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Abstract

In the reading Nyambuya (2009), it is shown that one can write down a general spin Dirac
equation by modifying the usual Einstein energy-momentum equation via the insertion of the
quantity “s” which is identified with the spin of the particle. That is to say, a Dirac equation
that describes a particle of spin 1

2
s~σ where ~ is the normalised Planck constant, σ are the

Pauli 2 × 2 matrices and s = (±1,±2,±3, . . . etc). What is not clear in this reading (i.e.
Nyambuya 2009) is how such a modified energy-momentum relation would arise in Nature.
At the end of the day, the insertion by lathe of hand of the quantity “s” into the usual Ein-
stein energy-momentum equation, would then appear to be nothing more than speculation.
In the present reading – by making use of the curved spacetime Dirac equations proposed
in the work Nyambuya (2008), we move the exercise of Nyambuya (2009) from the realm of
speculation to that of plausibility.

Keywords: curved spacetime Dirac equation; Spin; Unified Field Theory
PACS (2012):

1 Introduction

In the reading Nyambuya (2009), it is shown that the dispersion relation or the Einstein energy-
momentum equation E2 = s2p2c2 +m2

0c
4 leads to a General Spin Dirac Equation. That is to say,

the resulting Dirac equation describes a particle of spin 1
2s~σ where ~ is the normalised Planck

constant, σ = σ1i+σ2j+σ3k where σk are the usual 2×2 Pauli matrices and i, j, k are the three
orthonormal basis on the x, y, z grid. In the dispersion relation E2 = s2p2c2 + m2

0c
4, E is the

total energy of the particle, p is its momentum, m0 its rest mass and c = 2.99792458× 108 ms−1

is the speed of light in vacuum. What was not clear in this reading (i.e. Nyambuya 2009) is how
such an energy-momentum would arise. At the end of the day, the insertion by lathe of hand of
the quantity “s” into the usual Einstein energy-momentum equation E2 = p2c2 + m2

0c
4, would

then appear to be nothing more than speculation. Herein, by making use of the curved spacetime
Dirac equations proposed in Nyambuya (2008), we move the exercise of Nyambuya (2009) from
the realm of speculation to that of plausibility.

In the equation E2 = s2p2c2 +m2
0c

4, it is not clear why the quantity “s” has to take integral
values s = (±1,±2,±3, . . . etc). Because spin has to take integral and half integral values, it was
assumed without proof that this quantity “s” has to take integral values. This off cause is a hole
in the theory that needs to be filled. This reading will furnish this dearth in the general spin Dirac

∗email: physicist.ggn@gmail.com

1



General Spin Dirac Equation (II) 2

equation theory set in Nyambuya (2009). We not only demonstrate how “s” comes to be part
of the dispersion relation E2 = p2c2 +m2

0c
4, but how and why this quantity comes to take only

integer values. In summary, the aim or achievement of this work if twofold i.e.:

(1). We unambiguously demonstrate how the quantity “s” becomes a part of the Einstein energy-
momentum dispersion relation.

(2). We prove that “s” can only take integral values s = (±1,±2,±3, . . . etc).

(3). We generalise the notion of a ‘general spin Dirac equation’ to include all the three curved spacetime
Dirac equations.

Now, the synopsis of this reading is as follows: in the next section, we are going to give
a brief exposition of the curved spacetime Dirac equation first presented in Nyambuya (2008).
In the successive section, we are going to dwell on the main thrust of the present reading by
demonstrating how “s” comes to be part of the dispersion relation E2 = s2p2c2 +m2

0c
4 and as-

well how and why “s” comes to take only integer values. Thereafter, we give a general discussion
and the conclusions drawn thereof.

2 Curved Spacetime Dirac Equations

As is well known, the Dirac equation is derived from the equation ηµνp
µpν = m2

0c
2 where ηµν

is the usual flat Minkowski metric with spacetime signature [−1,+1,+1,+1]. We know that its
equivalent in curved spacetime is given by:

gµνp
µpν = m2

0c
2, (1)

where the four momentum pµ is given by pµ = (E,p) and gµν is the metric of spacetime. In order
to aid the reader in visualizing (1) in a way that conforms to the end that we seek, we have to
this equation in its equivalent matrix form, i.e.:

m2
0c

2 =


E/c
px
py
pz


T 

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g21 g32 g33




E/c
px
py
pz

 . (2)

Above, the ‘T ’ in the superscript of the column vector denotes the transpose operation on that
column vector.

Now, in writing down the curved spacetime version of the Dirac equation (in the reading
Nyambuya 2008), we made a novel suggestion of writing down the spacetime metric tensor gµν as:

g(a)µν =
1

2

{
γ(a)µ , γ(a)ν

}
AµAν , (3)

where Aµ is some four vector and a = (1, 2, 3). In general, the metric g
(a)
µν is such that:

[g(a)µν ] =


A0A0 λA0A1 λA0A2 λA0A3

λA1A0 −A1A1 λA1A2 λA1A3

λA2A0 A2A1 −A2A2 λA2A3

λA3A0 λA3A1 λA3A2 −A3A3

 , (4)

where for (a = 1;λ = 0), (a = 2;λ = +1) and (a = 3;λ = −1). In the case (a = 1), there are
no off-diagonal terms in the metric, while for the cases a = (2, 3), we have off diagonal terms
(see Nyambuya 2008). As shown there-in Nyambuya (2008), the resulting three curved spacetime
Dirac equations are given by: [

i~Aµγµ(a)∂µ −m0c
]
ψ = 0, (5)

c⃝ 2012 G. Gadzirayi Nyambuya
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where:

γ
(a)
0 =

(
I2 0
0 −I2

)
, γ

(a)
k = 1

2

(
2λI2 iλ

√
1 + λ2σk

−iλ
√
1 + λ2σk −2λI2

)
. (6)

In the above (and hereafter), I2 is the 2× 2 identity matrix, σk is the usual 2× 2 Pauli matrices
and the 0’s are 2× 2 null matrices. It is not a difficult exercise to show that multiplication of (5)

from the left handside by the operator
[
i~Aµγµ†(a)∂µ +m0c

]
leads us to the Klein-Gordon equation

gµν∂
µ∂νψ = (m0c

2/~)2ψ provided ∂µA
µ = ∂µAµ = 0. The condition ∂µA

µ = ∂µAµ = 0, should
be taken as a gauge condition restricting this four vector. In the next section, we are going to
demonstrate the Lorentz invariance of the curved spacetime Dirac equation (5).

2.1 Lorentz Invariance

To prove Lorentz invariance1 two conditions must be satisfied:

(1). Given any two inertial observers O and O′ anywhere in spacetime, if in the frame O we have
[i~Aµγµ(a)∂µ −m0c]ψ(x) = 0, then [i~A′µγ′µ(a)∂

′
µ −m0c]ψ

′(x′) = 0 is the equation describing

the same state but in the frame O′.

(2). Given that ψ(x) is the wavefunction as measured by observer O, there must be a prescription
for observer O′ to compute ψ′(x′) from ψ(x) and this describes to O′ the same physical state
as that measured by O.

Now, since Aµ and ∂µ are both vectors, the quantity Aµ∂µ is obviously a scalar. From this, it
follows that a Lorentz transformation is not going to affect ψ and γµ(a) i.e.:

ψ′(x′) =

 ψ(x), Case (I)

Sψ(x), Case (II)
, and γ′µ(a) = γµ(a). (7)

The meaning of the above is that the matrices γµ(a) are constant matrices and the Dirac four

component ψ is in Case (I) scalar. The Dirac four component ψ is constrained to only be a scalar.
In Case (II), we can have this transform under a multiplication of ψ by some constant matrix
S. If S = S(r, t), then this matrix will have to be such that Aµγµ(a)∂µS = 0 in-order for Lorentz

invariance to hold.
The present exercise to re-demonstrate the Lorentz invariance of (5) has been conducted to

demonstrate the all -important difference that we must always take note of, that is, in the bare
Dirac theory, the γ-matrices and as-well the four component function ψ, do transform under a
Lorentz transformation. This is not the case here; γµ(a) is a constant matrix and the Dirac four

component function ψ is scalar. In the reading Nyambuya (2008), this very important fact that
γµ(a) is a constant matrix and that the Dirac four component function ψ can be scalar, was missed

altogether, hence the need to make this clear at the present moment in the further development of
the curved spacetime Dirac equation. Additionally, we have shown here that equation (5) is not
Lorentz covariant but Lorentz invariant. The orginal Dirac equation is not Lorentz invariant but
Lorentz convariant – this is something to be noted as it distinguishes the present effort from that
of Dirac (1928a,b).

1There is a difference between Lorentz invariance and Lorentz covariance. In most cases as in the present,
Lorentz invariance is used to mean Lorentz covariance. We are not going to go onto explaining what is the
difference between the two. We sincerely believe that our target readership knows this and if they do not, they
have access to consult any good textbook that deals with the theory of relativity (special/general). The usual Dirac
equation is Lorentz covariant and not Lorentz invariant. We have chosen to use the term Lorentz invariance instead
of Lorentz covariance because the term Lorentz invariance is what is usually used. In-order that we are on the same
level of understanding with the general reader, we do not have to deviate from the standard terminology.

c⃝ 2012 G. Gadzirayi Nyambuya
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2.2 General Magnitude of a Four Vector

In this section, we are going to look into the issue of the magnitude of a four vector. For example,
the square of the magnitude of the four momentum pµ is such that gµνp

µpν = m2
0c

4. If we
take a general four vector V µ, then gµνV

µV ν = κ2. Notice that in gµνp
µpν = m2

0c
4, m2

0c
4 is a

constant, it takes the value everywhere all the times; so that in general we can assume that the κ
in gµνV

µV ν = κ2, is a constant aswell. We ask, “In general, does κ have to be a constant?” The
answer to this question is no, it only has to be a scalar since the quantity gµνV

µV ν is a scalar. A
constant is a special kind of a scalar, it is a scalar that takes the same value everywhere all the
times. If κ is a general scalar, then κ = κ(r, t).

Given the above i.e. κ = κ(r, t), what we seek here is a function that gives the value of κ at
the different (r, t)-points. Since g 0

0 = g 0
0 (r, t) is itself a scalar, we propose that, in general, the

magnitude of all four vectors in spacetime be such that κ ∝ g 0
0 , so that:

gµνV
µV ν = κ2∗g

0
0 , (8)

where κ∗ is a constant which takes the same value everywhere all the times for-all observers. The
quantity κ∗ has the dimensions of V µ. One will ask the good question “What is the motivation
for (8)?” Well, the motivation for the proposal (8) is that if we do not have such a setting, then
contrary to experience, the rest mass of a particle in spacetime will have to depend on where the
particle is, and when it is at that place where it is – simple, m0 = m0(r, t). To avoid this, we have
no choice but to impose (8).

2.3 Energy Solutions

The energy-momentum equation for the particles described by equation (5) is:

(A0)2E2 −
(
2λA0Akpkc

)
E −

(
Ak
)2
p2kc

2 + λc2
(
AjAkpjpk

)
i ̸=j

= m2
∗c

4, (9)

where in line with (8), we will have m2
∗c

4 = m2
0c

4A0A
0 = m2

0c
4(A0)2, where m0 is a constant; and

is the rest mass of the particle in question. Now, dividing (9) throughout by (A0)2, we will have:

E2 −
(
2λ
Ak

A0
pkc

)
E −

(
Ak

A0

)2

p2kc
2 − λc2

[(
Aj

A0

)(
Ak

A0

)
pjpk

]
j ̸=k

= m2
0c

4. (10)

Notice that if m∗ were a constant, then m0 = m∗/A
0(r, t) = m0(r, t) which goes against experi-

ence. It is for this reason that we afore-proposed the condition (8).
Now, setting sk = Ak/A0; and inserting these settings into the above, we will have:

E2 −
(
2λskpkc

)
E −

(
sk
)2
p2kc

2 − λc2
[
sjskpjpk

]
j ̸=k

= m2
0c

4. (11)

Making E the subject of the formula, we will have:

E = λskpkc±
√
(sk)

2
p2kc

2 + (λskpkc)2 + λc2 [sjskpjpk]j ̸=k +m2
0c

4. (12)

From this, it is clear that we will have three negative energy particles and three positive energy
particles. We are going to justify in the next section the insertion of “s” into the Einstein energy-
momentum equation E2 = s2p2c2 +m2

0c
4.

3 Justification of E2 = s2p2c2 +m2
0c

4 : s ∈ N
Let us consider the case λ = 0. Space is usually assumed to be isotropic. This assumption finds
solid justification form experience since observations reveal no directional properties of space, the
deeper meaning of which is that space must have no preferential direction or directional properties.
In the case of the metric (3), isotropy would mean that the space parts of the four vector Aµ must

c⃝ 2012 G. Gadzirayi Nyambuya
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all be equal or identical to each other, that is Ak = Aspace for-all j = (1, 2, 3). If this were the case
that Ak = Aspace, then s

k = s for-all k = (1, 2, 3). From this, it follows that for the case λ = 0,
we will have the energy-momentum equation:

E2 = s2p2c2 +m2
0c

4. (13)

Thus, the equation E2 = s2p2c2 +m2
0c

4 finds its sort for justification. What is left is to justify
why and how “s” comes to take integral values s = (±1,±2, 3, . . . etc) i.e. why and how s ∈ N
where N in the set of all positive and negative integers.

Before we go on to supply the above mentioned proof, let us write down the general spin
dispersion relationship for a particle whose spacetime is isotropic. This we are going to do so that
we supply not only the proof of why and how s ∈ N for the case λ = 0, but for the other two cases
as-well i.e. λ = ±1. This general dispersion relationship a particle whose spacetime is isotropic is
given by:

E = λs

(
3∑

k=1

pk

)
c±

√√√√s2p2c2 + λs2c2
3∑

j=1

3∑
k=1

[pjpk]j ̸=k +m2
0c

4. (14)

Now, (5) can be written in the general Schrödinger formulation as ĤΨ = ÊΨ where Ĥ and Ê
are the Hamiltonian and energy operators respectively. So doing, i.e. writing (5) said form, we
will have: [

i~γ0skγk(a)∂k − γ0m0c
]
ψ = −i~∂ψ

∂t
. (15)

From this, it follows that the new General Spin Dirac Hamiltonian H(a)
D (s) is given by:

H(a)
D (s) = i~γ0skγk(a)∂k − γ0m0c. (16)

This General Spin Dirac Hamiltonian commutes with the total angular momentum operator J (s)

i.e.
[
J (s),H(a)

D (s)
]
= 0 for-all a = (1, 2, 3) and for-all s = (±1,±2,±3, . . . etc). The prove of

this assertion is supplied in the Appendix. This fact that
[
J (s),H(a)

D (s)
]
= 0 is important as

it tells us that J (s) is the total angular momentum of the particle since it commutes with the
Hamiltonian. The operator J (s) is such that:

J (s) = L(s) + S(s), where, S(s) =
1

2
~Σs and L(s) = −i~r ×∇s, (17)

where:

Σs = s1S1i+ s2S2j + s3S3k and ∇s = is1
∂

∂x
+ js2

∂

∂y
+ ks3

∂

∂z
. (18)

The Sk’s are 4× 4 matrices such that:

Sk =

(
σk 0
0 σk

)
=⇒ SiSj = δijI4, (19)

where δij is the Kronecker-delta function which is such that δij = 1 for i = j, and δij = 0 for i ̸= j
and I4 is (and hereafter) the 4×4 identity matrix. Clearly, L(s) is the orbital angular momentum
of the particle and likewise, S(s) is the associated spin matrix.

Now, to prove that s ∈ N, as a first step, let us define the 4 × 4 spin-operators Ŝx = ~S1,
Ŝy = ~S2 and Ŝz = ~S3. Further, let us define the 4× 4 spin-ladder operators Ŝ± which are such
that:

c⃝ 2012 G. Gadzirayi Nyambuya
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Ŝx
± = Ŝy ± iŜz

Ŝy
± = Ŝz ± iŜx

Ŝz
± = Ŝx ± iŜy

. (20)

In the above (and hereafter), (x, y, z) represent (k = 1, 2, 3) respectively. NB: hereafter, we shall
without notice interchange the labels or indices i.e., sometimes we shall use k = (1, 2, 3) and
sometimes k = (x, y, z).

Now, these 4 × 4 spin-ladder operators are related to the operators Ŝk by the commutator
relationship: [

Ŝi, Ŝj
±

]
= ±~δijŜj

±. (21)

Now, we propose the following eigenvalue equation:

Ŝkψ = sk~Skψ. (22)

How does such an eigenvalue equation come about? Well, in-order to have this eigenvalue equation,
the operator Ŝk should be defined such that:

Ŝk = i~2Sk ∂

∂Sk
, (23)

where Sk is the kth-phase of the particle. That is, if pµ is the four momentum of a particle and
xµ is its four position in spacetime, then, the phase of this particle S is such that S = pµx

µ. This
phase can be split into four components as S = p0x

0 + p1x
1 + p2x

2 + p3x
3. The components Sk

then are such that S0 = p0x
0 and S1 = p1x

1, S2 = p2x
2, S3 = p3x

3, so, we can write Sk = pkx
k

and the k’s are not summing up as is the case in the usual Einstein summation convention. Now,
the wavefunction of any particle is a function of the phase, that is, ψ ∝ eiS/~. Further, the phase of
a curved spacetime Dirac particle is given by S = S(s,p, p0) = s0p0x

0 + s1p1x
1 + s2p2x

2 + s3p3x
3

so that ∂S/∂Sk = sk. With all this, it is now clear, how the eigenvalue equation (22) arises or
comes about.

Now, multiplying (22) by Sk from the left, we will have SkŜkψ = sk~ψ. From this, it follows
that we can rewrite (15) as:[

iγ0SkŜkγk(a)∂k − γ0m0c
]
ψ = −i~∂(S

kŜkψ)

∂t
. (24)

Acting on this equation from the left by Ŝz
±, one can easily show by using the fact (21) (namely[

Ŝz, Ŝz
±

]
= ±~Ŝz

±) that the resulting equation is:[
i~γ0

{
sxγx(a)∂x + syγy(a)∂y + (sz ± 1)γz(a)∂z

}
− γ0m0c

]
ψsz±1 = −i~∂ψsz±1

∂t
, (25)

where ψsz±1 = Ŝz
±SkŜkψ: in this equation i.e. (25) sx and sy remain unchanged by the application

of the operation Ŝz
±, while sz changes by one unit. The above equation describes a particle of spin

1
2~σsz±1 where σsz±1 = sxσxi + syσyj + (sz ± 1)σzk. The operator Ŝ+ increases the sz by one

unit, while the operator Ŝ− decreases this quantity by one unity. If we want to simultaneously
raise or lower the spin for-all the sk : k = (x, y, z), then we have to act on (25) using all the three
operators i.e. Ŝx

±, Ŝ
y
± and Ŝz

±. This means we can define the operator:

Π̂
(
Ŝk
±

)
= Ŝx

±Ŝ
y
±Ŝz

±, (26)

which then acts on (25). That is, acting from the left on (25) using this new operator Π̂
(
Ŝk
±

)
,

and thereafter performing the necessary algebraic operations, the resulting equation is:

c⃝ 2012 G. Gadzirayi Nyambuya
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[
i~γ0(sk ± 1)γk(a)∂k − γ0m0c

]
ψsk±1 = −i~∂ψsk±1

∂t
, (27)

where ψsk±1 = Π̂
(
Ŝk
±

)
SkŜkψ, that is, ψsk±1 is the wavefunction of the particle ψ where the

spin quantum sk of ψ has either been increased (+) or decreased (−) by one unit for-all the three
directions xyz.

Now, to prove that “sk” only takes integral values, we simple have to prove that one of the
values of “sk” is an integer. Since “sk” only changes by integral values, if just one of the values of
“sk” is an integer, then, all the other values of this quantity must be integers too – surely, this is not
difficult to understand. To prove that just one of the values of “sk” is an integer is not a difficult
task to perform either. We know that in Minkowski spacetime where |Aµ| ≡ 1: ∀µ = 0, 1, 2, 3,
the energy-momentum dispersion relation is given by the Einstein energy-momentum equation
E2 = p2c2 + m2

0c
4; in this equation sk ≡ 1 for-all k = (1, 2, 3). If the Minkowski spacetime is

envisaged as the lowest energy state for any quantum configuration, then sk = 1 for-all k = (1, 2, 3)
is one of the quantum mechanical states for any particle. Clearly, this is sufficient proof that one
of the values of “sk” for-all k = (1, 2, 3), is an integer. From the foregoing, it thus follows that
“sk” will take only integral values i.e. sk = (±1,±2,±3, . . . etc). This completes the proof that
sk ∈ N for-all k = (1, 2, 3). We have not only proved that “sk” is an integer, but in so doing, we
have also proved why spin is a quantised physical quantity.

4 Metric of a General Spin Dirac Particle

From the above findings, we can compute the general spacetime metric of a general spin Dirac
particle. We have argued that the four vector Aµ is such that sk = Ak/A0. From this, we can write
down a four spin quantum number sµ. To do this, we note that the four vector Aµ can be written
with its components as Aµ = (A0, Ak). Further, this can be written as Aµ = A0(1, Ak/A0) =
A0(1, sk). The quantity (1, sk) is the four spin quantum number that we seek i.e., sµ = (1, sk)
where s0 = 1. For our convenience, let us set A0 = Φ. From this, the four vector Aµ can now be
written as Aµ = Φ(1, sk) = Φsµ. Now, substituting Aµ = Φsµ into (3), we will have:

g(a)µν =
1

2
Φ2
{
γ(a)µ , γ(a)ν

}
sµsν . (28)

Written in full, g
(a)
µν is such that:

[g(a)µν ] = Φ2


1 λs1 λs2 λs3
λs1 −s21 λs1s2 λs1s3
λs2 λs2s1 −s22 λs2s3
λs3 λs3s1 λs3s2 −s23

 . (29)

From this, we see that the metric is controlled by one variable function Φ = Φ(r, t) since λ and
sk are all constants. Thus, (29) is the metric of a general spin curved spacetime Dirac particle.

The usual metric of spacetime gµν has ten potentials. This was reduced to four potential by the
introduction of the four vector Aµ. Now, these for potential has been reduced to just one potential.
This is a tremendous simplification – from ten potentials to just one potential! At this point, the
reader may legitimately want to ask if gµν has the same meaning as in Einstein’s General Theory
of Relativity (GTR)? To answer this question, one has to visit the reading Nyambuya (2010).
It is shown therein (Nyambuya 2010) the vector Aµ gives raise to the nuclear force non-abelian
gauge field. The details of the Unified Field Theory presented in Nyambuya (2010) are still being
worked. What the reader can do for now is simple take Aµ as a four vector and nothing else. As
to whether this vector represents a gravitational, electric or any force field for that matter is of no
consequence here since we are not concerned with the force field which this four vector represents.

c⃝ 2012 G. Gadzirayi Nyambuya
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5 Discussion and Conclusion

We strongly believe that this reading justifies the assertion made in Nyambuya (2009), namely
that the modified Einstein dispersion relation E2 = s2p2c2 +m2

0c
4 leads to a general spin Dirac

equation. When this assertion was made in Nyambuya (2009), it was not clear then, as to how
such a dispersion relation would arise in Nature. We have shown that the curved spacetime Dirac
equation proposed in Nyambuya (2008) can be used to justify the modified Einstein dispersion
relation E2 = s2p2c2 +m2

0c
4. Not only have we justified this, we have also argued that “s” must

take integral values. This means that, the work presented in Nyambuya (2009) has been put on
a much more acceptable pedestal. The reason we say this is because we believe that despited
the fact that the true meaning and significance the curved spacetime Dirac equation derived in
Nyambuya (2008) has not been found yet, these curved spacetime Dirac equations are credible,
mathematically and physically legitimate equations. Actually, it has been demonstrated that these
curved spacetime Dirac equation are key to the attainment of a general spin Dirac equation.

Insofar as the unification programme of physics is concerned, we believe that the writing down
of an acceptable general spin Dirac equation is a step in the right direction. If discovered, the final
unified theory is expected to be such that a “single” equation/principle will explain about every
observable phenomenon. Amongst others, it is expected that a single equation must be able to
explain all particles from a simple unifying principle. In the light of the aforestated, it is somewhat
sad to say that the current state of physics vis the equations purporting to explain particles – is very
“ugly”. For example, the Schrödinger equation describes spin-0 atoms and molecules (Schrödinger
1926), the Klein-Gordon equation describes spin-0 particles (that is carriers of forces), while the
Dirac equation describes spin-1/2 particles, and the Rarita-Schwinger equation describes spin-3/2
particles (Ratita & Schwinger 1941). From this rather “ugly” trend, does it mean we have to look
for another equation to describe spin-2 particles, and then another for spin-5/2 particles etc? This
does not look beautiful, simple, or at the very least suggest at the far and deeper end, a unification
of the Natural Laws. It is on this note that we feel the present endeavours are worthwhile.

Another interesting outcome is that (5) is no longer restricted to the description of Fermions,
but Bosons aswell. If this equation proves successful as happened with Dirac’s original equation,
then, it will perhaps be the first equation in physics to describe both Fermions and Bosons. Further,
this equation shares some common ground with super-symmetry theories – that is, theories that
try and unify quantum mechanics and gravitation; in that it allows for the transmutation of a
Fermion to a Boson and vice-versa. We believe this equation might be of interest to physicist
working in this field. To transform a Fermion to a Boson and vice-versa, one simple acts on the

wavefunction ψ with the operator Π̂
(
Ŝk
±

)
. In physical terms, we have no idea what an operation

on ψ with Π̂
(
Ŝk
±

)
is. For all we know is that from an abstract mathematical standpoint, this is

what one must do.

5.1 Conclusion

Assuming the acceptability (correctness) of the ideas propagated herein, we hereby make the
following conclusions:

(1). We have demonstrated that the curved spacetime Dirac equations naturally lead to a general spin
Dirac equation.

(2). The spin of these curved spacetime Dirac particles is found to be naturally quantised i.e. it comes
in integral multiples of a fundamental basic unit of spin. This spin quantization strongly appears to
be wholly a part and parcel of the fabric of spacetime itself.

(3). The fact that the spin of a particle is measured to be the same independent of the orientation; this
fact suggests very strongly that spacetime must be isotropic on a quantum scale. If this were not the
case that space is isotropic on the quantum scale, then, according to the ideas propagated herein, a
particles’ spin will be different when measured in different directions.
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(4). It has been shown that the curved spacetime Dirac equation leads to a Dirac wavefunction that is a
scalar, i.e., the resulting four component wavefunction ψ – together with the γµ

(a)-matrices – is not
affected by a Lorentz transformation. Effectively, the resulting curved spacetime Dirac equation is
not Lorentz covariant, but truly Lorentz invariant in the true and stickiest sense of Lorentz invariant.

Appendix

We are going to prove the crucial assertion that we stated in on page (5) without any proof, that is:[
J (s),H(a)

D (s)
]
= 0, for-all a = 1, 2, 3. To begin, we know that J (s) = L(s) + S(s), from this, it

follows that [L(s),HD(s)]+ [S(s),HD(s)] = 0, and further, since S(s) = Sx(s)i+Sy(s)j+Sz(s)k
and L(s) = Lx(s)i+ Ly(s)j + Lz(s)k. Combining these facts, one obtains that:[

Jj(s),H(a)
D (s)

]
= 0, (A.1)

where j = x, y, z and Jj = Lj + Sj . So, if we can prove (A.1) for-all j = x, y, z and for-all

a = 1, 2, 3, we will have proved that
[
J (s),H(a)

D (s)
]
= 0 for-all a = 1, 2, 3. We only have to prove

this for just one of the three cases j = x, y, z, this prove is sufficient as prove for the remaining
two cases. We shall prove this for the case j = x.

Lx(s) = −i~I4
∣∣∣∣ y z
sy

∂
∂y sz

∂
∂z

∣∣∣∣ = −i~I4
(
ysz

∂

∂z
− zsy

∂

∂y

)
= −i~I4Lx(s), (A.2)

so that:

Jx(s) = −1

2
i~
(

2I2Lx(s)− sxσx 0
0 2I2Lx(s) + sxσx

)
, (A.3)

where Lx(s) = ysz∂z − zsy∂y. Now, since H(a)
D (s) = i~γ0skγk(a)∂k − γ0m0c, (A.1) implies that for

the case (a = 2), we will have:[
Jx(s), i~γ0skγk(2)∂k

]
−
[
Jx(s), γ

0m0c
]
= 0. (A.4)

In this way, our task is now much easier, if we can show that
[
Jx(s), γ

0skγk(2)∂k

]
= 0 and[

Jx(s), γ
0
]
= 0, we accomplish our mission. Let us start with the easier of the two, that is,

show that (−1
2 i~)

−1
[
Jx(s), γ

0
]
= 0.

(
−1

2
i~
)−1

Jx(s)γ
0 =

 2I2Lx(s) + sxσx 0

0 2I2Lx(s) + sxσx

 I2 0

0 −I2

 , (A.5)

so that:

(
−1

2
i~
)−1

Jx(s)γ
0 =

 2I2Lx(s) + sxσx 0

0 −2I2Lx(s)− sxσx

 , (A.6)

and:

(
−1

2
i~
)−1

γ0Jx(s) =

 2I2Lx(s) + sxσx 0

0 −2I2Lx(s)− sxσx

 . (A.7)

Now, subtracting (A.7) from (A.6), one obtains the desired result, namely (−1
2 i~)

−1
[
Jx(s), γ

0
]
≡

0, hence
[
Jx(s), γ

0m0c
]
= 0. We are now left with demonstrating that

[
Jx(s), γ

0skγk(2)∂k

]
= 0.
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γ0skγk(2)∂k =
1

2

 I2s
k∂k i

√
2skσk∂k

i
√
2skσk∂k I2s

k∂k

 (A.8)

so that
(
− 1

2 i~
)−1

[Jx(s)]
[
γ0skγk(2)∂k

]
is such that:

1

2

 2I2Lx(s) + sxσx 0

0 −2I2Lx(s)− sxσx

 I2s
k∂k i

√
2skσk∂k

i
√
2skσk∂k I2s

k∂k

 (A.9)

which is equal to:

1

2

 [2I2Lx(s) + sxσx] (s
k∂k) i

√
2 [2I2Lx(s) + sxσx] (s

kσk∂k)

i
√
2 [2I2Lx(s) + sxσx] (s

kσk∂k) − [2I2Lx(s) + sxσx] (s
k∂k)

 (A.10)

so that
[
γ0skγk(2)∂k

] [(
−1

2 i~
)−1 Jx(s)

]
is such that:

1

2

 I2s
k∂k i

√
2skσk∂k

i
√
2skσk∂k I2s

k∂k

 2I2Lx(s) + sxσx 0

0 −2I2Lx(s)− sxσx

 , (A.11)

which implies
[(
− 1

2 i~
)−1 Jx(s)

] [
γ0skγk(2)∂k

]
=
[
γ0skγk(2)∂k

] [(
−1

2 i~
)−1 Jx(s)

]
, hence we arrive

at our desired result namely
[
Jx(s), γ

0skγk(2)∂k

]
= 0. According to our earlier arguments, if follows

that the main result
[
J (s),H(a)

D (s)
]
= 0 for-all a = (1, 2, 3) and for-all s = (±1,±2,±3...etc) is

attained.

Q.E.D.
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