use letters a, b, ¢, d for indices which run on Gamma matrices, «, 3, u, v for

10



3.1 Symmetry breaking

spatial coordinates indices and ijk for gauge indices.
In the next section we’ll see that physical fields arise in three families, determined
by the choice of a subspace inside Y. This is true both for fermionic and bosonic

fields. Thus the indices with letters a, b, ¢, d run over the three families. Exploiting

calculation
Lgp = Rg;MBRZ?iéi“ec”égaedﬂ = 4sz‘cuBéT““R%ie?edﬁéza +
+Ry el e Rel ey
— RZ}W RabiinB _ 4 R?B R 4 Rii Rit (8)

RZBJ;U' was defined in (5), while R = Rgueﬁ and RY = Rgueﬁ e™. You understand in
a moment that for i # j we have Rj, R/ = tr > (a0) Fl29 pladm - The index
(ac) runs over three fields families and Fl,),, is a strength field tensor. In this way
the terms jo”R{;iﬁ and RYR;; are terms which mix families. Conversely, for i = j

we have

Lep = Racg R** + R* — ARG R
which is the Gauss-Bonnet topological term and so it doesn’t change the Einstein

equations.

3.1 Symmetry breaking

G
The combination of Ly and Lgg gives to gravitational gauge field A a potential

with form

11



This potential has non trivial minimums which imply a non-trivial expectation value

e}
for A. Moreover, inside Sgp we find the following kind of terms for other fields A:

G
(A%) A% — A%
In this way we have a mass for gauge fields A and another potential with non-
trivial minimums. Therefore, also gauge fields A have non-trivial expectation values.

Finally, such expectation values give mass to fermionic fields via terms

YH{A)y.

There is no need for a scalar Higgs boson. Obviously, inside (-) there must be a

contraction with e to preserve covariance.

4 Standard model interactions

In this section we construct a local field theory with gauge group Sp(12, C'), showing
that it includes gravitational field, SU(5)-Yang-Mills fields and three families of
fermions with local symmetry SU(5). A Grand Unified Theory based on SU(5)
symmetry was already proposed by Howard Georgi and Sheldon Glashow in 1974.
To understand how this theory includes in turn the Standard Model, please refer to
the original work[5]. Nevertheless our framework uses a very different mechanism
of symmetry-breaking which doesn’t make use of Higgs bosons. In this manner it
circumvents the major problem in G-G model. Such model predicts in fact the
proton decay via virtual Higgs bosons, a phenomenon never observed.

The gauge fields AY are 6 x 6 skew adjoint hyperionic matrices A" = —A. These
matrices form the Sp(12, C) algebra which has 156 generators w with o = —w.

12



7 b+b c+¢ d+d e+é
—b+b @ f+f g+§ h+h p+p
—c+@ —f+f @ s+§ q+q r+7
—d+d —g+§ —s+5 ds  k+k t+i
—e+& —h+h —q+q7 —k+k d v+ U

—m+m —p4+p —r+7F —t+t —v+T T
Consider now the subalgebra of the following form with complex (not hyperionic)

components except for y which remains hyperionic:

0 0 0 0 0
@& f+f g+§ h+h p+p
—f+f @ s+ 5 g r+7

—g+g§ —s+3§ as k+k t+t
—h+h —q+§ —k+k @ v+70

o o o o o «

—p+P —r+7F —t+t —v+T 3
Moreover we put the additional condition @ = ) ;a@ = 0. The field y = trw is
the only one which contributes to Ricci scalar. Conversely, all other fields belong
to a SU(5) subgroup, which defines the Georgi - Glashow grand unification theory.
The symmetry breaking in Georgi - Glashow model is induced by Higgs bosons in
representations which contain triplets of color. These color triplet Higgs can mediate
a proton decay that is suppressed by only two powers of GUT scale. However, our
mechanism of symmetry breaking doesn’t use such Higgs bosons, but descends
from the expectation values of quadratic terms AA, which derive from non trivial
minimums of a potential AA — AAAA. So we circumvent the problem.

Restrict now the attention to the SO(1,3) ® SU(2) ® U(1) ® SU(3) generators,

that are the generators of standard model plus gravity.

13



i 0 0 0 0 0
0 @ f+f 0 0 0
0 —f+f @ 0 0
w= B .
0 0 s k+k t+t
0 0 0 —k+k @ ov+7
0 0 0 —t+t —v+T as

We'll show in a moment that all standard model fields transform under this subgroup
in the adjoint representation. In this way themselves are elements of Sp(12,C)

algebra, explicitly:

0 e —v dy di dg
—e* 0 e —ur —Uug —UuB
w _ ¢1 n ]¢2 _ v* —e* 0 —dR _dG’ —dB
—dy up dip 0 up  —ug
—d@&  ug  di, —uf 0 ufp
—dg vy dy ug —uyp 0

We have used the convention of Georgi - Glashow model, where the basic fields of
! are all left and the basic fields of I1)? are all right. We have indicated with ¢ the
charge conjugation. Moreover, in our formalism, ¢! and 1)? are pure quaternionic
fields. The subscripts R, GG, B indicates the color charge for the strong interacting
particles (R=red, G=green, B=blue).

In Georgi - Glashow model the fermionic fields are divided in two families. The
first one transforms in the representation 5 of SU(5) (the fundamental representa-
tion). It is exactly the array (w'/) in the matrix above, with j = 2,3,4,5,6. This
array transforms in fact in the fundamental representation for transformations in

every SU(5) C Sp(12,C') which act on indices values 2 + 6.

14



The second family transforms in the representation 10 of SU(5) (the skew sym-
metric representation). Unfortunately it isn’t the sub matrix (w¥) with i,j =
2,3,4,5,6. This is in fact the skew adjoint representation of Sp(10,C'), which is
skew hermitian and not skew symmetric.

Do not lose heart. We’ll see in a moment that such adjoint representation is
a quaternionic combination of three skew symmetric representations, one for every
fermionic family. This concept could appears cumbersome, but it will be clear along

the following calculations.

Theorem 4 The skew adjoint representation of Sp(m) is a quaternionic combina-
tion of three skew symmetric representations of U(m) plus a real skew symmetric

representation (which is also skew hermitian).
Proof. Consider a fermionic matrix ¢/ which transforms in the adjoint representa-
tion of Sp(m):

Y — UypUT (9)

Take then a matrix ¢’ with ¢’k = 1. Its transformation law under U(m) is easily

derived when this group is constructed by using imaginary unit ¢ or j. This means

Um)>sU =exp(ia,X") a€R; r=1,23,
with ¥ generators of U(m) whose complex entries have i as imaginary unit,
or
Um)>U =exp(ja,X") a€R; r=1,23,
with 3 generators of U(m) whose complex entries have j as imaginary unit.
We substitute ¢ with ¢’k inside (9):

15



'k — UY'kUT = UyY'UTE.

Here we have used the relation kA = \*k for A € H without & component. We see

that ¢’ transforms in the skew symmetric representation:
1/]/ - UQZJ,UT
We obtain a complex matrix ¢’ (with ¢ as imaginary unit) when ¢ has the form
Ak + Bj with A, B real matrices. Indeed:
' = -k = —Akk — Bjk = A — Bi

Sending 1 in 1* we bring ¢’ to —1’ and so we satisfy the skew symmetry. Finally
g g

we can always write

Y = o + Y1k + Poi + 3

In this decomposition, 1,19, 13 are complex matrices with complex unit respec-

tively 1, 7, k. Explicitly:

v = o1 — & = ¢ —i&) + 1(¢7 —i&})
by = da—jla =y — b+ 1(¢5 — jE3)
vy = ¢3— k&3 = ¢3 — k& + 1(¢3 — k&3).

Here all ¢!, ¢?, &', £2 are real fields. In this way, any v 53 transforms in the skew
symmetric representation of U(m) when this group is built by the correspondent

imaginary unit (i for ¢, j for 15 and k for ¢)3). Hence they define the famous three

16



fermionic families plus a real skew symmetric field ¢)5. CVD =

The interaction Lagrangian can be defined as follows (with V = e#V,):

tr(VIVY) = tr(k Y]V k) + tr(iiVei) + tr( ¢ V)

—tr(i*¢5Vési) — tr(j* iV ) — tr(k* ¢ VEsk)
—tr(§ Vo)

= (Y] Vi kk) + tr (S Vaii®) + tr(5 Vi)
—tr(¢yVEsii*) — tr(¢hVEjj7) — tr(d] VERET)
—tr (Y Vi)

= tr(Y] Vi) + tr(YIVis) + tr(YiVips)
—tr(¢iVEs) — tr(¢h V&) — tr(6]VE)
—tr(4§ Vo) (10)

Every term L in the lagrangian is intended to be integrated over Sp(1):

L = dggLg™'.
Sp(1)

In such a way, the only terms which survive are I-complex. The third last line in
(10) regroups the fermionic terms of Georgi-Glashow model for three families in

representation 10. If we restrict V to SU(5), it can be written as

(G
o | (wr v s )V | w
V3
where every 1, is now constructed with ¢ as imaginary unit. This term is man-

ifestly invariant under global SU(3) (or SU(3) ® SU(3) if we consider also the

17



I-component). However this flavour symmetry is soon broken by mixed terms in
the second last line of (10). These terms give a reason to CKM and PMNS matrices
which appear in the Standard Model.
In this formalism, given w € su(3)®su(2)@u(1), the transformation 6y = [w, ¥|
corresponds to the usual transformation 1) = w1 in the standard model formalism.
Fields in different families are related by transformations in Sp(1) ~ SU(2), ie
by rotations in the three dimensional space with base vectors ¢, j, k. Generators of

Sp(1) are

100000

010000

gl oo1000
w = —

61000100

0000710

000001

with ¢ € Im H.

Their diagonal form suggests an identification between this group and the gravi-
tational group SU(2)<%°03) If the two groups coincided, all fields would transform
correctly under SU(2)“%°(13), By extending this group to the entire SO(1,3), we
see that boosts exchange left fields with right fields.

It’s remarkable that three families have to exist also for bosonic particles (pho-
ton, W=, Z, gluons) although they are probably indistinguishable. Note also that
fields v appearing here don’t match exactly with fermionic fields of Standard model.
The relation with these is however very simple. Using the correspondence between

hyperions and v, the fields ¥ acquire two extra indices (row and column indices

in y7y):

18



Y — Yap

The standard Dirac fields have 4 components ¢ given by

WAB — JABC O

where W4BY is any constant object which satisfies

W*ABCwABD — 1CD — ¢*ABwAB _ w*CwC

WHABC 4 BEYZAFD _ (0 CD oy xAB W BF AP _ sCo CD D

5 Fermions from a vector superfield

In this section we show that all fermionic and bosonic fields can be joined in a
unique superfield. This procedure doesn’t need new exotic particles as squarks or
fotino; conversely it predicts the existence of right and sterile neutrinos. We start
by introducing I-complex grassmannian coordinates § = 6! + 1% and 6 = ' — 16>

with obvious fundamental products:

00 = 00"+ 010 + 16°0" — 00> =0+ 10'0> — 10'6* —0 =0
00 = 0'0' —0'10° — 10*0* — 00> =0 — 16'6* + 10'0> — 0 =0

00 = 00" —0'10* + 16%0" + 0°0* = —10'0* — 10'0* = —216'6*

Accordingly, there will exist grassmannian derivatives d, and d, with 9,0 = 9,0 = 1
and 9,0 = 9,0 = 0. At this point we can define a new supersymmetric algebra as

follows:

19



Q =0, — "0, : (Q, P, = 0(d,e")P,
Q=0,—0e"0, ; {Q,Q} =2I2"P,
2 = e’ +e” P,=-10,
o5 = 2 + 00 [#0, e — e, c]

The most general superfield is then

V(z,0,0) = e"(x)Au(x) + 0 (x) + X(x)0 + 00F (z).

To obtain an irreducible representation of SUSY algebra we introduce a covariant

derivative D which commutes both with @ and Q:

D= 59 + 0e” 0,

In terms of shifted coordinates y* = z* + €00, the action of D simplifies consider-

ably:

DV (y,0,0) = 9,V (y,0,0)

In this way we can define a supersymmetric chiral field by imposing 9,V (y, 0, 6) = 0,

whose solution is clearly

V=V, 0) =e"(y)Auly) + 00 (y).
In the original coordinates this gives
V(x,0,0) = e"(x)Au(x) + 0(z) + 00e”9,(e"A,,)

20



Infinitesimal SUSY transformations induced by eQ + &Q are easily computed:

) = —2eef0,(e"A,)
0A, = eey (11)

From V' we can construct a generalized covariant derivative by substituting A, with

0, + A, and ¢ with 9, + -

V =0, + A,) + 0(0, + ¥) + 00e"0,[e"(D, + A,)]

It can be useful to introduce derivatives d,,, and fields 1, in representation (1 ® %) =
(% P %) with properties e/0,, = 0, and e*1, = 1. In this way

V =e'V, =e" {0, + Ay + 0(dy, + ¥,) + 000,[e (8, + A,)]}

New SUSY transformation laws emerge for d,, and 9y:

50, = —2ee%(0,e"d, +e"A,d,)
50, = eeud, (12)

By composing quadratic and quartic powers of V and VT, you can extract all terms
which appear in Standard Model, plus Hilbert-Einstein and Gauss-Bonnet terms.
It’s remarkable that standard fermionic fields take the role of gauginos for stan-
dard gauge fields. In this way the right up quarks are gauginos for gluons, while right
electrons are gauginos for W bosons. Clearly this is permitted because fermions
and bosons transform in the same representation of Sp(12, C). In such a way our

theory includes SUSY N = 1 with no need for new unknown fermionic or scalar

21



particles, apart from one exception.
SUSY predicts the existence of a new colored fermionic sextuplet which sits on
diagonal in 1. Inside it we can include a conjugate neutrino (v°), a sterile neutrino

(N) and a conjugate sterile neutrino (N°). Explicitly

N 0 0 0 0 0

O v 0 0 0 0

0O 0 v» 0 0 O
(e

0o 0 0 N 0 O

0O 0 0 0 N° 0

o 0o 0 0 0 N¢

This field commutes with any gauge field in U(1) ® SU(2) ® SU(3) and so it hasn’t
electromagnetic, weak or strong interactions. Moreover it gives a Dirac mass to

neutrinos via the term

tr (@e“AMw) _ @TijeuAﬁlwmnf(ij)(kl)(mn)'

Here f@ENM) are structure constants for SU(6) and masses for neutrinos are

eigenvalues of < e#A, >.

6 The octonions hypothesis

We indicate by = a generic “number” equipped with 7 imaginary components. This
number can be considered both hyperionic and octonionic, where octonions are

defined as here = http : //en.wikipedia.org/ wiki/Octonion. Explicitly:

T =a+i1b+isc+izd + Tw + i11s + iolg + islt

22



a,b,c,d,w,s,g,t €R.

Note that we have written i1, 45,43 in place of 7, 7, k. The tabular summarizes the

differences between hyperionic and octonionic case:

Hyperions (n # m) Octonions (n # m)

R m— i = €744,

Tip =inl Tip = —inl

I’ = -1 I’ =-1

(ind) = —inl (i)t = —in 1

in(tmd) = (inim)I in(tmd) = —(inim)I
in(tmd) = — (i1 )in in(iml) = — (i1 )iy,
in(ind) = (inin)l = —1 in(ind) = (inin)l = —1
(inD) (i) = —inin (inD) (i) = —inim
(i, 1) =1 (i,0)? = -1

It’s considerable that all differences (also non-associativity of octonions) arise by
imposing [i,, = —i,/ without changing i, (i, /) = —(iml)i,. Let consider the

following octonionic field:

O = et(x) A, + i AL(O)UF + i )2 (0)Y8 + isA3(0)]

)\1
)\2
& = EAW, pA—| 7P W,y = (mpf; il iyl AM>
)\3
s
eﬂ
A, =ReA, + IImA, »® = Rep® + IImy°

23



Here 9% and 6 are usual Weyl spinors with two components (o = 1,2). AL are
octonionic functions of #%. At this point we can define a generalized covariant

derivative and a generalized metric:

V= (a;;l b s 0 + gyl Oy + isv] 5 O, + A#>

HAP = Re (EAE?)

We conjecture that actions of both Standard Model and General Relativity are

comprised inside an action of the following type:

S = /\/ﬁdloX (EZ)AB<V2)AB + g/\/ﬁdloX (E4)ABCD<V4)ABCD g€ R

H = det(H"?)

In a such action, super-symmetry is replaced by covariance under generalized coor-

dinates transformations:

X o X'(X)
r — 2(x,0)

0 — 0(z,0)

Interpret now A, and v, as 6 x 6 complex matrices. Moreover we want A, being
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gauge field for SU(6) and so it will be skew-hermitian. Finally we choose 1), skew-
symmetric in such a way to have 7,1, skew-hermitian. Hence W will result skew-

hermitian too.

O = e(x) (A + 5%) + i AL(0) (09)7 + i2)3(0) (157 + is)3(0) (43)"
G
Ay =i(ay + Ta,) + j(by + 10,) + k(c, + Ic,)

/ / /
Qs @y by by s €R

(@bg)zz =0

Here we have considered as fermionic the imaginary components proportional to i,
and 4,1, except for the trace. This last is taken bosonic and obviously it gives the
gravitational field. Moreover we can take A%(f) = 67 as the most natural metric.
At this point we can study the action of SU(6) on W, where SU(6) is built with I
as imaginary unit:
Wy — UWU — UTo,U U € SU(6)
A, = UAU-UOU
iy = UliypoU — UTO%U
4
vy = UTpU

In the last step we have used agnU = 0 and i,/ = —1Ii,. You see that fermionic
fields still transform in the skew-symmetric representation and so they fit easily

with standard fermionic fields.
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However, skew-hermitian matrices with entries in O don’t define a Lie Algebra,
due to non-associativity of octonions. Conversely they define a ternary algebra,
whose corresponding gauge theory is well discussed in [1]. Their exponentiated
version is now the unitary “quasi”’-group 76, where the word “quasi” underlines
the lack of associativity, which is an ordinary request in the usual definition of

group. In such theories the field strength results:

Rup = 0aWp — 0gWa + [Wa, Wg, g]

where g is an auxiliary octonionic field and the 3-bracket is defined as follows:

[u,v,x] = Dypr = = (u(ve) —v(ux) + (xv)u — (zu)v + u(zv) — (uz)v).

DO | —

Gauge transformations of W and g are given in [1], while R transforms homoge-
neously as expected. Note that, if u,v,x belong to an associative algebra, then
1

[u,v,2] = 3[[u,v],z]. To satisfy all requests of your model, we have to find an

auxiliary field g such that:

Re[A,, Ay, g][A,, Ay, glete’ePe” = Re [A,, AJ[A,, Aslete”e’e”
Re [/i, /i,, glet'e” = Re [f(l;“, fi]e“e”
where in the left side we consider 14,1,/ octonionic, while in the right side we
consider them hyperionic. Clearly much work remains to do, but is clear that,
moving from Hyperions to Octonions, we lost all the oddities of previous sections,
namely the tripling of SU(6) gauge fields and the existence of a strange real field
1. The resulting symmetry group will be 76 in place of Sp(12,C).
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6.1 Extension of Ricci scalar

6.1 Extension of Ricci scalar

Note that such framework provides fermionic contributes to Ricci scalar. Explicitly:

R = RPOS ¢ / 420 (—eT“[VW VA + APV 9, )e” + APV, Va})\“>

Varying the last term with respect to ¥ we obtain

VA = (9] —if)r* = 0.

A good distributional solution is then

\¢ = /d2§ gaeideJi.

Considering that [V;, V.| = —i[w}, V. =1i[V,, w;], the second last term becomes

(2NP LAST) = i / A2 d?0 P =107 [VM&L] e’ (13)
_ / d2et a2 €1 (1 i, — %9%9%) [vy,wg] e

Apply now the standard formulas for grassmannian integrals, ie 6767 = %57782,

[d?00%> =2, [d*0 =0 and [d?0&7P07 = eP76%(¢T — 6). Relation (13) simplifies in

(2NP LAST) = / a2t (52(@ — f)y” +%’5%w7) [VW%} e’
= IV, vile”, (14)

where we have used [ d?¢"¢"P = 0. In this way we have obtained the kinetic term
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for fermions directly from Ricci scalar. However this works exactly if A% is a 6 x 6
matrix of spinor, and not a simple spinor. It’s notable that the same process can
be utilized to obtain kinetic terms for gauge fields by starting with an e* intended

as a 6 X 6 octonionic matrix of vectors:

et = n”e*deVA”(‘”) n* = Re (n"n").

7 Antigravity

The kinetic piece in lagrangian (8) includes the following term which mixes gravity

with electromagnetism:

_1f(G)(EMl)(EM2)A£G)A(E'M1) (F(EMZ),U,I/ + af(EM3)(EM1)(EM2)A(EM?;),LLA(EMl)I/)
4 v

(15)

Remember that AFT includes three indistinguishable electro-magnetic fields, with
non-trivial commutators. In this way A(®) is the gravitational gauge field, AFMm)
is the n-th electromagnetic field and « is the fine structure constant. In the realistic
case of null torsion, the gravitational gauge field can be rewritten in function of the

tetrad field:

1 1
G)bc v[b q vb _oc d
A/g Je — —26 [ 8[Mey] + —4eude e 8[061,]

From now we take a low energy limit so defined: e; = 1 with ¢ = 1,2,3, eqo = 0(x)

and Jyf(z) = 0. Varying with respect to e we obtain:

5A£‘G)bc 1 vlbgc] £ 1 vb_ocsT
5o~ 3¢ [ 6815[,/(9“] + Jensee Oy

v
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1
_ 6w[c€b]l/(sf;am + 56;7614;60'0 T ao_]

v

The component with ¢ = w =7 =0 and b # 0 results:

FAL . 1 3
=—0715%9, — =6716°9, = ——"°
5900 ’uab 2 Mab 20 ’uab

AEM)p p\(EM) A(EM)p
o 0900 20

8bA(EM)0A(EM)pA(pEM)

The minus sign has disappeared because we have reversed the derivative. The

variation of quartic term in (15) with respect to dggo is then given by

a 3

3a
e bA(EM)OA(EM)pA(EM) - _ b 27,2 A2
T o (0 = g, V(Y - A2)

b
b _ (bo)ca pdea 4$_
o= 37 g g g

cade
Here we have indicated with V' the electric potential and with A the magnetic vector
potential. The sum inside f is over the three electromagnetic fields.
It’s so clear that varying the complete action with respect to g,, we obtain a
new term for Einstein equations. In the Newtonian limit we can substitute gy =

—(1—2¢) and Rgo — (1/2)Rgoo = V2¢ where ¢ is the newtonian potential. Hence:

W% ~ 87T — g2 OV ILman
v—Y 09oo

b
" ab%mmvwv? — 142 (16)

For radial potential we have
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b
O = 0,0,
T

In such case

Cg = 0,0 ~ 12maV (V2 — 1 A?)

Now we insert the appropriate universal constants and approximate ¢ with 1:

(G€0)3/2

Ca~ 121« AL,

V(VE—?AY) = kV(V? — 2A?) (17)

Here L, is the Planck length, equal to y/AG/c3. The multiplicative constant is

192 .10 1. .10712 3/2 3.4
b 7r.(6,67 0 8,85-1071%) _ 30,97 10-% C"s '
137 (3-108)%-(1,62-10-3) Kg®mb
This means that for having a weight variation (on Earth) of about 10% (ACg = 1)
we need an electrical potential of 10! Volts. These are 100 billions of Volts. For
V =@Q/r and A =0 we have:
k Q?

Co=—— — =2198-1072
7 (dreg)® 13 ’ <

m4 Q3
3203) =
Note that the sign of Cg is the sign of @) and then we obtain antigravity for negative

Q. We associate to this interaction an equivalent mass m, substituting Cg =

Gm/r?*. We have

m = Ev37,2 — k Q3

G G(4meo)® 1

— 3,293 10° (Kgm) @

C3 r
which is a negative mass for negative (). Negative mass implies negative energy via

the relation £ = mc?. Intuitively, if we search a similar relation for gravi-magnetic
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field (which is V x (¢g%), i = 1,2, 3), we should find the same formula (17) with an
exchange between V' and cA.
We calculate now at what distance the gravitational attraction between two

protons is equal to their electromagnetic repulsion.

Ggm__ K & 19
r2  G%*(4meg)8 rt dmeg 12
Q>
G2(47T50)5

= 1r* =79,49-107"m? = r = 8,916 - 10~ m = 5,516 L,

Note that we are 20 orders of magnitude under the range of strong force and 23
orders of magnitude under the range of weak force. In this way the gravitational

force doesn’t affect the making of nucleus and nucleons.

8 Conclusion

In the course of paper we have demonstrated that a satisfactory gauge theory exists
which includes all the four forces. However, if we try to quantize the theory, we
encounter the well known renormalization problems for diagrams which involve the
tetrad field e#. The complete theory, exposed in [3], overcomes this trouble by
quantizing theory before the choice of a fixed spin-network, in such a way that e
has still to born.

Another possibility is suggested by the analogy between e and € in the superfield
expansion, united to the role of e* inside the generalized coordinate y*. In fact
we can consider e as another quadruplet of coordinates, so that the other fields

become:
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A,(z") — A, (2", €")
u(”) = (e, e)
dz  — d'ad'e (18)

A conjugated momentum pf, will be associated to e/, while in Feynmann dia-
grams we’ll have to substitute e” with —10/0p¢.

Back to the present work, in the last section we have seen that a potential of
10'* Volts can induce relevant gravitational effects. They are too many for notice
variations in the experiments with particles accelerators. However they sit at the
border of our technological capabilities.

We hope that a future team work shall explore this theory in detail, deepening

also the triality with strings and loop gravity, highlighted in [3].
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