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Abstract

A new unifying theory was recently proposed in the publication Arrange-

ment field theory - beyond strings and loop gravity -[3]. Such theory describes

all fields (gravitational, gauge and matter fields) as entries in a matricial su-

perfield which transforms in the adjoint representation of Sp(12, C). In this

paper we show how this superfield is built and we introduce a new mechanism

of symmetry breaking which doesn’t need Higgs bosons.
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1 Introduction

A new unifying theory was recently proposed in the publication Arrangement field

theory - beyond strings and loop gravity -, edited by LAMBERT Academic Publishing[3].

Such theory describes gravitational, gauge and matter fields by means of prob-

abilistic spin-networks, ie collections of vertices and edges where the existence of

any edge is regulated by a quantum amplitude. The best result of this approach is

the manifestation of gravity as a fictitious force which appears when a probabilistic

spin network is substituted by a medium state with fixed edges.

In this way the tetrad eµ is not a dynamical field but an appropriate function or

distribution. Conversely, the SO(1, 3) connections remain dynamical fields as the

other Yang-Mills fields. However these define only a subensemble in the ensemble

of Sp(12, C) connections.

This group spontaneously appears in Arrangement Field Theory as a conse-

quence of its basilar assumptions, the same which correctly predict Black Hole

entropy.

Tangent space assumes SO(1, 3) symmetry only when gravity decouples from

other forces. At that point also the real space-time can obtain the same symmetry.

This fact is coherent with no-go theorem of Coleman-Mandula [20], under which

“S-matrix is Lorentz invariant if and only if the action symmetry is SO(1, 3)⊗

internal symmetries”.

We start in section 2 by constructing the Ricci scalar as the (totally contracted)

antisymmetrized second covariant derivative of Sp(12, C). We show that the only

connections which contribute to this term are the SO(1, 3) connections.

In section 3 we construct a kinetic term for Sp(12, C) gauge fields. We extract

the gravitational contribute, showing that it reproduces the topological term of

Gauss-Bonnet, so that the motion equations result unchanged.

In section 4 we embed Standard Model symmetry (SU(3)⊗ SU(2)⊗U(1)) and
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gravitational gauge symmetry (SO(1, 3)) inside a larger Sp(12, C) symmetry.

Hence we assemble fermionic fields in such a way to fill up the adjoint repre-

sentation of this group. Doing this we discover an approximate (global) flavour

symmetry SU(3)⊗ SU(3).

In section 5 we combine bosonic and fermionic fields in a unique superfield

without need for new unseen particles.

In the last section we explicitly show the strangest prediction of theory, ie the

possibility to obtain an antigravitational force by means of electromagnetic fields

or other Yang-Mills fields.

2 Ricci scalar

In this section we define Ricci scalar in a modified Palatini formalism which makes

it suitable to describe gravity as a branch of an unified force.

To do this we need to introduce two little known extensions of complex num-

bers (sometimes called hyper-complex numbers) that are “Quaternions (H)” and

“Hyperions (Y)”.

2.1 Quaternions

We start by considering the ensemble of quaternions (H), an associative normed

division algebra over the real numbers. Such algebra was introduced by Hamilton

in 1843[4] and it’s completely defined by relations:

ij = −ji = k jk = −kj = i ki = −ik = j

i2 = j2 = k2 = −1

The base elements i, j, k satisfy the same algebra of Pauli matrices and thus they
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2.2 Hyperions

are good to describe rotations in the euclidean three-dimensional space. We think

about them as imaginary unities, so that a generic quaternion q takes the form

q = a+ ib+ jc+ kf with a, b, c, f ∈ R.

Pay attention that, dislike complex algebra, quaternionic algebra isn’t commutative

(in general pq 6= qp).

2.2 Hyperions

We define an extension of H by introducing a new imaginary unit I which satisfies

I2 = −1 I† = −I

[I, i] = [I, j] = [I, k] = 0

In this way a generic number assumes the form

v = a+ Ib+ ic+ jd+ ke+ iIf + jIg + kIh, a, b, c, d, e, f, g, h ∈ R

v = p+ Iq, p, q ∈ R

We call this numbers “Hyperions” and we indicate their ensemble with Y . It’s easy

to see their correspondence with even products of Gamma matrices, explicitly

1⇔ γ0γ0 = 1 I ⇔ γ5 = γ0γ1γ2γ3

i⇔ γ2γ1 iI ⇔ γ0γ3

j ⇔ γ1γ3 jI ⇔ γ0γ2
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2.2 Hyperions

k ⇔ γ3γ2 kI ⇔ γ0γ1

Note that imaginary units i, j, k, iI, jI, kI satisfy the Lorentz algebra, with i, j, k

which describe rotations and iI, jI, kI which describe boosts.

Definition 1 (bar-conjugation) The bar-conjugation is an operation which ex-

changes I with −I (or γ0 with −γ0 in the γγ-representation). Explicitly, if v =

a + Ib + ic + jd + ke + iIf + jIg + kIh with a, b, c, d, e, f, g, h ∈ R, then v̄ =

a− Ib+ ic+ jd+ ke− iIf − jIg − kIh.

Definition 2 (pre-norm) The pre-norm is a complex number with I as imaginary

unit (we say “I-complex number”). Given an hyperion v, its pre-norm is |v| =

(v̄†v)1/2. If v ∈ H, its pre-norm coincides with usual norm (v†v)1/2.

Note that every hyperion v can be written in the polar form

v = |v|eia+jb+kc+iId+jIe+kIf a, b, c, d, e, f

|v|2 = v̄†v = |v|e−(ia+jb+kc+iId+jIe+kIf)|v|eia+jb+kc+iId+jIe+kIf = |v|2.

Moreover, the norm of any hyperion v is the norm of its prenorm, indicated with

||v||.

Definition 3 (Hyper-unitary matrices) A square matrix U with elements in C

is called unitary matrix if it satisfies

U †U = UU † = 1.

Unitary matrices n×n define a Lie group U(n) having real dimensions n2. Similarly,

a square matrix U with elements in H is called hyper-unitary if

U †U = UU † = 1.
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2.3 Ricci scalar with hyperions

Hyper unitary matrices with elements in H define a Lie group Sp(n) having real

dimensions n(2n + 1). Finally, a square matrix U with elements in Y is called

hyper-unitary if

U
†
U = UU

†
= 1.

Hyper unitary matrices with elements in Y define a Lie group

Sp(2n,C) having real dimensions 2n(2n + 1). It’s easy to see that Sp(n) is the

compact real form of Sp(2n,C). As consequence, any generator u in the sp(n) alge-

bra gives rise to a couple of generators (u, Iu) in the sp(2n,C) algebra. Moreover,

sp(2, C) ≈ so(1, 3) and sp(1) ≈ su(2) ≈ so(3).

2.3 Ricci scalar with hyperions

Given a gauge field ωµ in so(1, 3) and a complex tetrad eµ, we define

Aµ = ωabµ γaγb hµν = Re (e†µa e
ν
bη

ab) (1)

eµ = eµaγ0γa ēµ = eµ(γ0 → −γ0)

⇒ ē†µeν = e†µaeνbγaγb ⇒ hµν =
1

4
Re
[
tr(ē†µeν)

]
Note that our definitions are the same to require Ā† = −A in the hyperions frame-

work. We claim that Ricci scalar can be written as

R(x) = −1

8
tr
(
(∂µAν − ∂νAµ + [Aµ, Aν ]) ē

†µeν
)

To verify our statement we expand first the commutator
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2.3 Ricci scalar with hyperions

[Aµ, Aν ] = ωabµ ω
cd
ν (γaγbγcγd − γcγdγaγb)

=
1

2
ωabµ ω

cd
ν (γa{γb, γc}γd − γc{γd, γa}γb) +

+
1

2
ωabµ ω

cd
ν (γa[γb, γc]γd − γc[γd, γa]γb)

=
(
ωabµ ω

d
bν − ωabν ω d

bµ

)
(γaγd) +

+
1

4!
ωabµ ω

cd
ν

(
εabcdε

efghγeγfγgγh
)

= [ωµ, ων ]
abγaγb + ωabµ ω

(D)
abν γ5 (2)

In the last line we have defined ω
(D)
abν = εabcdω

cd
ν . Hence

R(x) = −1

8
tr(γaγbγcγd)

(
∂µω

ab
ν − ∂νωabµ + [ωµ, ων ]

ab
)
e†cµedν −

−1

8
tr(γ5γbγc)ω

ab
µ ω

(D)
abν e

†cµedν (3)

Consider now the relations

1

4
tr(γaγbγcγd) = ηabηcd − ηacηbd + ηadηbc

tr(γ5γbγc) = 0

We obtain

R(x) =
(
∂µω

ab
ν − ∂νωabµ + [ωµ, ων ]

ab
)
e†µa e

ν
b

which is the usual definition.

We can move freely from matrices γ to hyperions, substituting tr with 4. In this

way
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2.4 Ricci scalar in the new paradigm

R(x) = −1

2
(∂µAν − ∂νAµ + [Aµ, Aν ]) d̄

†µdν

= −1

2
[∇µ,∇ν ]ē

†µeν

∇µ = ∂µ + Aµ Aµ, e
µ ∈ Y

eµa = Re eµa + I Im eµa

eµ = Re eµ0 + iI Re eµ3 + jI Re eµ2 + kI Re eµ1 +

+I Im eµ0 − i Im eµ3 − j Im eµ2 − k Imeµ1

By definition (1) we have Ā† = −A. Moreover, when it acts on reasonable Hilbert

spaces, the operator ∂† is equal to −∂. This implies ∇†µ = −∇µ and then

R(x) =
1

2
[∇†µ,∇ν ]ē

†µeν

2.4 Ricci scalar in the new paradigm

We now suppose that gravity gauge group SO(1, 3) is only a subgroup in a bigger

Sp(12, C). Gauge field for Sp(12, C) are 6× 6 matrices Aij with entries in Y . The

SO(1, 3) subgroup has 6 generators which are the complex unities i, j, k, Ii, Ij, Ik

in tr(Aij) =
∑

iA
ii.

We verify that other fields don’t contribute to the following generalized Hilbert

Einstein lagrangian:

LHE =
1

2
tr [∇†µ,∇ν ] e

†µeν . (4)
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2.4 Ricci scalar in the new paradigm

Expanding the covariant derivatives we obtain

LHE =
1

2

∑
i

{∂†µAiiν − ∂νĀ†iiµ + [Ā†µ, Aν ]
ii} e†µeν

=
1

2
{∂†µtr Aν − ∂νtr Ā†µ + [tr Ā†µ, tr Aν ] +

+
∑
i,k 6=i

[Ā†ikµ Akiν − Aikν Ā†kiµ ]} ē†µeν

Note that [Ā†ii, Ajj] is equal to zero when i 6= j and then

∑
a

[Ã
†ii
µ , A

jj
ν ] =

∑
ij

[Ā
†ii
µ , A

jj
ν ] = [tr Ā†µ, tr Aν ].

For what follows we write LHE = 1
2

∑
ij R

ij
µνδ

ij ē†µeν with

Rij
µν = δij∂†µtr Aν − δij∂νtr Ā†µ + [tr Ā†µ, tr Aν ] +

+
∑

i,k 6=i,j 6=k

[Ā†ikµ Akjν − Aikν Ā†kjµ ].

(5)

Rij
µν is thus a generalization of curvature tensor. Consider now any skew hermitian

matrix Wµ with elements W ij
µ = Aijµ for i 6= j and W ij

µ = 0 for i = j. It belongs

to the subalgebra of sp(12, C) made by all null track generators. This means that

commutators between null track generators are null track generators too. In this

way

∑
i,j 6=i

[Ā†ijµ , Ajiν ] = tr[W̄ †
µ,Wν ] = 0.

Hence we can delete the mixed term in LEH .
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LHE =
1

2
{∂†µtr Aν − ∂νtr Ā†µ + [tr Ā†µ, tr Aν ]}ē†µeν

= −1

2
[
G

∇µ,
G

∇ν ]ē
†µ(xa)eν(xa)

= R. (6)

Here
G

∇ = −
G

∇† is the gravitational covariant derivative
G

∇ = ∂ + tr A. As we have

claimed, we see that gauge fields in R are only the diagonal ones. Conversely, we’ll

show that other gauge fields in the Standard Model correspond to non diagonal

components.

3 The kinetic term

Until now we have obtained no terms which describe gauge interactions. In this

section we find a such term, with the condition that it hasn’t to change Einstein

equations. One option is as follows:

LGB = −tr
[
∇̄†µ,∇ν

]
ē†µeν

[
∇̄†α,∇β

]
ē†αeβ (7)

We use newly the correspondence between (1, I, i, j, k, iI, jI, kI) and gamma ma-

trices:

LGB = −1

4
tr(γaγbγcγfγgγhγmγn) ·

·
[
∇̄†µ,∇ν

]ab
ē†cµefν

[
∇̄†α,∇β

]gh
ē†mαenβ

Here we use letters a, b, c, d for indices which run on Gamma matrices, α, β, µ, ν for
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3.1 Symmetry breaking

spatial coordinates indices and ijk for gauge indices.

In the next section we’ll see that physical fields arise in three families, determined

by the choice of a subspace inside Y . This is true both for fermionic and bosonic

fields. Thus the indices with letters a, b, c, d run over the three families. Exploiting

calculation

LGB = Rij
abµβR

abji
να ē

†µ
c e

cν ē†αd e
dβ − 4Rij

acµβ ē
†aµRcbji

να e
α
b e

dβ ē†αd +

+Rij
acµβ ē

†aµecβRcbji
να ē

†ν
c e

α
b

= Rij
abµβR

abjiµβ − 4Rij
cβR

cjiβ +RijRji (8)

Rij
βµ was defined in (5), while Rij

µ = Rij
βµe

β and Rij = Rij
βµe

βe†µ. You understand in

a moment that for i 6= j we have Rij
acβµR

jiacβµ = tr
∑

(ac) F
(ac)
µν F (ac)µν . The index

(ac) runs over three fields families and F(ac)µν is a strength field tensor. In this way

the terms Rijν
β Rjiβ

ν and RijRji are terms which mix families. Conversely, for i = j

we have

LGB = RacβµR
acβµ +R2 − 4Rα

µR
µ
α

which is the Gauss-Bonnet topological term and so it doesn’t change the Einstein

equations.

3.1 Symmetry breaking

The combination of LHE and LGB gives to gravitational gauge field
G

A a potential

with form

G

A2 −
G

A4.
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This potential has non trivial minimums which imply a non-trivial expectation value

for
G

A. Moreover, inside SGB we find the following kind of terms for other fields A:

〈
G

A2〉A2 − A4.

In this way we have a mass for gauge fields A and another potential with non-

trivial minimums. Therefore, also gauge fields A have non-trivial expectation values.

Finally, such expectation values give mass to fermionic fields via terms

ψ†〈A〉ψ.

There is no need for a scalar Higgs boson. Obviously, inside 〈·〉 there must be a

contraction with eµ to preserve covariance.

4 Standard model interactions

In this section we construct a local field theory with gauge group Sp(12, C), showing

that it includes gravitational field, SU(5)-Yang-Mills fields and three families of

fermions with local symmetry SU(5). A Grand Unified Theory based on SU(5)

symmetry was already proposed by Howard Georgi and Sheldon Glashow in 1974.

To understand how this theory includes in turn the Standard Model, please refer to

the original work[5]. Nevertheless our framework uses a very different mechanism

of symmetry-breaking which doesn’t make use of Higgs bosons. In this manner it

circumvents the major problem in G-G model. Such model predicts in fact the

proton decay via virtual Higgs bosons, a phenomenon never observed.

The gauge fields Aij are 6×6 skew adjoint hyperionic matrices Ā† = −A. These

matrices form the Sp(12,C) algebra which has 156 generators ω with ω̄† = −ω.
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ω =



~y b+~b c+ ~c d+ ~d e+ ~e m+ ~m

−b+~b ~a1 f + ~f g + ~g h+ ~h p+ ~p

−c+ ~c −f + ~f ~a2 s+ ~s q + ~q r + ~r

−d+ ~d −g + ~g −s+ ~s ~a3 k + ~k t+ ~t

−e+ ~e −h+ ~h −q + ~q −k + ~k ~a4 v + ~v

−m+ ~m −p+ ~p −r + ~r −t+ ~t −v + ~v ~a5


Consider now the subalgebra of the following form with complex (not hyperionic)

components except for y which remains hyperionic:

ω =



~y 0 0 0 0 0

0 ~a1 f + ~f g + ~g h+ ~h p+ ~p

0 −f + ~f ~a2 s+ ~s q + ~q r + ~r

0 −g + ~g −s+ ~s ~a3 k + ~k t+ ~t

0 −h+ ~h −q + ~q −k + ~k ~a4 v + ~v

0 −p+ ~p −r + ~r −t+ ~t −v + ~v ~a5


Moreover we put the additional condition ~a =

∑
l ~al = 0. The field y = tr ω is

the only one which contributes to Ricci scalar. Conversely, all other fields belong

to a SU(5) subgroup, which defines the Georgi - Glashow grand unification theory.

The symmetry breaking in Georgi - Glashow model is induced by Higgs bosons in

representations which contain triplets of color. These color triplet Higgs can mediate

a proton decay that is suppressed by only two powers of GUT scale. However, our

mechanism of symmetry breaking doesn’t use such Higgs bosons, but descends

from the expectation values of quadratic terms AA, which derive from non trivial

minimums of a potential AA− AAAA. So we circumvent the problem.

Restrict now the attention to the SO(1, 3)⊗ SU(2)⊗U(1)⊗ SU(3) generators,

that are the generators of standard model plus gravity.
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ω =



~y 0 0 0 0 0

0 ~a1 f + ~f 0 0 0

0 −f + ~f ~a2 0 0 0

0 0 0 ~a3 k + ~k t+ ~t

0 0 0 −k + ~k ~a4 v + ~v

0 0 0 −t+ ~t −v + ~v ~a5


We’ll show in a moment that all standard model fields transform under this subgroup

in the adjoint representation. In this way themselves are elements of Sp(12,C)

algebra, explicitly:

ψ = ψ1 + Iψ2 =



0 e −ν dcR dcG dcB

−e∗ 0 ec −uR −uG −uB
ν∗ −ec∗ 0 −dR −dG −dB
−dc∗R u∗R d∗R 0 ucB −ucG
−dc∗G u∗G d∗G −uc∗B 0 ucR

−dc∗B u∗B d∗B uc∗G −uc∗R 0


We have used the convention of Georgi - Glashow model, where the basic fields of

ψ1 are all left and the basic fields of Iψ2 are all right. We have indicated with c the

charge conjugation. Moreover, in our formalism, ψ1 and ψ2 are pure quaternionic

fields. The subscripts R,G,B indicates the color charge for the strong interacting

particles (R=red, G=green, B=blue).

In Georgi - Glashow model the fermionic fields are divided in two families. The

first one transforms in the representation 5̄ of SU(5) (the fundamental representa-

tion). It is exactly the array (ω1j) in the matrix above, with j = 2, 3, 4, 5, 6. This

array transforms in fact in the fundamental representation for transformations in

every SU(5) ⊂ Sp(12, C) which act on indices values 2÷ 6.
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The second family transforms in the representation 10 of SU(5) (the skew sym-

metric representation). Unfortunately it isn’t the sub matrix (ωij) with i, j =

2, 3, 4, 5, 6. This is in fact the skew adjoint representation of Sp(10, C), which is

skew hermitian and not skew symmetric.

Do not lose heart. We’ll see in a moment that such adjoint representation is

a quaternionic combination of three skew symmetric representations, one for every

fermionic family. This concept could appears cumbersome, but it will be clear along

the following calculations.

Theorem 4 The skew adjoint representation of Sp(m) is a quaternionic combina-

tion of three skew symmetric representations of U(m) plus a real skew symmetric

representation (which is also skew hermitian).

Proof. Consider a fermionic matrix ψ which transforms in the adjoint representa-

tion of Sp(m):

ψ → UψU † (9)

Take then a matrix ψ′ with ψ′k = ψ. Its transformation law under U(m) is easily

derived when this group is constructed by using imaginary unit i or j. This means

U(m) 3 U = exp(iαrΣ
r) α ∈ R; r = 1, 2, 3,

with Σ generators of U(m) whose complex entries have i as imaginary unit,

or

U(m) 3 U = exp(jαrΣ
r) α ∈ R; r = 1, 2, 3,

with Σ generators of U(m) whose complex entries have j as imaginary unit.

We substitute ψ with ψ′k inside (9):
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ψ′k → Uψ′kU † = Uψ′UTk.

Here we have used the relation kλ = λ∗k for λ ∈ H without k component. We see

that ψ′ transforms in the skew symmetric representation:

ψ′ → Uψ′UT

We obtain a complex matrix ψ′ (with i as imaginary unit) when ψ has the form

Ak +Bj with A,B real matrices. Indeed:

ψ′ = −ψk = −Akk −Bjk = A−Bi

Sending ψ in ψ∗ we bring ψ′ to −ψ′ and so we satisfy the skew symmetry. Finally

we can always write

ψ = ψ0 + ψ1k + ψ2i+ ψ3j

In this decomposition, ψ1, ψ2, ψ3 are complex matrices with complex unit respec-

tively i, j, k. Explicitly:

ψ1 = φ1 − iξ1 = φ1
1 − iξ11 + I(φ2

1 − iξ21)

ψ2 = φ2 − jξ2 = φ1
2 − jξ12 + I(φ2

2 − jξ22)

ψ3 = φ3 − kξ3 = φ1
3 − kξ13 + I(φ2

3 − kξ23).

Here all φ1, φ2, ξ1, ξ2 are real fields. In this way, any ψ1,2,3 transforms in the skew

symmetric representation of U(m) when this group is built by the correspondent

imaginary unit (i for ψ1, j for ψ2 and k for ψ3). Hence they define the famous three
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fermionic families plus a real skew symmetric field ψ0. CVD

The interaction Lagrangian can be defined as follows (with ∇ = eµ∇µ):

tr(ψ†∇ψ) = tr(k∗ψ†1∇ψ1k) + tr(i∗ψ†2∇ψ2i) + tr(j∗ψ†3∇ψ3j)

−tr(i∗φ†2∇ξ3i)− tr(j∗φ
†
3∇ξ1j)− tr(k∗φ

†
1∇ξ2k)

−tr(ψ†0∇ψ0)

= tr(ψ†1∇ψ1kk
∗) + tr(ψ†2∇ψ2ii

∗) + tr(ψ†3∇ψ3jj
∗)

−tr(φ†2∇ξ3ii∗)− tr(φ
†
3∇ξ1jj∗)− tr(φ

†
1∇ξ2kk∗)

−tr(ψ†0∇ψ0)

= tr(ψ†1∇ψ1) + tr(ψ†2∇ψ2) + tr(ψ†3∇ψ3)

−tr(φ†2∇ξ3)− tr(φ
†
3∇ξ1)− tr(φ

†
1∇ξ2)

−tr(ψ†0∇ψ0) (10)

Every term L in the lagrangian is intended to be integrated over Sp(1):

L =⇒
∫
Sp(1)

dg gLg−1.

In such a way, the only terms which survive are I-complex. The third last line in

(10) regroups the fermionic terms of Georgi-Glashow model for three families in

representation 10. If we restrict ∇ to SU(5), it can be written as

tr

( ψ∗1 ψ∗2 ψ∗3

)
∇


ψ1

ψ2

ψ3




where every ψn is now constructed with i as imaginary unit. This term is man-

ifestly invariant under global SU(3) (or SU(3) ⊗ SU(3) if we consider also the
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I-component). However this flavour symmetry is soon broken by mixed terms in

the second last line of (10). These terms give a reason to CKM and PMNS matrices

which appear in the Standard Model.

In this formalism, given ω ∈ su(3)⊗su(2)⊗u(1), the transformation δψ = [ω, ψ]

corresponds to the usual transformation δψ = ωψ in the standard model formalism.

Fields in different families are related by transformations in Sp(1) ≈ SU(2), ie

by rotations in the three dimensional space with base vectors i, j, k. Generators of

Sp(1) are

ω =
~y

6



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

with ~y ∈ ImH.

Their diagonal form suggests an identification between this group and the gravi-

tational group SU(2)⊂SO(1,3). If the two groups coincided, all fields would transform

correctly under SU(2)⊂SO(1,3). By extending this group to the entire SO(1, 3), we

see that boosts exchange left fields with right fields.

It’s remarkable that three families have to exist also for bosonic particles (pho-

ton, W±, Z, gluons) although they are probably indistinguishable. Note also that

fields ψ appearing here don’t match exactly with fermionic fields of Standard model.

The relation with these is however very simple. Using the correspondence between

hyperions and γγ, the fields ψ acquire two extra indices (row and column indices

in γγ):
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ψ −→ ψAB

The standard Dirac fields have 4 components ψC given by

ψAB = WABCψC

where WABC is any constant object which satisfies

W ∗ABCWABD = 1CD =⇒ ψ∗ABψAB = ψ∗CψC

W ∗ABCγγBFWAFD = γγCD =⇒ ψ∗ABγγBFψAF = ψ∗CγγCDψD

5 Fermions from a vector superfield

In this section we show that all fermionic and bosonic fields can be joined in a

unique superfield. This procedure doesn’t need new exotic particles as squarks or

fotino; conversely it predicts the existence of right and sterile neutrinos. We start

by introducing I-complex grassmannian coordinates θ = θ1 + Iθ2 and θ̄ = θ1 − Iθ2

with obvious fundamental products:

θθ = θ1θ1 + θ1Iθ2 + Iθ2θ1 − θ2θ2 = 0 + Iθ1θ2 − Iθ1θ2 − 0 = 0

θ̄θ̄ = θ1θ1 − θ1Iθ2 − Iθ2θ1 − θ2θ2 = 0− Iθ1θ2 + Iθ1θ2 − 0 = 0

θθ̄ = θ1θ1 − θ1Iθ2 + Iθ2θ1 + θ2θ2 = −Iθ1θ2 − Iθ1θ2 = −2Iθ1θ2

Accordingly, there will exist grassmannian derivatives ∂g and ∂̄g with ∂gθ = ∂̄gθ̄ = 1

and ∂gθ̄ = ∂̄gθ = 0. At this point we can define a new supersymmetric algebra as

follows:
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Q = ∂g − eµθ̄∂µ ; [Q,Pν ] = θ̄(∂νe
µ)Pµ

Q̄ = ∂̄g − θē†ν∂ν ; {Q, Q̄} = 2IΣµPµ

2eνH = eν + e†ν Pµ = −I∂µ

2Σµ = 2eµH + θθ̄
[
eρ∂ρē

†µ − ē†ρ∂ρeµ
]

The most general superfield is then

V (x, θ, θ̄) = eµ(x)Aµ(x) + θψ(x) + χ̄(x)θ̄ + θθ̄F (x).

To obtain an irreducible representation of SUSY algebra we introduce a covariant

derivative D̄ which commutes both with Q and Q̄:

D̄ = ∂̄g + θeν∂ν

In terms of shifted coordinates yµ = xµ + eµθθ̄, the action of D̄ simplifies consider-

ably:

D̄V (y, θ, θ̄) = ∂̄gV (y, θ, θ̄)

In this way we can define a supersymmetric chiral field by imposing ∂̄gV (y, θ, θ̄) = 0,

whose solution is clearly

V ≡ V (y, θ) = eµ(y)Aµ(y) + θψ(y).

In the original coordinates this gives

V (x, θ, θ̄) = eµ(x)Aµ(x) + θψ(x) + θθ̄eν∂ν(e
µAµ)
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Infinitesimal SUSY transformations induced by εQ+ ε̄Q̄ are easily computed:

δψ = −2ε̄eνH∂ν(e
µAµ)

δAµ = εeµψ (11)

From V we can construct a generalized covariant derivative by substituting Aµ with

∂µ + Aµ and ψ with ∂g + ψ:

∇ = eµ(∂µ + Aν) + θ(∂g + ψ) + θθ̄eν∂ν [e
µ(∂µ + Aµ)]

It can be useful to introduce derivatives ∂gµ and fields ψµ in representation
(
1⊗ 1

2

)
=(

1
2
⊕ 3

2

)
with properties eµ∂gµ = ∂g and eµψµ = ψ. In this way

∇ = eµ∇µ = eµ
{
∂µ + Aµ + θ(∂gµ + ψµ) + θθ̄∂µ[eν(∂ν + Aν)]

}
New SUSY transformation laws emerge for ∂µ and ∂g:

δ∂g = −2ε̄eνH(∂νe
µ∂µ + eµAµ∂ν)

δ∂µ = εeµ∂g (12)

By composing quadratic and quartic powers of ∇ and ∇†, you can extract all terms

which appear in Standard Model, plus Hilbert-Einstein and Gauss-Bonnet terms.

It’s remarkable that standard fermionic fields take the role of gauginos for stan-

dard gauge fields. In this way the right up quarks are gauginos for gluons, while right

electrons are gauginos for W bosons. Clearly this is permitted because fermions

and bosons transform in the same representation of Sp(12,C). In such a way our

theory includes SUSY N = 1 with no need for new unknown fermionic or scalar
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particles, apart from one exception.

SUSY predicts the existence of a new colored fermionic sextuplet which sits on

diagonal in ψ. Inside it we can include a conjugate neutrino (νc), a sterile neutrino

(N) and a conjugate sterile neutrino (N c). Explicitly

ψ =



N 0 0 0 0 0

0 νc 0 0 0 0

0 0 νc 0 0 0

0 0 0 N c 0 0

0 0 0 0 N c 0

0 0 0 0 0 N c


.

This field commutes with any gauge field in U(1)⊗SU(2)⊗SU(3) and so it hasn’t

electromagnetic, weak or strong interactions. Moreover it gives a Dirac mass to

neutrinos via the term

tr (ψ̄†eµAµψ) = ψ̄†ijeµAklµ ψ
mnf (ij)(kl)(mn).

Here f (ij)(kl)(mn) are structure constants for SU(6) and masses for neutrinos are

eigenvalues of < eµAµ >.

6 The octonions hypothesis

We indicate by x a generic “number” equipped with 7 imaginary components. This

number can be considered both hyperionic and octonionic, where octonions are

defined as here ⇒ http : //en.wikipedia.org/ wiki/Octonion. Explicitly:

x = a+ i1b+ i2c+ i3d+ Iw + i1Is+ i2Ig + i3It
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a, b, c, d, w, s, g, t ∈ R.

Note that we have written i1, i2, i3 in place of i, j, k. The tabular summarizes the

differences between hyperionic and octonionic case:

Hyperions (n 6= m) Octonions (n 6= m)

inim = εnmqiq inim = εnmqiq

Iin = inI Iin = −inI

I2 = −1 I2 = −1

(inI)
†

= −inI (inI)† = −inI

in(imI) = (inim)I in(imI) = −(inim)I

in(imI) = −(imI)in in(imI) = −(imI)in

in(inI) = (inin)I = −I in(inI) = (inin)I = −I

(inI)(imI) = −inim (inI)(imI) = −inim
(inI)2 = 1 (inI)2 = −1

It’s considerable that all differences (also non-associativity of octonions) arise by

imposing Iin = −inI without changing in(imI) = −(imI)in. Let consider the

following octonionic field:

Φ = eµ(x)Aµ + i1λ
1
α(θ)ψα1 + i2λ

2
β(θ)ψβ2 + i3λ

3
γ(θ)ψ

γ
3

Φ = EAWA EA =


λ1α

λ2β

λ3γ

eµ

 WA =
(
i1ψ

α
1 ; i2ψ

β
2 ; i3ψ

γ
3 ; Aµ

)

Aµ = ReAµ + IImAµ ψαn = Reψαn + IImψαn
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Here ψαn and θα are usual Weyl spinors with two components (α = 1, 2). λnα are

octonionic functions of θα. At this point we can define a generalized covariant

derivative and a generalized metric:

∇A =
(
∂αg1 + i1ψ

α
1 ; ∂βg2 + i2ψ

β
2 ; ∂γg3 + i3ψ

γ
3 ; ∂µ + Aµ

)

HAB = Re (EAEB)

We conjecture that actions of both Standard Model and General Relativity are

comprised inside an action of the following type:

S =

∫ √
H d10X (E2)AB(∇2)AB + g

∫ √
H d10X (E4)ABCD(∇4)ABCD g ∈ R

XA =


θ1α

θ2β

θ3γ

xµ

 H = det(HAB)

In a such action, super-symmetry is replaced by covariance under generalized coor-

dinates transformations:

X → X ′(X)

x → x′(x, θ)

θ → θ′(x, θ)

Interpret now Aµ and ψn as 6 × 6 complex matrices. Moreover we want Aµ being
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gauge field for SU(6) and so it will be skew-hermitian. Finally we choose ψn skew-

symmetric in such a way to have inψn skew-hermitian. Hence W will result skew-

hermitian too.

Φij = eµ(x)

(
Aijµ + δij

G

Aµ

)
+ i1λ

1
α(θ)(ψα1 )ij + i2λ

2
β(θ)(ψβ2 )ij + i3λ

3
γ(θ)(ψ

γ
3 )ij

G

Aµ = i(aµ + Ia′µ) + j(bµ + Ib′µ) + k(cµ + Ic′µ)

aµ, a
′
µ, bµ, b

′
µ, cµ, c

′
µ ∈ R

(ψαn)i i = 0

Here we have considered as fermionic the imaginary components proportional to in

and inI, except for the trace. This last is taken bosonic and obviously it gives the

gravitational field. Moreover we can take λnα(θ) = θnα as the most natural metric.

At this point we can study the action of SU(6) on W , where SU(6) is built with I

as imaginary unit:

WA → U †WAU − U †∂AU U ∈ SU(6)

Aµ → U †AµU − U †∂µU

inψ
α
n → U †inψ

α
nU − U †∂αgnU

⇓

ψαn → UTψαnU

In the last step we have used ∂αgnU = 0 and inI = −Iin. You see that fermionic

fields still transform in the skew-symmetric representation and so they fit easily

with standard fermionic fields.
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However, skew-hermitian matrices with entries in O don’t define a Lie Algebra,

due to non-associativity of octonions. Conversely they define a ternary algebra,

whose corresponding gauge theory is well discussed in [1]. Their exponentiated

version is now the unitary “quasi”-group T6, where the word “quasi” underlines

the lack of associativity, which is an ordinary request in the usual definition of

group. In such theories the field strength results:

RAB = ∂AWB − ∂BWA + [WA,WB, g]

where g is an auxiliary octonionic field and the 3-bracket is defined as follows:

[u, v, x] = Du,vx =
1

2
(u(vx)− v(ux) + (xv)u− (xu)v + u(xv)− (ux)v) .

Gauge transformations of W and g are given in [1], while R transforms homoge-

neously as expected. Note that, if u, v, x belong to an associative algebra, then

[u, v, x] = 1
2
[[u, v], x]. To satisfy all requests of your model, we have to find an

auxiliary field g such that:

Re [Aµ, Aν , g][Aρ, Aσ, g]eµeνeρeσ = Re [Aµ, Aν ][Aρ, Aσ]eµeνeρeσ

Re [
G

Aµ,
G

Aν , g]eµeν = Re [
G

Aµ,
G

Aν ]e
µeν

where in the left side we consider in, inI octonionic, while in the right side we

consider them hyperionic. Clearly much work remains to do, but is clear that,

moving from Hyperions to Octonions, we lost all the oddities of previous sections,

namely the tripling of SU(6) gauge fields and the existence of a strange real field

ψ0. The resulting symmetry group will be T6 in place of Sp(12, C).
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6.1 Extension of Ricci scalar

6.1 Extension of Ricci scalar

Note that such framework provides fermionic contributes to Ricci scalar. Explicitly:

R = RBOS +

∫
d2θ

(
−e†µ[∇µ,∇α]λα + λ†β[∇†β,∇ν ]e

ν + λ†β{∇†β,∇α}λα
)

Varying the last term with respect to ψ we obtain

∇†βλ
α = (∂†β − iψ

†
β)λα = 0.

A good distributional solution is then

λa =

∫
d2ξ ξαeiθ

†τψ†
τ .

Considering that [∇†β,∇ν ] = −i[ψ†β,∇ν ] = i[∇ν , ψ
†
β], the second last term becomes

(2ND LAST ) = i

∫
d2ξ† d2θ ξ†βe−iθ

τψτ

[
∇ν , ψ

†
β

]
eν (13)

= i

∫
d2ξ† d2θ ξ†β

(
1− iθτψτ −

1

2
θτψτθ

γψγ

)[
∇ν , ψ

†
β

]
eν

Apply now the standard formulas for grassmannian integrals, ie θτθγ = 1
2
ετγθ2,∫

d2θ θ2 = 2,
∫
d2θ = 0 and

∫
d2θ ξ†βθτ = εβτδ2(ξ† − θ). Relation (13) simplifies in

(2ND LAST ) =

∫
d2ξ†

(
δ2(ξ† − θ)ψβ +

i

2
ξ†βψγψγ

)[
∇ν , ψ

†
β

]
eν

= ψβ[∇ν , ψ
†
β]eν , (14)

where we have used
∫
d2ξ† ξ†β = 0. In this way we have obtained the kinetic term

27



for fermions directly from Ricci scalar. However this works exactly if λα is a 6× 6

matrix of spinor, and not a simple spinor. It’s notable that the same process can

be utilized to obtain kinetic terms for gauge fields by starting with an eµ intended

as a 6× 6 octonionic matrix of vectors:

eµ = ηµe−
∫
dxνAν(x) ηµν = Re (ηµην).

7 Antigravity

The kinetic piece in lagrangian (8) includes the following term which mixes gravity

with electromagnetism:

−1

4
f (G)(EM1)(EM2)A(G)

µ A(EM1)
ν

(
F (EM2)µν + αf (EM3)(EM1)(EM2)A(EM3)µA(EM1)ν

)

(15)

Remember that AFT includes three indistinguishable electro-magnetic fields, with

non-trivial commutators. In this way A(G) is the gravitational gauge field, A(EMn)

is the n-th electromagnetic field and α is the fine structure constant. In the realistic

case of null torsion, the gravitational gauge field can be rewritten in function of the

tetrad field:

A(G)bc
µ =

1

2
eν[b∂[µe

c]
ν] +

1

4
eµde

νbeσc∂[σe
d
ν]

From now we take a low energy limit so defined: eii = 1 with i = 1, 2, 3, e00 = θ(x)

and ∂0θ(x) = 0. Varying with respect to e we obtain:

δA
(G)bc
µ

δesτ
=

1

2
eν[bδc]s δ

τ
[ν∂µ] +

1

4
eµse

νbeσcδτ[ν∂σ]
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δA
(G)bc
µ

δgωτ
= 2eωs

δA
(G)bc
µ

δesτ
= eω[ceb]νδτ[ν∂µ] +

1

2
δωµe

νbeσcδτ[ν∂σ]

The component with c = ω = τ = 0 and b 6= 0 results:

δA
(G)b0
µ

δg00
= −θ−1δ0µ∂b −

1

2
θ−1δ0µ∂b = − 3

2θ
δ0µ∂b

A(EM)ρA(EM)
ρ A(EM)µ δA

(G)b0
µ

δg00
=

3

2θ
∂bA

(EM)0A(EM)ρA(EM)
ρ

The minus sign has disappeared because we have reversed the derivative. The

variation of quartic term in (15) with respect to δg00 is then given by

−α
4
· 3

2θ
∂bf

bA(EM)0A(EM)ρA(EM)
ρ = −∂bf b

3α

8θ
V (θ2V 2 − A2)

f b =
∑
cade

f (bo)cafdea ≈ 4
xb

r
.

Here we have indicated with V the electric potential and with A the magnetic vector

potential. The sum inside f is over the three electromagnetic fields.

It’s so clear that varying the complete action with respect to gµν we obtain a

new term for Einstein equations. In the Newtonian limit we can substitute g00 =

−(1− 2φ) and R00 − (1/2)Rg00 = ∇2φ where φ is the newtonian potential. Hence:

2∇2φ ≈ 8πT 00 = 8π
−2√
−g

δ
√
−gLmatt
δg00

≈ ∂b
xb

r
24παV (θV 2 − θ−1A2) (16)

For radial potential we have
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∂bφ =
xb

r
∂rφ.

In such case

CG = ∂rφ ≈ 12παV (θV 2 − θ−1A2)

Now we insert the appropriate universal constants and approximate θ with 1:

CG ≈ 12πα
(Gε0)

3/2

c4Lp
V (V 2 − c2A2) = kV (V 2 − c2A2) (17)

Here Lp is the Planck length, equal to
√

~G/c3. The multiplicative constant is

k =
12π

137
· (6, 67 · 10−11 · 8, 85 · 10−12)3/2

(3 · 108)4 · (1, 62 · 10−35)
= 30, 27 · 10−33

(
C3s4

Kg3m5

)
.

This means that for having a weight variation (on Earth) of about 10% (∆CG = 1)

we need an electrical potential of 1011 Volts. These are 100 billions of Volts. For

V = Q/r and A = 0 we have:

CG =
k

(4πε0)3
· Q

3

r3
= 2, 198 · 10−2

(
m4

s2C3

)
Q3

r3

Note that the sign of CG is the sign of Q and then we obtain antigravity for negative

Q. We associate to this interaction an equivalent mass m, substituting CG =

Gm/r2. We have

m =
k

G
V 3r2 =

k

G(4πε0)3
Q3

r
= 3, 293 · 108

(
Kgm

C3

)
Q3

r

which is a negative mass for negative Q. Negative mass implies negative energy via

the relation E = mc2. Intuitively, if we search a similar relation for gravi-magnetic
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field (which is ∇× (g0i), i = 1, 2, 3), we should find the same formula (17) with an

exchange between V and cA.

We calculate now at what distance the gravitational attraction between two

protons is equal to their electromagnetic repulsion.

G
m2

r2
=

k2

G2(4πε0)6
Q6
p

r4
=

1

4πε0

Q2
p

r2

k2Q4
p

G2(4πε0)5
= r2

=⇒ r2 = 79, 49 · 10−70m2 =⇒ r = 8, 916 · 10−35m = 5, 516Lp

Note that we are 20 orders of magnitude under the range of strong force and 23

orders of magnitude under the range of weak force. In this way the gravitational

force doesn’t affect the making of nucleus and nucleons.

8 Conclusion

In the course of paper we have demonstrated that a satisfactory gauge theory exists

which includes all the four forces. However, if we try to quantize the theory, we

encounter the well known renormalization problems for diagrams which involve the

tetrad field eµ. The complete theory, exposed in [3], overcomes this trouble by

quantizing theory before the choice of a fixed spin-network, in such a way that eµ

has still to born.

Another possibility is suggested by the analogy between eµ and θ in the superfield

expansion, united to the role of eµ inside the generalized coordinate yµ. In fact

we can consider eµ as another quadruplet of coordinates, so that the other fields

become:
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Aµ(xν) → Aµ(xν , eν)

ψµ(xν) → ψ(xν , eν)

d4x → d4xd4e (18)

A conjugated momentum peµ will be associated to eµ, while in Feynmann dia-

grams we’ll have to substitute eν with −I∂/∂peν .

Back to the present work, in the last section we have seen that a potential of

1011 Volts can induce relevant gravitational effects. They are too many for notice

variations in the experiments with particles accelerators. However they sit at the

border of our technological capabilities.

We hope that a future team work shall explore this theory in detail, deepening

also the triality with strings and loop gravity, highlighted in [3].
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