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ABSTRACT. The Frobenius-Perron transfer operator of the harmonic sawtooth map is investigated and
some expressions for its eigenvalues are found.
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1. THE RIEMANN ZETA FUNCTION AS THE MELLIN TRANSFORM OF A UNIT INTERVAL MAP
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Figure 1. The Harmonic Sawtooth map



2 THE TRANSFER OPERATOR OF THE HARMONIC SAWTOOTH MAP

The Riemann zeta function can be written as the Mellin transform of the unit interval map multiplied
by s=EL. (1, 2.3]

s—1"

w(x) =z~ (e 27! +2-1)
:{n—xn(n—i—l) n;ﬂ<:t<%

(1)

Culs) =C(s)¥—s ¢ N”
:Szi—i/o w (x)z* " lda

1
= S+1/ |z~ (z [z +2—1)z*1da
s—1/q
:ss+1 n(zn+z—1)2* " 'da
S_lnzl n+1 (2)
7% s—|—1<_n1_5—n(n—|—1)_5—sn_s>
— Ts—1 s(s+1)
_i nn+1)"5—nt=5+sn=*
— s—1
1

= 12 nn+1)"5—nt=5+sn=°

1.1. The Transfer Operator.

This article will focus on the Frobenius-Perron transfer operator of w(z) [2, 3] defined by
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The transfer operator maps densities to densities whereas w(x) maps points to points.

1.1.1. Polynomial Eigenfunctions.
Following the paper of Vepstas, [2, 3] expanding f(z) about = =0 gives
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After rearranging sums and equating terms with the same power of = we get matrix elements Z,, j such that
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with boundary conditions
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The matrix elements Z,, ; are finite sums of rationally weighted zeta functions evaluated at integer argu-

ments.
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where m A k=max (m, k). Note that Y, .1 =0 since the singular point ¢(1) never appears in the expression.

1.1.2. Diagonals.

Let us define two functions, one of which is just a shift of the other, which gives the coefficients of the

diagonals of Z
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then the eigenvalues of L, are the diagonals of Z
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The trace of L,, is given by
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