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Many infectious diseases as well as cancers are strongly influenced by molecular level
processes. In several cases, the advent of rapid genetic sequencing, already avail-
able in the case of HIV, means that patient-specific treatment based on genetic
data becomes conceivable. Targeted therapies use drugs to interfere with specific
biomacromolecules involved in disease development. Given the complexity of emer-
gent mutations in such biomacromolecules and in the disease itself, clinicians need
to resort to decision support software for patient-specific treatment. Incorporating
model based molecular level information into such decision support systems offers
the potential to substantially enhance personalised drug treatment by providing
first principles based ranking of drug efficacy on a specific patient. Patient specific
molecular models of targeted macromolecules are constructed and molecular dy-
namics simulations are used to rank drug binding affinities. Here we present results
from clinically relevant protein variants that arise from two distinct pathologies:
HIV and lung carcinoma. Our findings demonstrate the potential for molecular
simulations to achieve an accurate ranking of drug binding affinities on clinically
relevant time scales and represent the first steps towards the eventual goal of pro-
viding data derived from patient specific simulation to enhance clinical decision
support systems. The approach gives rapid, robust, and accurate computational
results and is dependent on an automated workflow for building, simulating and
analysing models distributed over petascale computing resources which are com-
prised of tens to hundreds of thousands of compute cores.
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1. Introduction1

Clinical decision support systems (CDSS) have been widely promoted as a means2

of processing available information and retrieving protocols for diagnosis, staging3

personalised treatment and follow-up with the overall aim of improving patient4

outcomes[12]. The general framework is based on the statistical profiling of pa-5

tients in order to find matching genotypes and phenotypes. Personalised healthcare6

is recommended to new patients according to these profiles. Most of the efforts7

made so far focus on diagnosis based on clinical features and treatment based on8
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clinical practice. With the explosion in genomic and proteomic data, an increasing9

number of features can be included in CDSS. Indeed, CDSS are developing into10

environments that provide tools to integrate clinical and genomic features, assess11

the quality of recommendations, and evaluate the efficiency of the computer aided12

diagnosis and treatment.13

The many possible choices of drugs in some diseases, and the promising progress14

made in pharmaceutical development for others, invite the prospect of incorporat-15

ing drug ranking into CDSS in order to predict drug sensitivity and resistance16

at the genotypic level. In the HIV case, several existing CDSS are in widespread17

use today, such as Stanford HIVdb (hivdb.stanford.edu), ANRS (www.anrs.fr)18

and RegaDB (www.rega.kuleuven.be/cev/regadb/, the contents of which are de-19

pendent on the gathering of information from the published literature and expert20

opinion. Studies assessing these systems indicate that while performance is of a21

generally high standard†, with little difference in accuracy between CDSS for se-22

quences frequently observed in patients, over 30% of sequences exhibit at least23

minor discordances in the level of drug susceptibility assigned by these different24

systems [9, 31]. The idea that computational modelling could be used to enhance25

or complement such systems has been widely discussed [22]. In response the EU26

FP6 funded ViroLab project (http://www.virolab.org) [41] developed a proto-27

type clinical decision support system which differs from those currently available28

by incorporating a Popperian approach for personalised drug ranking (Figure 1).29

An automated workflow supplements the pre-existing ‘Baconian’ decision support30

systems with Popperian predictive modelling and drug ranking protocols based on31

molecular simulations [5]. We emphasize, however, that at present simulation is32

not employed in patient care and traditional, purely ‘Baconian’ CDSS remain the33

current approach for resistance interpretation.34

Personalised drug ranking studies require access to both appropriate patient35

data and an integrated IT infrastructure linking such data to high performance36

computing (HPC) resources through fast networks. To this end, we are collaborating37

with clinicians who provide access to patient specific genomic data on HIV/AIDS38

and lung cancer cases. We have developed a highly automated molecular simulation39

based free energy calculation workflow tool, the Binding Affinity Calculator (BAC)40

[34], to perform drug ranking with optimal efficiency. We have integrated our Ap-41

plication Hosting Environment (AHE) [50] with BAC, so that applications can be42

launched automatically on numerous HPC resources on geographically distributed43

grids and federations of grids. The AHE is a lightweight hosting environment for44

running applications on grid resources: it provides a high level of abstraction for45

simulations and analyses of molecular level drug-protein interactions, choreograph-46

ing the vast number of steps, including data transfers and production molecular47

dynamics that demand access to tens of thousands of cores on petascale compute48

resources, which in totality constitute our workflow. The input to this workflow is49

a specified drug and target protein combination along with the mutations present50

in the patient derived sequence relative to a defined wildtype. In the HIV domain51

the use of viral genetic data from individual patients is already routine and we52

envisage our simulations using pre-existing systems and protocols to acquire the53

† Performance of CDSS was assessed by looking at the success in reducing viral load to unde-
tectable levels 12, 24 and 48 weeks after a change in treatment determined after CDSS consultation.
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Figure 1: The architecture of a clinical decision support system incorporating molec-
ular simulation. CDSS consists of three main problem solving components - patient
clinical database search, drug binding affinity from molecular simulations, and lit-
erature mining - that share a common genetic knowledge of the individual patient.
Our approach (green) uses MD simulations to estimate the binding affinity of var-
ious drugs with their targeted protein, and ranks drug efficacy for patients who
have a specific protein variant. The decision support kernel integrates both the
simulation and text mining information into integrated decision support for drug
ranking.

necessary sequence information [41]. CDSS are less advanced for cancer drug tar-54

gets; in response to the need to facilitate coordinated access to such patient genetic55

data the Individualised MEdiciNe Simulation Environment (IMENSE) [51] has been56

developed. This system was developed as part of the EU FP7 VPH project Contra-57

Cancrum (http://www.contracancrum.eu/) which aims to develop a composite58

multilevel platform for simulating malignant tumour development, along with tu-59

mour and normal tissue response to therapeutic modalities and treatment schedules60

in order to optimise the disease treatment procedure in the patient’s individualized61

context. The simulations of proteins and drugs relevant to the treatment of lung62

cancer presented in this paper represent the smallest biological length and time63

scales involved in this process.64

2. Drug Resistance Rankings From Molecular Simulation65

The incorporation of predictive models into CDSS requires three main problems to66

be overcome: identification of a metric correlated to clinical response which can be67

computed from simulation, generation of sequence specific models, and the entire68

workflow to be turned around on a clinically relevant timescale.69

The first consideration is to select a metric to assess the resistance level of a70

particular genetic sequence. The clinical impact of mutations is determined by a71

number of factors, including the strength of drug binding but also of changes in72

enzymatic efficacy and interactions with other host or disease factors. In the case73

of HIV-1 there is evidence that genotype to phenotype mapping correlates strongly74

with clinically observed outcomes [11]. The assays upon which these conclusions are75

founded concentrate upon drug binding alone and do not consider other potential76
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confounding factors. While the experiments upon which these studies are based are77

too time consuming and expensive to be applied routinely in the clinical context,78

the results suggest that measurements of the strength of drug binding would be a79

useful, predictive metric to obtain from simulations.80

In order to quantify the strength of drug binding it is necessary to consider the81

underlying physics of binding. The binding of reactants at constant temperature82

and pressure is driven by the minimisation of the thermodynamic potential known83

as the Gibbs free energy, G. The strength of protein ligand binding is characterised84

by the change in this potential, ∆G, (also known as the binding free energy) which85

is given by:86

∆G = ∆H − T∆S (2.1)

at thermodynamic temperature T , where ∆H is the change in enthalpy and ∆S87

the change in entropy upon binding. The more negative the ∆G value, the more88

tightly a drug binds to its target. Any attempt to evaluate the relative strength of89

drug binding equates to an estimate of the changes in ∆G. In this paper we have90

use the term ‘binding affinity’ as synonymous with the binding free energy, ∆G;91

however it is also widely used to refer to the equilibrium association constant for92

drug and protein, Ka. The two quantities are related via the van’t Hoff equation:93

∆G = −RT lnKa (2.2)

where R is the gas constant and T the thermodynamic temperature. A change in94

binding free energy of 1.4 kcal mol−1 corresponds to a 10 fold change in Ka; changes95

of this magnitude result in significantly reduced inhibitor efficacy.96

The ultimate cause of differences in the binding affinity residues in changes to97

the structure and chemical character of target proteins induced by alterations to98

their sequence. In order to describe these features we require molecular models of99

the protein-drug interactions of interest. The basis of any such modelling must be100

experimentally generated structures (usually derived from x-ray crystallography).101

In general, however, there are many more possible sequences of interest than avail-102

able crystal structures; therefore mutations must be inserted in silico, a process103

known as homology modelling [32]. In the case of HIV, a variety of studies have104

been conducted which attempt to predict resistance levels from models of protein105

structure [6, 17, 40]. Such studies, based on molecular docking techniques, have106

had some success but fail to account for several factors that play important roles in107

determining binding strength in many situations [20, 26]. One such factor, protein108

flexibility and dynamics, can be accounted for using molecular dynamics (MD) sim-109

ulations, in which atoms are characterised by their mass, partial charge and bonding110

characteristics, while Newtonian mechanics is used to evolve the system and allow111

the sampling of relevant protein conformations. Recently, much evidence has built112

up suggesting that the application of MD may help to improve the accuracy and113

reproducibility of binding affinity estimates [16, 26, 42], and it is this technique114

upon which the present article focuses. It is important to recognise, however, that115

MD is a computationally expensive technique: to produce results on a clinically116

relevant timescale requires the exploitation of petascale supercomputing resources117

[33, 36].118
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In order to be considered as viable candidates for incorporation in CDSS it is119

vital that binding affinity calculations from MD simulations are not only validated120

using comparisons to experimental findings but are also reproducible. Whilst many121

earlier MD studies claim agreement with experimental binding affinity values, it is122

often hard to determine whether this is representative of the simulation protocol123

and free energy calculation method or merely fortuitous. In this paper we report124

simulations of the HIV-1 protease and the human epidermal growth factor receptor125

(EGFR), implicated in the development of lung carcinoma, which address both of126

these issues. In addition we present an example of how such simulations could be127

used to evaluate resistance levels for a HIV-1 protease sequence in which existing128

CDSS produce ambiguous results. These findings provide some of the groundwork129

necessary to fully validate this approach in readiness for its use in clinical settings.130

3. Binding Affinity Calculator131

In order to be included as part of a CDSS the results of MD simulations must132

not only be reliable and available in a timely manner but the clinician should133

not have to be aware of the complicated workflow used to produce them. This134

requirement prompted the development of the Binding Affinity Calculator (BAC)135

[34]. Originally developed to study drugs targetted at the HIV-1 protease, BAC has136

now been extended for investigation of drugs targetted against the HIV-1 reverse137

transcriptase and EGFR. Here we describe the simulation and analysis protocol138

utilised by BAC and the infrastructure and middleware that it exploits. We then139

discuss two examples of its use within the HIV-1 protease and EGFR systems.140

(a) Evaluation of the Binding Affinty141

Many approaches are available for calculating binding affinities from MD sim-142

ulations ranging from the theoretically exact, such as thermodynamic integration143

(TI), to the largely empirical, such as the linear interaction energy (LIE) method144

(excellent reviews of the subject are available by Gilson and Zhou [14], and Stein-145

brecher and Labahn [42]). The computational requirements of these methods tend146

to increase considerably as more physical detail is included in the model. The CDSS147

context means that simulation results must be turned around on a timescale of only148

a few days. In order to fulfill this requirement we employ the approximate Molecular149

Mechanics Poisson Boltzmann solvent accessible Surface Area (MMPBSA) method-150

ology [21, 25] which provides a compromise between rapidity and accuracy of cal-151

culation. This method possesses several limitations for computing absolute binding152

free energies. It does not implicitly account for free energy differences that arise153

due to conformational changes upon binding, possible variations in key protonation154

states, and changes due to explicit water-mediated binding between protein and155

ligand, all of which can provide significant contributions to the binding free energy156

[26, 46]. Despite these limitations, our previous work demonstrates that changes157

in binding affinity of less than 1 kcal mol−1 between HIV-1 protease mutants can158

be distinguished [43]. Closer agreement with experimental binding affinity values159

can be achieved by incorporating a normal mode (NMODE) [1] estimation of the160

entropic component of the binding free energy.161
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Both MMPBSA and NMODE computations are applied to configuration snap-162

shots generated over the course of MD simulations. The absolute free energy differ-163

ence of binding, ∆Gtheor, calculated using this methodology is given by:164

∆Gtheor = 〈∆Htheor〉M − 〈T∆Stheor〉N (3.1)

Here, 〈∆Htheor〉M denotes the average of the enthalpically dominated MMPBSA165

calculation over M snapshots, while 〈∆Stheor〉N denotes the average change in166

configurational entropy resulting from NMODE calculations across N snapshots.167

Enthalpies and configurational entropies were calculated at a frequency of 100 and168

5 snapshots/ns respectively.169

The enthalpic value of each snapshot is given by:170

∆Htheor = ∆H
MM
vdW +∆H

MM
ele +∆H

sol
pol +∆H

sol
nonpol (3.2)

where ∆HMM
vdW and ∆HMM

ele are the van der Waals and electrostatic contributions171

to the molecular mechanics free energy difference, respectively, and ∆Hsol
pol and172

∆Hsol
nonpol are the polar and nonpolar solvation terms, respectively.173

The molecular mechanics free energy differences (∆HMM
vdW and ∆HMM

ele ) were174

calculated using the SANDER module in AMBER 9 [4], with no cutoff for the175

non-bonded energies. The AMBER PBSA module was used to solve the linearized176

Poisson-Boltzmann equation to evaluate the electrostatic free energy of solvation177

∆Hsol
pol . The nonpolar solvation free energy ∆Hsol

nonpol was calculated from the sol-178

vent accessible surface area (SASA) using the MSMS program [37]. Normal mode179

calculations were performed in the AMBER NMODE module. Full details of the180

parameters used by BAC are give in Sadiq et al. [34].181

(b) Model Preparation182

Collections of the parameters used to describe atoms within MD simulations183

are known as forcefields, of which there are several well established examples avail-184

able to describe the amino acid constituents of proteins [15]. Once a structure of185

the sequence has been generated, mass, charge and bonding parameters are as-186

signed to each atom in the structure. Forcefield parameters for drug compounds187

are not, in general, included in standard forcefields and must be added seperately.188

The standard AMBER force field for bioorganic systems (ff03) [7] provided the189

protein parameters. Drug coordinates were extracted from the appropriate crys-190

tal structures and missing hydrogens incorporated using the PRODRG tool [39].191

Gaussian 03 [10] was used to perform geometric optimisation of all inhibitors at192

the HartreeFock level with 6-31G** basis functions. The restrained electrostatic193

potential (RESP) procedure, which is part of the AMBER9 package [4], was used194

to calculate the partial atomic charges. The force field parameters for the inhibitors195

were completely described by the general AMBER force field (GAFF) [45].196

(c) Simulation Protocol197

All simulations presented here were performed in the molecular dynamics pack-198

age NAMD2 [30] using the protocol incorporated into the BAC software (based on199
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that originally employed by Perryman et al. [29]) which has previously been suc-200

cessfully used to calculate binding free energies for a number of inhibitors bound201

to various HIV protease sequences [35, 43]. Each protein sequence is solvated in202

a cuboid box of TIP3P water molecules [18], with a minimum buffering distance203

of 14 Å in all three orthogonal dimensions. The system is then minimised with all204

protein and ligand heavy atoms constrained to their positions in the initial struc-205

ture. Each system is heated from 50 to 300 K over 50 ps and then maintained at206

a temperature of 300 K. Once the system reaches the correct temperature in all207

subsequent simulation steps the pressure is maintained at 1 bar. This results in the208

system sampling an isothermal isobaric (NPT) ensemble. The simulation proceeds209

for 200 ps before a mutation relaxation protocol is enacted. The relaxation protocol210

consists of the sequential release of constraints on each mutated residue (together211

with any residue within 5 Å) for 50 ps (constraints are maintained on the rest of212

the protein structure). This allows the residues to reorientate into more favourable213

conformations if necessary. After the 50 ps relaxation period the restraints are reap-214

plied to each region. The final equilibration stage is the gradual reduction of the215

restraining force on the complex from 4 to 0 kcal mol−1Å−2 during a 350 ps period.216

Following this, the systems are allowed to evolve freely (a more detailed description217

of the equilibration protocol is given in the Supplementary Information). The entire218

equilibration stage is designed to take 2 ns for all systems, meaning that this final219

stage varies in length according to the number of mutations that require relaxation220

in the previous stages. After the equilibration is complete, structures are output for221

analysis every picosecond. Each output snapshot is post processed using MMPBSA,222

meaning that a hundred sets of coordinates are analysed for each nanosecond of223

simulation. The more computationally expensive NMODE analysis is performed on224

every 20 snapshots, producing five entropy estimates per nanosecond of simulation.225

A detailed description of the setup and simulation protocol is provided in Sadiq226

et al. [34].227

A major challenge in the computational calculation of binding affinities is to228

obtain sufficient sampling of the energy landscape to produce converged results.229

Recent studies in our group [35] and by others [13] have indicated that using en-230

sembles of short simulations with subtly different initial conditions reduces the231

wallclock time taken to meet this requirement compared to computing single long232

trajectories. As a result of this observation, all free energy values reported in the233

following studies were obtained from ensembles of 50 replica simulations, generat-234

ing 4ns of production simulation, varying from one another only in the velocities235

initially assigned to the atoms in the simulation.236

(d) Computational Infrastructure and Middleware237

One essential requirement of a CDSS is that the validity of drug ranking relies238

not only on the correctness of the results, but on its timeliness. To support patient-239

specific medical care, the employed computers must be capable of running very240

large scale simulations within the time frames required in a clinical context [36]. The241

ensemble approach, dividing each calculation into a set of small replica simulations,242

lends itself well to the utilisation of distributed resources such as those available on243

the US Teragrid (www.teragrid.org), UK National Grid Service (www.ngs.ac.uk)244

and EU DEISA (www.deisa.eu) grids. The execution of a large number of replicas245
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(a) (b)

Figure 2: Three dimensional structures of the proteins simulated in the studies de-
scribed in this paper. The backbone of both proteins is shown in ribbon representa-
tion with the locations of the mutations under investigation indicated by coloured
balls and bound drugs using stick representation. (a) HIV-1 protease, bound to the
inhibitor lopinavir (the catalytic dyad is shown in stick representation). The loca-
tions of the mutations found in the multi drug resistant (MDR) mutants (described
in Table 1) used for the benchmark simulations and residue A71 are labelled. Pro-
tease is a homodimer and the location of each mutation is given the same colour
on both monomers. (b) EGFR bound to the inhibitor AEE788 with the locations
of G719, T790, and L858 highlighted.

in parallel also provides a significant improvement in terms of the turnaround time246

compared to running a single longer simulation. The approach is greatly facilitated247

by the current generation of petascale supercomputers which offer many tens of248

thousands of cores (planned future development of exoscale systems with many249

millions of cores will make the technique even more facile). The drawback of the250

ensemble approach is the need to manage the data for each replica individually. The251

BAC transparently implements data transfer and access to remote computational252

resources. BAC has recently been extended to take advantage of the Pilot-Job253

functionality provided in SAGA (Simple API for Grid Applications) to further254

enhance the efficiency of resource utilisation [23].255

4. HIV and Lung Carcinoma256

We have studied two systems where there is potential for molecular simulations257

to enhance future CDSS. The first is HIV-1 protease, for which traditional CDSS258

are well established; the second is epidermal growth factor receptor (EGFR), a259

drug target in lung cancer for which CDSS tools are only now being developed.260

Structures of both target proteins are shown in Figure 2.261
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(a) HIV-1 Infection262

As part of the EU ViroLab project we helped to create a prototype CDSS which263

provides a common environment for the integration of simulations ranging from the264

molecular to the population levels alongside traditional rules based systems [2, 41] (a265

demo of the system is available at the ViroLab portal: https://portal.virolab.266

org). To show the potential of integrating diverse systems such as traditional drug267

ranking systems, literature mining, patient data and predictive simulations into a268

single interface, a so-called Virtual Patient Experiment (VPE) was designed. The269

aim of the VPE is to take a patient sequence for which the ViroLab comparative270

drug ranking system (cDRS) provided discordant results for one of the available271

protease inhibitors and to use the other tools within the system to produce insight272

that could help a clinician facing a decision on how to treat this virtual patient.273

This scenario highlights a situation in which simulation could be particularly useful274

in enhancing resistance assessments; namely, when the much more rapid statistical275

CDSS approach (results from which may be available in a matter of minutes or276

seconds) fails to produce an unambiguous rating, perhaps due to the rarity of the277

mutations (or the particular pattern of mutations) present.278

The ViroLab cDRS allows the user to simultaneously obtain drug resistance279

rankings (susceptible, intermediate or resistant) for an input sequence or set of mu-280

tations from three well established drug ranking systems: Stanford HIVdb, ANRS281

and RegaDB.† The ViroLab and EuResist (www.euresist.org) databases were282

queried to find patient sequences that met these criteria, resulting in the choice283

of a sequence containing the mutations L10I, I13V, K14R, I15V, K20T, L63P,284

A71IV, V77I, L90M, I93L in combination with the drug lopinavir. This sequence285

was deemed to be susceptible by HIVdb but displayed intermediate resistance ac-286

cording to ANRS and Rega. In instances such as this, the Virtual Laboratory (VL)287

provides a tool which allows a clinician or researcher to investigate the cause of the288

discordance by inspecting the rules used to determine the ranking by each system.289

The only mutations within this set that influenced the ranking were L10I, A71IV290

and L90M. At position 71, where two mutations were detected in the patient, we291

chose to focus our investigation on the isoleucene substitution as it is rarer and so292

more likely to be less well represented in the data built into the existing CDSS.293

Here we briefly describe results used to assess the accuracy and reproducibility of294

binding affinity estimates produced by our free energy calculation protocol (full295

details are available in a recently published paper by Sadiq et al. [35]). We also296

present our contribution to the VPE as a vignette illustrating one way in which297

BAC could be used in conjunction with existing CDSS.298

In order to establish the efficacy of our simulation and analysis protocol we con-299

ducted a study in which we attempted to replicate the experimental results achieved300

by Ohtaka et al. [27] on the HIV-1 protease inhibitor lopinavir (LPV) bound to a301

series of multi drug resistant (MDR) protease mutants. Alongside the HXB2 wild-302

type five variants containing subsets of a of a group of six mutations, namely L10I,303

M46I, I54V, V82A, I84V and L90M, with varying degrees of resistance were con-304

sidered. The subsets of mutations have been labelled with two letter codes, shown305

in Table 1; this nomenclature will be used for the remainder of this report. HIV-1306

† The following versions of the drug ranking systems’ rule sets were used in determining the
sequence to be investigated in the VPE: HIVdb 5.1.2, ANRS 17 and Rega 8.0.1.
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Code Description Mutations

WT Wildtype HXB2

HM MDR hexa-mutant L10I, M46I, I54V, V82A, I84V, L90M

QM MDR quatro-mutant M46I, I54V, V82A, I84V

AS Active site mutant V82A, I84V

FL Flap mutant M46I, I54V

DM Dimer interface mutant L10I, L90M

Table 1: Two letter codes and sequence composition for the protease sequences of
the multi drug resistant (MDR) mutants used to evaluate a suitable simulation
protocol.

protease is a homodimer and hence a single dimeric mutation corresponds to two307

amino acid mutations, one at each identical position along the monomer. As can308

be seen in Figure 3, we achieve excellent agreement between our computed results309

and the experimental values, obtaining a correlation coefficient of 0.98 for both the310

results including and excluding the normal mode estimate of the entropic contri-311

bution (∆Gtheor and ∆Htheor respectively). Whilst the overall correlation is not312

affected by inclusion of the entropic contribution it is necessary to reproduce the313

experimental rank order of the variants. The minimal difference made to the corre-314

lation reflects the fact that the change in entropy, ∆S, is similar for LPV binding315

to all sequences, hence the inter system difference, ∆∆S is generally negligible.316

In order to assess the reproducibility of our results we performed further separate317

ensembles of the WT and HM systems. Results for both were within 0.70 kcal318

mol−1 for ∆Htheor and 0.82 kcal mol−1 for ∆Gtheor, respectively. These values319

should be contrasted with the range of values obtain for the constituent replicas320

within the ensembles where the largest differences between runs were 17.58 kcal321

mol−1 for ∆Htheor and 29.10 kcal mol−1 for ∆Gtheor. The contrast in these values322

emphasizes the impact of even tiny changes in initial conditions on the final results323

of simulations and suggests that many reports of agreement between simulation324

derived free energy calculations and experiment may be fortuitous.325

In addition to the ranking of the variants bound to LPV we also correctly326

calculated the binding affinity difference, of approximately 3 kcal mol−1, between327

the binding of LPV and the less well optimised inhibitor saquinavir to the wildtype328

enzyme.329

The binding affinities we compute exclude contributions from changes in con-330

formation upon drug binding, alteration of the catalytic dyad protonation state331

and binding of a conserved water molecule. However, the correlation with experi-332

ment suggests that these are not substantially altered by the resistance associated333

mutations. Nonetheless, the discrepancy with experiment meant that we used the334

calculated values for the susceptible wildtype, WT, and highly resistant, HM, sys-335

tems as benchmarks when making predictions of resistance in other sequences.336

The ViroLab VL is designed to facilitate basic research as well as to provide a337

platform to enhance CDSS. In this context, BAC is a software tool which can be338

used not only to rank mutant sequences in terms of resistance but also to provide339

some level of insight into the way which different mutations within the sequence340

combine, in the hope that this will shed light on the origin of inconsistencies in341

data derived from other sources. With this in mind it was decided that, rather342
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Figure 3: Comparison of average computed binding affinities with those derived
experimentally by Ohtaka et al. [27]: a) ∆Htheor is the enthalpically dominated
binding affinity from MMPBSA calculation alone; b) ∆Gtheor is the absolute bind-
ing affinity with the entropic component calculated from normal mode analysis.
The blue line represents a linear regression performed on each data set, both of
which exhibit a correlation coefficient of 0.98 between the computed and experi-
mental values. The error bars of 0.7 kcal mol−1 for ∆Htheor and 0.8 kcal mol−1 for
∆Gtheor were derived from a reproducibility study of the WT and HM systems as
reported in Sadiq et al. [35].

than simply simulating the L10I, A71I, L90M mutation set, we would simulate all343

possible combinations of the three constituent point mutations along with the full344

patient sequence (which we label as VPE).345

Figure 4 shows binding affinity results from BAC analysis of these sequences346

bound to LPV, with the seven mutant sequences under investigation compared to347

the established WT and HM benchmarks for susceptibility and high level resistance.348

A number of observations can be made from these graphs. Firstly, there are notable349

differences between the entropy and absolute binding affinity results for the triple350

mutant L10I-A71I-L90M and the complete VPE sequence. Using both measures,351

the triple mutant would be regarded as susceptible whereas the VPE sequence is352

distinctly ranked as resistant using ∆Gtheor (the difference between compared to353

wildtype, ∆∆Gtheor, is 1.98 kcal mol−1), while the change in enthalpy also suggests354

some level of resistance (∆∆Htheor is 0.96 kcal mol−1). None of the other mutational355

combinations are evaluated as causing any resistance, with the possible exception356

of the L10I-L90M sequence. The L10I-L90M system has a ∆∆Gtheor of 0.96kcal357

mol−1 which indicates some level of resistance but this is close to the limit of358

resolution of our method, and the ∆∆Htheor of 0.30kcal mol−1 would be classified359

as susceptible. The A71I, L10I-A71I and A71I-L90M have ∆∆Htheor values of -360

1.05, -1.02 and -1.29 kcal mol−1 respectively, all of which are greater than the361

reproducibility variation in observed in the WT and HM systems. This increase362

in the strength of binding is conserved for the L10I-A71I and A71I-L90M systems363

when the entropic contribution is included in the results (they have ∆∆Gtheor364

values of -1.09 and -1.06 kcal mol−1 respectively), but not for the A71I single365
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Figure 4: A comparison of the computed binding affinities for all combinations of
the mutations L10I, A71I and L90M and the full VPE sequence with the known
susceptible WT sequence and known resistant HM sequence. (a) shows the binding
enthalphy, ∆Htheor, alone and (b) the absolute free energy difference, ∆Gtheor. The
black lines show the mean, the candle sticks the standard error and the whiskers
the error based on the WT and HM reproducibility for each system. The grey
and red shaded regions show the range of values deemed susceptible and resistant
respectively, defined using the WT and HM benchmark values.

mutant (which is almost indistinguishable from WT with a ∆∆Gtheor of -0.09 kcal366

mol−1). This suggests that at least the double mutants containing A71I may be367

hyper-susceptible to LPV. The phenomenon of hyper-susceptibility to LPV has368

been observed experimentally in a range of sequences although the clinical impact369

remains unknown [24, 47].370

These observations suggest a possible explanation for the discordance found us-371

ing the cDRS. The effects on drug binding of the mutations at positions 10, 71 and372

90 appear to be highly dependent on the background of other mutations present in373

the sequence. If the mutations are rare then the subtle intragenic epistatic effects374

which cause this phenomenon are unlikely to present themselves frequently enough375

to be picked up as statistically meaningful in the databases used to establish the376

CDSS rules. The non-additive nature of the interactions is likely to be a further con-377

founding factor, as linear regression based techniques are often used in establishing378

the rule sets [22].379

(b) Lung Cancer380

Lung cancer is the leading cancer-related cause of death worldwide [28]. It is381

usually treated by a combination of chemotherapy alongside other treatments like382

radiation therapy and surgery. Targeted therapy [38] is a new approach to cancer383

treatment, which is expected to be more effective and less harmful than traditional384

chemotherapies. The approach uses drugs to interfere with a specific molecular385

target, usually a protein with a critical role in tumour growth. Epidermal growth386

factor receptor (EGFR) is such a drug target in lung cancer, and possibly in other387

forms of cancer, because it is frequently overexpressed and/or overactive in cancer-388

ous cells [52]. EGFR is a membrane-spanning cell surface protein. Its intracellular389

tyrosine kinase domain is a preferred target for small compounds tyrosine kinase390

inhibitor (TKIs) to inhibit the kinase activity and suppress its function. Clinical391
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Figure 5: Comparison of calculated binding enthalpies (∆Htheor) with experimental
binding free energies (∆Gexp) for inhibitors AEE788 (red) and Gefitinib (blue)
complexed with EGFRs. Seven points (those in black) are used for linear fitting. The
error bars are shown as standard errors of the mean from ensemble simulations and
standard deviations from experiments [48, 49]. Gefitinib-L858R, AEE788-T790M
and AEE788-T790M/L858R are excluded from linear fitting as they may be outliers
(see text for discussion).

studies manifest a strong correlation between the presence of mutations and pa-392

tient response to TKIs. However, genotypic assaying is not routinely performed for393

cancer patients, in contradistinction with the HIV case discussed in the previous394

section.395

Reversible TKIs compete with ATP binding to the kinase, and hence prevent396

the phosphorylation of EGFR. There are three clinically approved TKIs for EGFR:397

Gefitinib, Erlotinib and Lapatinib. A number of other TKIs are currently in various398

stages of clinical trials. In clinical use on nonsmall cell lung cancer patients, Gefitinib399

is found to be effective in individuals with specific somatic mutations. EGFR tyro-400

sine kinase domain mutations are usually clustered around the ATP-binding pocket.401

They can distort the ATP-binding cleft and change the relative binding affinity of402

the kinase domain for inhibitors and ATP. A greater understanding of how in-403

hibitors interact with their target protein could lead to better optimised choice of404

drug treatments and/or selections of patient subgroups. In this section, we investi-405

gate the binding properties of two inhibitors Gefitinib and AEE788 with wild-type406

and four mutant EGFRs, namely G719S, L858R, T790M and T790M/L858R. The407

L858R is the most frequently found point mutation in sequences of individuals408

that respond to Gefitinib treatment, while T790M is found in Gefitinib-resistant409

nonsmall cell lung cancer patients.410

In Figure 5, the calculated binding energies ∆Htheor are compared with the411

experimental data [48, 49] for Gefitinib and AEE788. When combining calculated412

binding energies of two inhibitors and comparing with experimental data [48, 49],413
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a reasonable correlation is obtained by excluding three data points (Figure 5). The414

Gefitinib-L858R appears to be an outlier, since it lies between Gefitinib-WT and415

Gefitinib-G719S in another experiment [8]. The experimental binding free energies416

for AEE788-T790M and AEE788-T790M/L858R are also dubious as they are not417

in line with a recent publication [19]. The physico-chemical properties of the in-418

hibitors are the determinants for specific binding. Hydrogen bonds are one of the419

key interactions between an inhibitor and its targetted protein. It is reasonable to420

assume that AEE788 has greater binding affinities (more negative binding energies)421

to all forms of EGFR than Gefitinib does, as AEE788 forms two hydrogen bonds422

with EGFR while Gefitinib has only one. Our calculations and the experimental423

data [19] both confirm this, and hence raise questions as to the quality of the pub-424

lished binding affinities for AEE788-T790M and AEE788-T790M/L858R [49]. The425

simulations confirm that our ensemble method is able to produce consistent and426

reproducible results even when different starting structures are used. In contrast,427

considerable variances exist between experimental measurements made under dif-428

ferent conditions. More complete discussions are presented elsewhere for the method429

and its application in lung cancer [44].430

A cross-drug correlation makes it possible to identify subgroups of patients who431

have a specific EGFR variant and are most likely to respond well to a particular432

drug treatment, and to choose a personalised drug therapy that maximizes treat-433

ment efficacy for an individual. The effects of genetic changes on the overall protein434

structure are usually small; however, they are critical for drug binding, and can435

render previously susceptible proteins untargettable. Hence, targets need to be de-436

fined more specifically and precisely, with consideration given not only to the choice437

of molecule but also the particular genetic variants present in individual patients.438

Our theoretical predictions could be better evaluated in future given access to large439

scale genetic and clinical data from programmes of this kind. These results indicate440

that it would be beneficial for cancer patients to have genotypic assays performed441

in a similar way to that which is routine for HIV/AIDS patients today.442

One of the aims of the EU ContraCancrum project is the creation of a data443

warehouse collating data from both experimental and in silico sources which may444

be used to inform future CDSS. Unlike the HIV case, genotypic testing is not445

currently standard for patients presenting with cancer; consequently a much more446

limited range of data is available. Encouragingly, however, the U.K. National Health447

Service (NHS) has recently announced plans to deploy broad genetic testing for448

people with various forms of cancer, including lung carcinoma, and to implement449

personalised medicine based on individuals’ genetic information [3]. The program450

will enrol up to 12,000 patients in its first phase, many more than any other current451

clinical trials for cancer treatment.452

5. Conclusions453

Personalised drug ranking is an important component of clinical decision support454

that predicts drug sensitivity and resistance for individual patients. Many chal-455

lenges remain before free energies from molecular dynamics simulations can be456

routinely used as part of CDSS but we have demonstrated the potential of such an457

approach to accurately rank drug binding affinities on clinically relevant timescales458

(2-3 days). In particular we have demonstrated the importance of the use of en-459
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semble simulations in order to obtain converged and reproducible free energies in460

contrast to single simulations which produce results that can be highly variable.461

Importantly, our methodology does not contain any adjustable parameters which462

have to be fitted meaning that the approach can be used to make predictions in a463

wide variety of systems. We can then verify the validity of our predictions against464

the available experimental data. Obtaining the well converged free energy values465

reported here has involved the production and analysis of many terabytes of data466

and was only possible by using large scale compute resources. It is to be hoped467

that the deployment of the next generation of exoscale machines will make this468

level of sampling possible on a routine basis. These developments pave the way for469

possible, future, use of simulations and free energy calculations in clinical decision470

support tools that match treatments to individual patients’ genetic profiles. With471

the advent of even faster and cheaper genetic sequencing, such an approach should472

serve to further enhance outcomes based on individualized treatment, and to shape473

future clinical decision support systems that will provide more reliable healthcare.474
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The main article describes the application of an automated simulation workflow
orchestrated by our Binding Affinity Calculator (BAC) tool to calculate binding
free energies, from molecular dynamics simulations, for inhibitory drugs used in
two distinct systems; the HIV-1 protease and the epidermal growth factor receptor
(EGFR). This supporting information is elucidates the various steps of the simu-
lation workflow, in particular the protocol used to equilibrate the system prior to
the production phase from which free energies are computed.

1. Binding Affinity Calculator Workflow

Figure 1 shows the overall workflow of the Binding Affinity Calculator (BAC) as de-
scribed in detail in Sadiq et al. [2008]. The first step is to produce a simulation-ready
structure. This is generated from an initial set of coordinates, selected from a library
of PDB structures in the BAC, together with the generic topology and forcefield
parameter information. Suitable protease and ligand coordinates are extracted, any
mutations incorporated, then charge neutralizing ions and water necessary for the
solvation of the target structure are added. System-specific topology and coordi-
nate files then have to be generated which form the input for subsequent simulation.
The next stage involves the array of sequential equilibration simulations that need
to run before production simulations can commence. These include the stages of
minimization, annealing the system, the gradual relaxing of constraints which vary
based on the mutations that have been incorporated and, finally, unrestrained equi-
libration in a specified thermodynamic ensemble. Once the simulation is complete
the generated coordinate trajectories are post processed to calculate the enthalpic
and entropic components of the binding free energy.

The steps involved in the equilibration protocol are adapted to account for the
number of mutations inserted into the structure in silico before simulation and are
described in greater detail below.
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Figure 1: Workflow of an MMPBSA free energy calculation comprising four sequen-
tial stages. (1) Preparation of a simulation-ready model from the protein data bank
crystal structure (PDB), forcefield parameters, and generic topology information.
(2) Linear chain of equilibration simulations. (3) Linear chain of production sim-
ulations each generating trajectories for analysis. (4) Postproduction execution of
the enthalpy and entropy calculations leading to a determination of the binding
free energy. Data files are shown in gray boxes, processes, in white boxes. Adapted
from Sadiq et al. [2008]

(a) Mutation-Adaptive Equilibration Protocol

A sequence of equilibration simulations are run prior to any BAC production
simulation. Table 1 summarises each of these stages and their purposes. During
the initial steps of equilibration the heavy atoms of the protein and ligand are
constrained to their original positions. The mutation relaxation steps involve the
removal of these constraints on all heavy atoms within 5Å of the mutated residue,
the released residues being known as the ‘M-region’ during each step. Once the 50
ps relaxation step is complete constraints are reapplied to these residues (although
they may be removed again if they fall within 5Å of a mutation being relaxed in
the subsequent step). In dimeric systems (such as HIV-1 protease) where mutations
at a given locus correspond to two positions in the three dimensional structure M-
regions are constructed for both simultaneously. The mutation regions are selected
in ascending numerical order of the mutated amino-acid residue number correspond-
ing to the mutated locus. For example, if positions 48 and 90 are mutated, the first
mutation region selected will contain any complete residues that are either partially
or wholly within a 5 Å region around position 48 (potentially in both monomers of
a dimeric system), while the second mutation region will be an identically defined
region around positions 90 (again potentially in both monomers of a dimeric sys-
tem). The length of the final step of the equilibration phase is adjusted to account
for the number of relaxation steps so that the full equilibration phase lasts 2 ns in
all cases.
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Force constraint (kcal/(mol Å2))

Stage Process Duration (ps) Ligand Protein

Eq 0 Minimisation 2000 steps 4 4

Eq 1 Annealing 50 4 4

Eq 2 NPT solvation 200 4 4

Mutation Relaxation M-regiona NM-regionb

Eq (2 + 1) M1-region relaxation 50 0 4

Eq (2 + 2) M2-region relaxation 50 0 4
...

...
...

...
...

Eq (2 + n ) Mn-region relaxation 50 0 4

Ligand Protein

Eq (2 + n + 1) Constraint removal (NPT) 50 3 4

Eq (2 + n + 2) 50 2 4

Eq (2 + n + 3) 50 1 4

Eq (2 + n + 4) 50 0 4

Eq (2 + n + 5) 50 0 3

Eq (2 + n + 6) 50 0 2

Eq (2 + n + 7) 50 0 1

Eq (2 + n + 8) Unconstrained removal (NPT) 1400 - 50n 0 0

Table 1: The steps involved in the BAC equilibration protocol. aM-region consists
of all heavy ligand or protein atoms within a 5 Å centred on each mutated residue
(ligands are treated as a single residue). bNM-region consists of all heavy ligand or
protein atoms outside the M-region.

References

S. K. Sadiq, D. Wright, S. J. Watson, S. J. Zasada, I. Stoica, and P.V. Coveney.
Automated Molecular Simulation Based Binding Affinity Calculator for Ligand-
Bound HIV-1 Proteases. J. Chem. Inf. Model., 48(9):1909–1919, 2008. doi:
10.1021/ci8000937.

Article submitted to Royal Society


