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Article 25:
Hierarchy of Theories of Unified Gravity and Dynamics at the
neighborhood of Several Gravitational Field Sources. PartI.

Akindele O. Adekugbe Joseph

The two-theory approach to gravitation at the second stage of evolutions of space-
time/intrinsic spacetime and parameters/intrinsic parameters in a gravitational field of
arbitrary strength, comprising of the theory of gravitational relativity/intrinsic theory of
gravitational relativity (TGR/φTGR) on flat spacetime/flat intrinsic spacetime and the
metric theory of absolute intrinsic gravity (φMAG) on curved absolute intrinsic space-
time, isolated at the neighborhood of one gravitational field source in the earlier articles,
is advanced to the situations where two, three and several gravitational field sources are
scattered in the Euclidean 3-space about a location where the theories areformulated.
Gravitational time dilation, gravitational length contraction and assemblage ofparame-
ter transformations in the context of TGR, are extended to the neighborhood of several
gravitational field sources. Extension of TGR to the situation where a number N of
gravitational field sources are interacting (the N-body problem), is accomplished for
N = 2 andN = 3 and shown to admit of straight forward extension to larger values of
N, except that it becomes increasingly cumbersome as N increases beyond 4. On the
other hand,φMAG admits of easy and straight forward extension to the N-body prob-
lem for any value of N. Einstein’s principle of equivalence is validated in thecontext of
TGR at the neighborhood of any number of gravitational field sources,from which its
universal validity follows.

1 Intrinsic theory of gravitational relativity at the neigh borhoods of two and
several isolated gravitational field sources

1.1 Deriving intrinsic gravitational local Lorentz transformation and establish-
ing intrinsic gravitational local Lorentz invariance at the neighborhood two
and several isolated gravitational field sources

Let us start with two gravitational field sources of inertialmassesM1 and M2 in
the relativistic Euclidean 3-spaceΣ of the theory of gravitational relativity (TGR),
whose centers are at radial distancesr1 and r2 respectively from a point P inΣ.
This implies that the centers of the rest massesM01 and M02 of the field sources
are at radial distancesr ′1 andr ′2 respectively from the corresponding point P′ in the
proper Euclidean 3-spaceΣ′ (at the end of the first stage of evolutions of space-
time/intrinsic spacetime prior to the second stage). The centersof the field sources
may be collinear with the point P as illustrated in Fig. 1a, ornot, as illustrated in
Fig. 1b.

Let different spherical coordinate systems (r1, r1θ1, r1 sinθ1ϕ1) and (r2, r2θ2,

r2 sinθ2ϕ2) of the Euclidean 3-spaceΣ, originate from the centers of the inertial
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massesM1 andM2 respectively of the gravitational field sources. By adding the time
coordinatesct1 andct2 to the spherical coordinates of the Euclidean 3-space origi-
nating from the centers ofM1 andM2 respectively, we obtain the four-dimensional
space-time coordinate systems (ct1, r1, r1θ1, r1 sinθ1ϕ1) and (ct2, r2, r2θ2, r2 sinθ2ϕ2)
associated with the gravitational field sources on flat four-dimensional relativistic
spacetime (Σ, ct) in the context of the theory of gravitational relativity (TGR).
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Fig. 1: The inertial masses of two gravitational field sources in the relativistic Euclidean 3-
pace witha their centers collinear with a point P in 3-space andb their centers not collinear
with the point P in 3-space.

In the context of the two-dimensional theory of gravitational relativity (φTGR)
due to the field sources on flat two-dimensional relativisticintrinsic spacetime
(φρ, φcφt), on the other hand, the point P inΣ is at ‘distances’φr1 from the base
of the intrinsic inertial massφM1 and at ‘distance’φr2 from the base ofφM2. The
intrinsic inertial massesφM1 andφM2 can be considered to be aligned along the
singular isotropic universal relativistic intrinsic space φρ, irrespective of how their
inertial masses are arranged in the Euclidean 3-spaceΣ. Hence the intrinsic space
coordinatesφr1 andφr2 from the bases ofφM1 andφM2 to point P respectively, both
lie along the singular isotropic intrinsic spaceφρ, in both the situations where the
centers ofM1 andM2 are collinear with point P as in Fig. 1a, and not, as in Fig. 1b.

In other words, the diagrams in the context ofφTGR that correspond to Fig. 1a
or Fig. 1b is Fig. 2, where only the first and second quadrants of the full two-world
diagrams involving four quadrants are shown and the curved ‘two-dimensional’ ab-
solute intrinsic spacetime (φρ̂, φĉφt̂ ) of the metric theory of absolute intrinsic gravity
(φMAG) is also hidden. The curved proper intrinsic spaceφρ′ containing the intrin-
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sic rest massφM02 at its origin is curved relative to the curved proper intrinsic space
φρ′′ containing the intrinsic rest massφM01 at its origin in Fig. 2. This corresponds
to a situation where a gravitational field source of massM2 is contained within the
gravitational field of a gravitational field source of largermassM1.
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Fig. 2:

Let us temporarily disregard the presence ofφM1 in Fig. 1. We must also con-
sider the proper intrinsic spaceφρ′′ to temporarily lie along the horizontal in the
place ofφρ, so that the curvedφρ′ containingφM02 at its origin is temporarily
curved relative to straight lineφρ′′ along the horizontal, andφM02 in the curvedφρ′

‘projects’ an intermediate intrinsic inertial massφM∗2 into φρ′′ along the horizontal,
as illustrated in the temporary diagram of Fig. 3a.

The following intrinsic gravitational local Lorentz transformation (φGLLT) of
elementary interval of intrinsic spacetime coordinatesdφρ′ andφcdφt′ of the curved
(φρ′, φcφt′) into the projective elementary interval of intrinsic spacetime coordinates
dφρ′′ andφcdφt′′) of the flat (φρ′′, φcφt′′), at point P in the complete form of Fig. 3a,
and its inverse, in the context ofφTGR, derived originally with the complete dia-
grams in [1,2], arise due to the presence ofφM02 along the curvedφρ′ in the partial
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Fig. 3:

temporary diagram of Fig. 3a.

dφt′ = φγg2(φr ′2)(dφt′′ −
φV′g2(φr ′2)

φc2
g

dφρ′′) ;

dφρ′ = φγg2(φr ′2)(dφρ′′ − φV′g2(φr ′2)dφt′′)
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dφt′′ = φγg2(φr ′2)(dφt′ +
φV′g2(φr ′2)

φc2
g

dφρ′) ;

dφρ′′ = φγg2(φr ′2)(dφρ′ + φV′g2(φr ′2)dφt′)
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where

φγg2(φr ′2) = (1−
φV′g2(φr ′2)2

φc2
g

)−1/2 = (1−
2GφM0a2

φr ′2φc2
g

)−1/2 (3a)

φβg2(φr ′2) =
φV′g2(φr ′2)

φcg
= (

2GφM0a2

φr ′2φc2
g

)1/2 (3b)

System (1) or (2) yields intermediate intrinsic gravitational local Lorentz invari-
ance (φGLLI) (with the complete form of the intermediate geometry of Fig. 3a) at
point P and at every point in spacetime in all the finite neighborhood ofM2, in the
context ofφTGR namely,

φc2dφt′′2 − dφρ′′2 = φc2dφt′2 − dφρ′2 (4)
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This invariance implies that the field sourceM2 (with the assumed absence ofM1),
prescribes an intermediate flat 2-dimensional intrinsic spacetime (φρ′′, φcφt′′) (with
constant Lorentzian metric tensor) in the context ofφTGR in all its finite neighbor-
hood.

Thus when the field sourceM1 is allowed to be in place, so thatφM01 appears in
the straight lineφρ′′ along the horizontal, at ‘distance’φr ′1 from point P in Fig. 3a,
it will cause the curvature ofφρ′′ containing bothφM∗02 andφM01, and thereby
prescribe partial geometry of Fig. 3b, in whichφρ′′ containingφM∗02 and φM01,
is curved relative its projective relativistic intrinsic spaceφρ along the horizontal.
In other words, by bringingM1 in place, the following intrinsic gravitational local
Lorentz transformation and its inverse will arise from the complete form of Fig. 3b,

dφt′′ = φγg1(φr ′1)(dφt −
φV′g1(φr ′1)

φc2
g

dφρ) ;

dφρ′ = φγg1(φr ′1)(dφρ − φV′g1(φr ′1)dφt)
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and

dφt = φγg1(φr ′1)(dφt′′ +
φV′g1(φr ′1)

φc2
g

dφρ′′) ;

dφρ = φγg1(φr ′1)(dφρ′′ + φV′g1(φr ′1)dφt′′)
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(6)

where

φγg1(φr ′1) = (1−
φVg1(φr ′1)2

φc2
g

)−1/2 = (1−
2GφM0a1

φr ′1φc2
g

)−1/2 (7a)

φβg1(φr ′1) =
φV′g1(φr ′1)

φcg
= (

2GφM0a1

φr ′1φc2
g

)1/2 (7b)

The presence of the intrinsic rest massφM02 solely, transforms the curved proper
intrinsic spacetime (φρ′, φcφt′) into intermediate flat intrinsic (φρ′′, φcφt′′) in all
its finite neighborhood in the intermediate diagram of Fig. 3a. The intrinsic rest
massφM02 along the curvedφρ′ is likewise transformed into intermediate intrinsic
inertial massφM̄∗02 in φρ′′ along the horizontal in Fig. 3a. And when the intrinsic
rest massφM01 of the other field source is brought into theφρ′′ along the horizontal,
it causes the curvature ofφρ′′ containingφM∗02 andφM01 in Fig. 3b. The resulting
curved (φρ′′, φcφt′′) in the complete form of Fig. 3b is then transformed into the
final flat relativistic intrinsic spacetime (φρ, φcφt), and the intrinsic rest massesφM∗02
andφM01 in the curvedφρ′′ are transformed into the final intrinsic inertial masses
φM02 andφM01 respectively at their respective positions inφρ along the horizontal.
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The partial two-world diagram of Fig. 2 is the resultant of Figs. 3a and 3b with the
respective curved proper intrinsic time dimensions included.

Again system (5) or (6) yields intrinsic gravitational local Lorentz invariance
(φGLLT) at point P an at every point in space in all finite neighborhood of M1

namely,
φc2dφt 2 − dφρ2 = φc2dφt′′2 − dφρ′′2 (8)

Thus the simultaneous presence of the gravitational field sourcesM1 and M2 pre-
scribe intrinsic gravitational local Lorentz invariance and consequently the
Lorentzian metric tensor ofφTGR on the resultant relativistic intrinsic spacetime
(φρ, φcφt) at point P and at every point in spacetime in all their finite neighborhood.

It is actually the intrinsic spacetime intervalsdφρ′′ andφcdφt′′, which the cor-
responding intervalsdφρ′ andφcdφt′ in the curved (φρ′, φcφt′), projects into the
curved proper intrinsic spacetime (φρ′′, φcφt′′) at point P in the complete two-world
form of the intermediate Fig. 3a, that becomes curved along with the curvedφρ′′ and
φcφt′′ and project intervalsdφρ andφcdφt respectively into the flat relativistic in-
trinsic spacetime (φρ, φcφt) at point P in the complete two-world form of Fig. 3b
or in the complete two-world form of the resultant Fig. 2. Thus the intrinsic grav-
itational local Lorentz invariance (8) can therefore be combined with the intrinsic
gravitational local Lorentz invariance (4) to have

φc2dφt2 − dφρ2 = φc2dφt′′2 − dφρ′′2 = φc2dφt′2 − dφρ′2 (9)

Equation (9) states formally intrinsic gravitational local Lorentz invariance
(φGLLI) in the context of the intrinsic theory of gravitational relativity (φTGR), in
terms of the intrinsic spacetime coordinate intervals of the co-existing curved proper
intrinsic spacetimes (φρ′, φφt′) and (φρ′′, φφt′′) and their underlying flat relativistic
intrinsic spacetime (φρ, φφt), at the neighborhood of two gravitational field sources
of inertial massesM1 and M2. The curved proper intrinsic spacetime (φρ′, φφt′)
due to the presence ofM2, is curved relative to the curved proper intrinsic space-
time (φρ′′, φφt′′) due to the presence ofM1, and (φρ′′, φφt′′) is curved relative to
the underlying flat relativistic intrinsic spacetime (φρ, φφt), as illustrated partially
in Fig. 2. TheφGLLI (9) states the flatness of the underlying relativistic intrinsic
spacetime everywhere at the neighborhood ofM1 andM2.

The procedure used to establish theφGLLI (9) at the neighborhood of two iso-
lated gravitational field sources above, admits of straightforward extension to the
neighborhood of three isolated gravitational field sources. If a third gravitational
field source of inertial massM3 is brought into the neigborhood ofM1 and M1 in
Fig. 1a or 1b, such thatM3 is located at radial distancer3 from the point P, where
it shall be assumed thatM3 is contained within the gravitational field ofM2, which,
in turn, is contained in the gravitational field ofM1, then we must letM3 establish a
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third curved proper intrinsic spacetime (φρ′, φcφt′); M2 to establish curved proper
intrinsic spacetimeφρ′′, φcφt′′) andM1 to establish curved proper intrinsic space-
time (φρ′′′, φcφt′′′), such that the curved (φρ′, φcφt′) due toM3 is curved relative to
the curved (φρ′′, φcφt′′) due toM2, which, in turn, is curved relative to the curved
(φρ′′′, φcφt′′′) due toM1 that is curved relative to resultant flat relativistic intrinsic
spacetime (φρ, φcφt) in modified form of the partial diagram of Fig. 2.

The tandem of intrinsic gravitational local Lorentz transformation at two levels
above must then be extended to three levels. The elementary intrinsic coordinate in-
tervals (dφρ′ andφcdφt′ of the upper most curved intrinsic spacetime (φρ′, φcφt′),
must be transformed into (dφρ′′ and φcdφt′′ of the underlying curved intrinsic
spacetime (φρ′′, φcφt′′) in the gravitational field of isolatedM3 at the first level,
followed by transformation of (dφρ′′ andφcdφt′′ into (dφρ′′′ andφcdφt′′′ in the
gravitational field of isolatedM2 at the second level, and followed by the trans-
formation of (dφρ′′′ andφcdφt′′′ into (dφρ andφcdφt in the gravitational field of
isolatedM1 at the third level. Doing these will lead to the followingφGLLI

φc2dφt2 − dφρ2 = φc2dφt′′′2 − dφρ′′′2 = φc2dφt′′2 − dφρ′′2 = φc2dφt′2 − dφρ′2

(10)
TheφGLLI (10) again says that the resultant relativistic intrinsic spacetime ofφTGR
is flat everywhere in all finite the neighborhood of three isolated gravitational field
sources of inertial massesM1 M2 and M3 in the relativistic Euclidean 3-spaceΣ,
irrespective of how they are scattered inΣ.

The procedure used to derive Eq. (9) for two isolated gravitational field sources
and Eq. (10) for three isolated gravitational field sources,admits of extension to four,
five and any number N of isolated gravitational field sources in Σ. We conclude
from this that the relativistic intrinsic spacetime (φρ, φcφt) of the intrinsic theory
of gravitational relativity (φTGR) is everywhere flat in all finite neighborhood of
any number N of gravitational field sources that are scattered in arbitrary manner in
3-space.

1.2 The resultant intrinsic gravitational time dilation and resultant intrinsic
gravitational length contraction at the neighborhood of two and several
gravitational field sources

The intrinsic time dilation and intrinsic length contraction formulae implied by sys-
tems (1) and (2), as derived in [2,3], are the following

dφt′′ = φγg2(φr ′2)dφt′ = (1−
2GφM0a2

φr ′2φc2
g

)−1/2dφt′ (11)

dφρ′′ = φγg2(φr ′2)−1dφρ′ = (1−
2GφM0a2

φr ′2φc2
g

)1/2dφρ′ (12)

A. Joseph. Unified gravity and dynamics at neighborhood of severalgrav. field sources I. 7
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The intrinsic time dilation and intrinsic length contraction formulae implied by sys-
tems (5) and (6) are likewise given as follows

dφt = φγg1(φr ′1)dφt′′ = (1−
2GφM0a1

φr ′1φc2
g

)−1/2dφt′′ (13)

dφρ = φγg1(φr ′1)−1dφρ′′ = (1−
2GφM0a1

φr ′1φc2
g

)1/2dφρ′′ (14)

By eliminatingdφt′′ between Eqs. (11) and (13) and by eliminatingdφρ′′ be-
tween Eqs. (12) and (14) we obtain the resultant intrinsic gravitational time dilation
and resultant intrinsic gravitational length contractionrespectively as follows

dφt = φγg1(φr ′1)φγg2(φr ′2)dφt′

= (1−
2GφM0a1

φr ′1φc2
g

)−1/2(1−
2GφM0a2

φr ′2φc2
g

)−1/2dφt′ (15)

dφρ = φγg1(φr ′1)−1φγg2(φr ′2)−1dφρ′

= (1−
2GφM0a1

φr ′1φc2
g

)1/2(1−
2GφM0a2

φr ′2φc2
g

)1/2dφρ′ (16)

As follows naturally (by induction) from the above, the resultant intrinsic grav-
itational time dilation and the resultant intrinsic gravitational length contraction of
the elementary intrinsic spacetime intervalsdφρ′ anddφt′ of the (upper most) Nth
curved proper intrinsic spacetime (φρ′, φcφt′), of a tandem of N curved proper
intrinsic spacetimes namely, a curved (φρ′, φcφt′) above a curved (φρ′′, φcφt′′),
above a curved (φρ′′′, φcφt′′′), above a curved (φρ′′′′, φcφt′′′′), . . . , above a curved
(φρn′, φcφφtn′) above a flat (φρ, φcφt), as in Fig. 2a for N=2, within a local Lorentz
frame at a point P in the Euclidean 3-spaceΣ, at the neighborhood of the N gravita-
tional field sources scattered arbitrarily inΣ about this point, are given respectively
as follows

dφt = φγg1(φr ′1)φγg2(φr ′2)φγg3(φr ′3) . . . φγgN(φr ′N)dφt′

= (1−
2GφM0a1

φr ′1φc2
g

)−1/2(1−
2GφM0a2

φr ′2φc2
g

)−1/2 . . . (1−
2GφM0aN

φr ′Nφc2
g

)−1/2dφt′

(17)

or

dφt =
N
∏

k=1

φγgk(φr ′k)dφt′ =
N
∏

k=1

(1−
2GφM0ak

φr ′kφc2
g

)−1/2dφt′ (18)

8 A. Joseph. Unified gravity and dynamics at neighborhood of several grav. field sources I.
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and

dφρ = φγg1(φr ′1)−1φγg2(φr ′2)−1φγg3(φr ′3)−1 . . . φγgN(φr ′N)−1dφρ′

= (1−
2GφM0a1

φr ′1φc2
g

)1/2(1−
2GφM0a2

φr ′2φc2
g

)1/2 . . . (1−
2GφM0aN

φr ′Nφc2
g

)1/2dφρ′

(19)

or

dφρ =
N
∏

k=1

γgk(φr ′k)
−1dφρ′ =

N
∏

k=1

(1−
2GφM0ak

φr ′kφc2
g

)1/2dφρ′ (20)

Thedφρ anddφt in Eqs. (17) – (20) are the relativistic intrinsic space and rela-
tivistic intrinsic time coordinate intervals (in the resultant underlying flat relativis-
tic intrinsic spacetime (φρ, φcφt) at the neighborhood of the N gravitational field
sources, andφr ′k is the ‘distance’ from the base of the intrinsic rest massM0k to
point P in the proper intrinsic spaceφρ′, which corresponds to ‘distance’φrk from
the base of the intrinsic inertial massφMk to point P in the relativistic intrinsic
spaceφρ, of the kth gravitational field source of intrinsic inertialmassφMk. Equa-
tions (17) through (20) have been written at point P alongφρ, which corresponds to
point P in the relativistic Euclidean 3-spaceΣ about which the N gravitational field
sources are scattered.

Let us denote the resultant factorφγg in the resultant intrinsic length contraction
and resultant intrinsic time dilation formulae above byφγg. Then as follows from
Eqs. (18) and (20),φγg is given as follows

φγg =

N
∏

k=1

φγgk(φr ′k) =
N
∏

k=1

(1−
2GφM0ak

φr ′kφc2
g

)−1/2 (21)

For N = 2,

φγg = (1−
2GφM0a1

φr ′1φc2
g

)−1/2(−
2GφM0a2

φr ′2φc2
g

)−1/2

= (1−
2GφM0a1

φr ′1φc2
g

−
2GφM0a2

φr ′2φc2
g

+
4G2φM0a1φM0a2

φr ′1φr ′2φc4
g

)−1/2 (22)

1.3 Intrinsic mass relation and intrinsic kinetic energy relation at the neighbor-
hood of two and several isolated gravitational field sources

Intrinsic mass relation in the context of the intrinsic theory of gravitational relativity
(φRTG) at the neighborhood of a singular gravitational field source derived formally

A. Joseph. Unified gravity and dynamics at neighborhood of severalgrav. field sources I. 9
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in [2] is

φm= φm0φγg(φr ′)−2 = φm0(1−
2GφM0a
φr ′φc2

g

) (23)

We must simply replacedφγg(φr ′)−2 by the resultant factorφγ−2
g in this relation

to have intrinsic mass relation at the neighborhood of isolated N gravitational field
sources that are scattered arbitrarily in the Euclidean 3-spaceΣ as follows

φm= φm0(φγg
t)−2 = φm0

N
∏

k=1

(1−
2GφM0ak

φr ′kφc2
g

) (24)

For N = 2,

φm = φm0(1−
2GφM0a1

φr ′1φc2
g

)(−
2GφM0a2

φr ′2φc2
g

)

= φm0(1−
2GφM0a1

φr ′1φc2
g

−
2GφM0a2

φr ′2φc2
g

+
4G2φM0a1φM0a2

φr ′1φr ′2φc4
g

) (25)

The corresponding intrinsic special relativistic kineticenergy expression in the con-
text ofφTGR at the neighborhood of the isolated N gravitational fieldsources is

T = φm0φc2
γφγ

−2
g [γ(φv) − 1]

= φm0φc2
γ

N
∏

k=1

(1−
2GφM0ak

φr ′kφc2
g

)[(1 −
φv2

φc2
γ

)−1/2 − 1] (26)

For N=2,

T = φm0φc2
γ(1−

2GφM0a1

φr ′1φc2
g

−
2GφM0a2

φr ′2φc2
g

+
4G2φM0a1φM0a2

φr ′1φr ′2φc4
g

)[(1−
φv2

φc2
γ

)−1/2−1] (27)

The transformation of every other intrinsic parameter in the context ofφTGR at the
neighborhood of N isolated gravitational field source, can likewise be written by
simply replacing the factorφγg(φr ′) in the expression at the neighborhood of one
gravitational field source byφγg.

2 Theory of gravitational relativity at the neighborhood of two and several
isolated gravitational field sources

2.1 Deriving gravitational local Lorentz transformation and establishing grav-
itational local Lorentz invariance at the neighborhood of two and several
isolated gravitational field sources

Let us consider Fig. 1a and 1b again. In deriving the gravitational local Lorentz
transformation GLLT and its inverse at point P due to both gravitational field sources

10 A. Joseph. Unified gravity and dynamics at neighborhood of several grav. field sources I.
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M1 andM2, we must letM1 to be temporarily absent and derive GLLT and its inverse
due toM2 solely on an intermediate spacetime (Σ ′′, ct′′). The GLLT and its inverse
to be derived forM2 assumingM1 is temporarily absent, are the outward manifesta-
tions on the intermediate four-dimensional spacetime (Σ ′′, ct′′) of theφGLLT and its
inverse of systems (1) and (2) on intermediate flat intrinsicspacetime (φρ ′′, φcφt′′)
established byφM02, assuming the temporary absence ofφM01 in Fig. 2 (with the
partial geometry of Fig. 3a). They are given as follows

dt′2 = γg2(dt′′2 −
V′g2(r ′2)

c2
g

dr′′2 ) ;

dr′2 = γg2(dr′′2 − Vg2(r ′2)dt′′2 ) ; r ′2dθ′2 = r ′′2 dθ′′2 ;

and r ′2 sinθ′2dϕ′2 = r ′′2 sinθ′′2 dϕ′′2







































(28)

and

dt′′2 = γg2(dt′2 +
V′g2(r ′2)

c2
g

dr′2) ;

dr′′2 = γg2(dr′2 + Vg2(r ′2)dt′2) ; r ′′2 dθ′′2 = r ′2dθ′2 ;

and r ′′2 sinθ′′2 dϕ′′2 = r ′2 sinθ′2dϕ′2







































(29)

Either the GLLT (28) or its inverse (29) yields gravitational local Lorentz invari-
ance at point P on the intermediate spacettime (Σ′′, ct′′),

c2dt′′22 −dr′′22 − r ′′22 (dθ′′22 +sinθ′′22 dϕ′′22 ) = c2dt′22 −dr′22 − r ′22 (dθ′22 +sinθ′22 dϕ′22 ) (30)

This GLLT guarantees the flatness at point P and everywhere ofthe intermediate flat
four-dimensional spacetime (Σ′′, ct′′) that evolves due to the presence ofM2 solely,
with the assumed temporary absence ofM1.

Then letM1 be brought in place at radial distancer1 from the point P on the
intermediate flat spacetime (Σ′′, ct′′) prescribed byM2 solely. The intermediate flat
(Σ ′′, ct′′) will be transformed into the final flat relativistic spacetime (Σ, ct) due to
the presence ofM1. The following GLLT and its inverse, which are the outward
manifestations on the flat relativistic spacetime (Σ, ct) of theφGLLT and its inverse
of systems (5) and (6) obtain,

dt′′1 = γg1(dt1 −
V′g1(r ′1)

c2
g

dr1) ;

dr′′1 = γg1(dr1 − Vg1(r ′1)dt1) ; r ′′1 dθ′′1 = r1dθ1 ;

and r ′′1 sinθ′′1 dϕ′′1 = r1 sinθ1dϕ1







































(31)
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and

dt1 = γg1(dt′′1 +
V′g1(r ′1)

c2
g

dr′′1 ) ;

dr1 = γg1(dr′′1 + Vg1(r ′1)dt′′1 ) ; r1dθ1 = r ′′1 dθ′′1 ;

and r1 sinθ1dϕ1 = r ′′1 sinθ′′1 dϕ′′1







































(32)

Either the GLLT (31) or its inverse (32) yields gravitational local Lorentz invari-
ance on the final (or rfesultant) relativistic spacettime (Σ, ct),

c2dt1
2 − dr1

2 − r1
2(dθ2

1 + sinθ2
1dϕ2

1) = c2dt′′21 − dr′′21 − r ′′21 (dθ′′21 + sinθ′′21 dϕ′′21 ) (33)

This GLLT guarantees the flatness at point P and everywhere ofthe resultant rela-
tivistic four-dimensional spacetime (Σ, ct) that evolves due to the presence of both
M2 and M1. As a matter of fact, the flatness of the resultant relativistic intrinsic
spacetime (φρ, φcφt) in all finite neighborhood ofM1 and M2 guaranteed by the
intrinsic gravitational local Lorentz invariance (φGLLI) of Eq. (9) or (10), already
implies the flatness of (Σ, ct) in all finite neighborhood ofM1 andM1, since (Σ, ct)
is the outward manifestation of (φρ, φcφt).

The tandem of gravitational local Lorentz transformation (GLLT) and its inverse
done to two levels due to the presence of two isolated gravitational field sources
above, admits of straight forward extension to the third level, due to the presence of
three isolated gravitational field sources; to the fourth level, due to the presence of
four isolated gravitational field sources;. . . ; and to the Nth level, due to the presence
of N isolated gravitational field sources. It then follows that the final (or resultant)
relativistic spacetime (Σ, ct) that evolves in the tandem of GLLT is flat everywhere in
all finite neighborhood of any number N of gravitational fieldsources, whose inertial
massesM1, M2, M3, . . . ,MN are scattered arbitrarily in the relativistic Euclidean
3-spaceΣ.

2.2 The resultant gravitational time dilation at the neighborhood of two and
several isolated gravitational field sources

The gravitational time dilation formula implied by systems(28) and (29), as derived
in [2,3], is the following

dt′′2 = γg2(r ′2)dt′2 = (1−
2GM0a2

r ′2c2
g

)−1/2dt′2 (34)

The gravitational time dilation formula implied by systems(31) and (32) is likewise
given as

dt1 = γg1(r ′1)dt′′1 = (1−
2GM0a1

r ′1c2
g

)−1/2dt′′1 (35)

12 A. Joseph. Unified gravity and dynamics at neighborhood of several grav. field sources I.
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The proper spacetime coordinate system (ct′2, r
′
2, r
′
2θ
′, r ′2 sinθ′2ϕ

′
2) attached to the

rest massM02 of the second gravitational field source is contained withinthe gravita-
tional field of the first gravitational field sourceM1. Consequently the time interval
dt′′2 in Eq. (34) at point P is further dilated todt2 by the gravitational field ofM1 as
follows

dt2 = γg1(r ′1)dt′′2 = (1−
2GM0a1

r ′1c2
g

)−1/2dt′′2 (36)

On the other hand, the proper spacetime coordinate system (ct′′1 , r
′′
1 , r
′′
1 θ
′′
1 , r
′′
1 sinθ′′1ϕ

′′
1 )

attached toM01 is not contained within the gravitational field ofM2. Consequently
dt1 in Eq. (35) at point P is not further dilated by the gravitational field ofM02.

Eliminatingdt′′2 between Eqs. (34) and (36) we have

dt2 = γg1(r ′1)γg2(r ′2)dt′2 = (1−
2GM0a1

r ′1c2
g

)−1/2(1−
2GM0a2

r ′2c2
g

)−1/2dt′2 (37)

Equation (37) shall be written in terms of unsubscripted time intervalsdt anddt′ at
the neighborhood of the gravitational fieldM2 as follows

dt = γg1(r ′1)γg2(r ′2)dt′ = (1−
2GM0a1

r ′1c2
g

)−1/2(1−
2GM0a2

r ′2c2
g

)−1/2dt′ (38)

The procedure used to derive Eq. (38) in the case of two isolated gravitational
field sources, admits of direct extension to the case of threeisolated gravitational
field sources; four isolated gravitational field sources; . .. and any number N of
isolated gravitational field sources. Thus the resultant time dilation formula in the
case of N gravitational field sources whose inertial massesM1, M2, M3, . . . ,MN

are scattered arbitrarily in the relativistic Euclidean 3-spaceΣ is the following

dt = γg1(r ′1)γg2(r ′2)γg3(r ′3) . . . γgN(r ′N)dt′

= (1−
2GM0a1

r ′1c2
g

)−1/2(1−
2GM0a2

r ′2c2
g

)−1/2 . . . (1−
2GM0aN

r ′Nc2
g

)−1/2dt′ (39)

or

dt =
N
∏

k=1

γgk(r
′
k)dt′ =

N
∏

k=1

(1−
2GM0ak

r ′kc
2
g

)−1/2dt′ (40)

Equations (39) and (40) are the outward manifestations on flat spacetime (Σ, ct) in
the context of TGR of Eqs. (17) and (18) on flat intrinsic spacetime (φρ, φcφt) in the
context ofφTGR.

A. Joseph. Unified gravity and dynamics at neighborhood of severalgrav. field sources I. 13
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We shall denote the resultant factorγg in the resultant gravitational time dilation
formula (40) in the context of TGR byγg

t and write,

γg
t =

N
∏

i=1

γgk(r
′
k) =

N
∏

k=1

(1−
2GM0ak

r ′kc
2
g

)−1/2 (41)

For N = 2, Eq. (41) simplifies as follows

γg
t = (1−

2GM0a1

r ′1c2
g

)−1/2(1−
2GM0a2

r ′2c2
g

)−1/2

= (1−
2GM0a1

r ′1c2
g

−
2GM0a2

r ′2c2
g

+
4G2M0a1M0a2

r ′1r ′2c4
g

)−1/2 (42)

2.3 Resultant gravitational length contraction at the neighborhood of two and
several isolated gravitational field sources

While the manner in which the gravitational field sources are scattered in 3-space
about point P does not count in the formulae for resultant intrinsic gravitational
length contraction and resultant intrinsic time dilation in the context ofφTGR, as
well as in resultant time dilation formula in the context of TGR, as found too this
point, it does in the resultant gravitational length contraction in the context of TGR.

Let us consider first the case of two gravitational field sources whose centers are
collinear with a point P of interest inΣ, as illustrated in Fig. 1a. In this situation,
the radial coordinater1 of the spherical coordinatesr1, r1θ1 and r1 sinθ1ϕ1 of the
Euclidean 3-spaceΣ that originate from the center of the assumed sphericalM1,
and the radial coordinater2 of the spherical coordinatesr2, r2θ2 andr2 sinθ2ϕ2 of
Σ that originate from the center of the assumed sphericalM2, lie along the same
line at point P. Consequently there is gravitational lengthcontraction of the proper
elementary radial coordinate intervaldr′ that lies along the straight line joining the
centers of the field sources and point P at point P, due to the combined gravitational
fields of M1 and M2, but gravitational contraction does not occur along any other
direction in the 3-spaceΣ at point P.

If we prescribe proper elementary coordinate intervalsdr′, r ′dθ′ andr ′ sinθ′dϕ′

within the local Lorentz frame at P, such thatdr′ lies along the straight line joining
the centers ofM1 andM2 and point P, thendr′ will be contracted by virtue of the
gravitational fields of both sources. The resultant gravitational length contraction at
point P in this situation is the following

dr = γg1(r ′1)−1γg2(r ′2)−1dr′; rdθ = r ′dθ′ andr sinθdϕ = r ′ sinθ′dϕ′ (43)

14 A. Joseph. Unified gravity and dynamics at neighborhood of several grav. field sources I.
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or

dr = (1−
2GM0a1

r ′1c2
g

)1/2(1−
2GM0a2

r ′2c2
g

)1/2dr′ ; rdθ = r ′dθ′ ;

and r sinθdϕ = r ′ sinθ′dϕ′ (44)

The resultant gravitational length contraction formula (44) in the case of isolated
two gravitational field sources whose centers are collinearwith a point P in 3-space
at which (44) is written, can be generalized to a situation where the centers of N
gravitational field sources are collinear with the point P ofinterest. In that case,
Eq. (44) becomes the following

dr =
N
∏

k=1

γgi(r
′
k)
−1dr′; rdθ = r ′dθ′ andr sinθdϕ = r ′ sinθ′dϕ′ (45)

or

dr =
N
∏

k=1

(1−
2GM0ak

r ′kc
2
g

)1/2dr′; rdθ = r ′dθ′ andr sinθdϕ = r ′ sinθ′dϕ′ (46)

Now let us consider the situation where the centers of the assumed gravitational
field sources are not collinear with the point P of interest, as illustrated for two
gravitational field sources in Fig. 1b. In this situation, the radial coordinater1 of
the spherical coordinatesr1, r1θ1 and r1 sinθ1ϕ1 that originate from the center of
M1 do not lie along the same line with the radial coordinater2 of the spherical
coordinatesr2, r2θ2 and r2 sinθ2ϕ2 that originate from the center ofM2 at point
P. In this situation there is no length contraction by virtueof gravitational fields
of M1 and M2 conjointly. Rather an observer would measure gravitational length
contraction,dl = γ−1

g1 dl′ = (1 − 2GM0a1/r ′1c2
g)

1/2dl′, along the radial directionr1

originating from the center ofM1 anddl = γ−1
g2 dl′ = (1− 2GM0a2/r ′2c2

g)
1/2dl′, along

the radial coordinater2 originating from the center ofM2, and zero gravitational
length contraction along every other direction inΣ at point P, in Fig. 1b. On the
other hand, the resultant time dilation at P in this situation of Fig. 2b, as in the
situation of Fig. 2a, is given by Eq. (40) for N=2.

Let us consider four assumed spherical gravitational field sources of masses
M1,M2,M3 andM4, whose centers are at radial distancesR1,R2,R3 andR4 respec-
tively from a point P of interest in the physical Euclidean 3-spaceΣ, as illustrated in
Fig. 4. The resultant gravitational length contractions atpoint P are the following:

dl = (1− 2GM0a1/R
′
1c2
g)

1/2(1− 2GM0a4/R
′
4c2
g)

1/2dl ′; (alongr1 andr4)

A. Joseph. Unified gravity and dynamics at neighborhood of severalgrav. field sources I. 15
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M1

M2

P
1r

2r

1R

2R
R3

r

r

3

M3

M4R4
4

Fig. 4: The inertial masses of four gravitational field sources scatteredabout a point in the
physical Euclidean 3-space.

dl = (1− 2GM0a2/R
′
2c2
g)

1/2dl ′; (alongr2)

dl = (1− 2GM0a3/R
′
3c2
g)

1/2dl ′; (alongr3)

dl = dl ′; (along every other direction inΣ)

Whereas the resultant gravitational time dilation at P in Fig. 4 is given by Eq. (40)
for N=4.

2.3.1 Gravitational deformation of the shape of a solid object located in the grav-
itational field of several sources

A solid object located within the gravitational field of a single source will be con-
tracted along a direction from the center of the field source through the object. The
shape of the object will be altered as a consequence, as illustrated for a spherical
object in Fig. 5a, while Fig. 5b illustrates the resultant shape of a spherical object
located within the gravitational field of three isolated sources. The deformations of
the shapes of the objects have been exaggerated in both Figs.5a and 5b for clarity.

2.4 Transformations of mass and other physical parameters and physical con-
stants in the context of TGR at the neighborhood of two and several isolated
gravitational field sources

The mass relation derived in the context of TGR in [2, 4] at radial distancer from
the center of the inertial massM of a gravitational field source inΣ is the following

m= γ−2
g (r ′)m0 = m0(1−

2GM0a
r ′c2

g

) (47)

whereM0 is the rest mass of the gravitational field source in the flat proper Euclidean
3-spaceΣ ′ of inertial massM in Σ ; r ′ is the radial distance from the center ofM0

in Σ ′; m0 is the rest mass inΣ ′ of the test particle of inertial massm in Σ.
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M1

M2

1r

2r

M r

(a)

(b)

Fig. 5: The gravitationally deformed shape of a spherical object locatedat the neighborhood
of a one gravitational field source andb two gravitational field sources.

If we now consider this test particle to be located at a point in space, which is
of radial distancesr1, r2 andr3 from the centers of the inertial massesM1, M2 and
M3 respectively of gravitational field sources, then the mass relation (47) must be
replaced by the following

m= (γg
t)−2m0 = γg3(r ′3)−2γg2(r ′2)−2γg1(r ′1)−2m0

or

m= (1−
2GM0a3

r ′3c2
g

)(1−
2GM0a2

r ′2c2
g

)(1−
2GM0a1

r ′1c2
g

)m0 (48)

In general, for N gravitational field sources scattered in space about a test particle
we must write,

m=
N
∏

i=1

(1−
2GM0ai

r ′i c
2
g

)m0 (49)

It is the resultant factorγg
t in the resultant gravitational time dilation formula

at a point in space at the neighborhood of N gravitational field sources, given by
Eq. (41) that must appear in the mass relation as written above, and in the relations
for other physical quantities and physical constants in thecontext of TGR, derived
in [2, 4] and [5] and summarized in Table I of [5]. We must simply replaced the
factorsγg(r ′), γg(r ′)−1 andγg(r ′)−2 that appear in those relations byγg

t, (γg
t)−1 and

(γg
t)−2 respectively.

For example, an inertial force~Fi impressed on the inertial massm of a test par-
ticle located at a point at the neighborhood of the inertial masses of N gravitational
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field sources that are scattered about the test particle in the relativistic Euclidean
3-spaceΣ, is related to the proper inertial force~F′i impressed on the rest massm0

of test particle at the neighborhood of the rest masses of theN gravitational field
sources in the proper Euclidean 3-spaceΣ′ as follows

~Fi =

N
∏

i=1

(1−
2GM0ai

r ic2
g

) ~F′i (50)

And the relativistic gravitational potentialΦ j(r ′j) at the location of the test particle,
due to the jth gravitational field source inΣ, is related to the proper (or primed)
gravitational potentialΦ′j(r

′
j) of that field source inΣ′ as follows

Φ j (r ′j , r ′i ) = −
GM0aj

r ′j

N
∏

i=1

(1−
2GM0ai

r ′i c
2
g

)1/2 (51)

The modified forms at the neighborhood of N gravitational field sources of the
relations for the gravitational values in the context of TGR, of the other physical pa-
rameters in Table I of [5] can similarly be written. However for parameters such as
density and current density, which involve division by volume of space occupied by
matter and flow cross-sectional area, one must carefully calculate the resultant vol-
ume and area of the gravitationally deformed shape of the test particle, as illustrated
in Figs. 5(a) and 5(b) in the cases of a test particle located at the neighborhoods of
one and three gravitational field sources respectively.

3 Validating Einstein’s principle of equivalence at the neighborhood of sev-
eral gravitational field sources

The principle of equivalence of Albert Einstein is composedof the local Lorentz
invariance (LLI), the weak equivalence principle (WEP) and the strong equivalence
principle (SEP). The definitions of these component principles adapted from their
definitions in [6] have been presented in section 3 of [5]. Thevalidity of LLI at
the neighborhood of several gravitational field sources hasbeen confirmed in sub-
section 2.1 above.

For WEP, let us multiply the mass relation (49) into the gravitational potential
relation (51) to have the gravitational potential energy ofthe test particle located at
a point P inΣ, due to the jth gravitational field source solely as follows

U j = mΦ j (r ′j ) = −
GM0aj m0

r ′j

N
∏

i=1

(1−
2GM0ai

r ′i c
2
g

)3/2 (52)
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Then by dividing through Eq. (52) by the rest massm0 of the test particle, we obtain
the effective gravitational potential ‘seen’ by the rest massm0 of the test particle, due
to the jth gravitational field source solely, at the point P inthe relativistic Euclidean
3-spaceΣ as follows

Φ j eff = −
GM0aj

r ′j

N
∏

i=1

(1−
2GM0ai

r ′i c
2
g

)3/2 (53)

The effective gravitational acceleration suffered by the test particle towards the cen-
ter of the jth gravitational field source in the relativisticEuclidean 3-spaceΣ is then
given from definition as follows

~g j eff = −
∂

∂r ′j
{−

GM0aj

r ′j

N
∏

i=1

(1−
2GM0ai

r ′i c
2
g

)3/2}
~r j

r j
(54)

where~r j/r j is the unit vector of the radial coordinate from the center ofthe inertial
massM j of the jth gravitational field source to the test particle in the relativistic
Euclidean 3-spaceΣ.

The net effective gravitational force on the test particle towards thejth gravita-
tional field source solely, in the relativistic Euclidean 3-spaceΣ, must be obtained
by multiplying the effective acceleration (54) by the rest massm0 of the test particle
(sinceU j eff in Eq. (52) has been divided bym0 in obtainingΦ j ,eff in Eq. (53)), and
summing the result over j for the N gravitational field sources as follows

~Feff =

N
∑

j

m0~g j eff =

N
∑

j

−
∂

∂r ′j
{−

GM0aj m0

r ′j

N
∏

i=1

(1−
2GM0ai

r ′i c
2
g

)3/2}
~r j

r j
(55)

We find from Eq. (54) that~g j eff does not depend on any property of the test
particle. Hence as long as WEP is valid in the context of the classical (or Newtonian)
gravitation, as multitude of experiments have confirmed [7], WEP is valid at the
neighborhood of several isolated gravitational field sources in the context of the
theory of gravitational relativity.

We are thus left to demonstrate the validity of SEP at the neighborhood of several
isolated gravitational field sources and, hence, in the entire universe, to validate EEP
in the context of TGR. This is easy however, because (i) the validity of SEP at the
neighborhood of several isolated gravitational field sources follows directly from its
validity at the neighborhood of one gravitational field source already demonstrated
in [5], and (ii) LLI is valid at the neighborhood of several isolated gravitational field
sources, from which it follows that non-gravitational lawstake on their usual classi-
cal and special-relativistic forms but in terms of gravitational-relativistic parameters
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and constants (i.e. their transformations in the context ofTGR) at the neighborhood
of several isolated gravitational field sources. All we mustdo then is substitute the
derived expressions for (or the transformations of) physical parameters and physical
constants in the context of TGR into the natural laws and check if their effect cancel
out.

Since we have simply replaced the factorγg = (1− 2GM0a/r ′c2
g)
−1/2 in the de-

rived expressions for physical parameters at the neighborhood of one gravitational
field source (in Table I of [5]) byγg

t =
∏N

i=1(1 − 2GM0ai/r ′i c
2
g) of Eq. (41), at the

neighborhood of several isolated gravitational field sources, as derived above, the
effect of gravity will cancel out in non-gravitational laws at the neighborhood of
several isolated gravitational field sources, just as it does at the neighborhood of one
gravitational field source in [5]. This implies the invariance of non-gravitational
laws with position in space and with time at the neighborhoodof any number N
of isolated gravitational field sources. Consequently the non-gravitational laws re-
tain their usual forms everywhere and at all times in the universe, and this implies
the validity of SEP. We have again validated LLI, WEP and SEP, and consequently,
Einstein’s principle of equivalence, in the context of the theory of gravitational rel-
ativity.

4 Modified Newton’s gravitational force law in the field of isolated gravita-
tional field sources in the context of the theory of gravitational relativity

4.1 The resultant gravitational force on a test particle (inthe context of TGR)
at the neighborhood of two and several isolated gravitational field sources

The resultant force on a test particle of inertial massmat a point P in the relativistic
Euclidean 3-spaceΣ, at the neighborhood of N gravitational field sources that are
scattered inΣ about point P, is given by Eq. (55). It shall be assumed in thissub-
section that the particle is not a gravitational field sourceor is a source of negligible
gravitational field. Let us considerN = 2, such as in Fig. 1a or 1b, in Eq. (55) then,

~Feff = −
∂

∂r ′1











−
GM0a1m0

r ′1
(1−

2GM0a1

r ′1c2
g

)3/2(1−
2GM0a2

r ′2c2
g

)3/2











~r1

r1

−
∂

∂r ′2











−
GM0a2m0

r ′2
(1−

2GM0a1

r ′1c2
g

)3/2(1−
2GM0a2

r ′2c2
g

)3/2











~r2

r2
(56)

~Feff = −
GM0a1m0

r ′21
(1−

2GM0a1

r ′1c2
g

)3/2(1−
2GM0a2

r ′2c2
g

)3/2~r1

r1

+
3G2M2

0a1m0

r ′31 c2
g

(1−
2GM0a2

r ′2c2
g

)3/2(1−
2GM0a1

r ′1c2
g

)1/2~r1

r1
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−
GM0a2m0

r ′22
(1−

2GM0a1

r ′1c2
g

)3/2(1−
2GM0a2

r ′2c2
g

)3/2~r2

r2

+
3G2M2

0a2m0

r ′32 c2
g

(1−
2GM0a1

r ′1c2
g

)3/2(1−
2GM0a2

r ′2c2
g

)1/2~r2

r2
(57)

In the Newtonian gravitation limit, 2GM0a1/r ′1c2
g = 0 and 2GM0a2/r ′2c2

g = 0,
Eq. (57) simplifies as follows

~Feff = −
GM0a1m0

r ′21

~r1

r1
−

GM0a2m0

r ′22

~r2

r2
(58)

And in the post-Newtonian gravitation limit, 2GM0a1/r ′1c2
g ≈ 0 and 2GM0a2/r ′2c2

g ≈

0, Eq. (57) simplifies as follows

~Feff = −
GM0a1m0

r ′21
(1−

3GM0a1

r ′1c2
g

−
3GM0a2

r ′2c2
g

)
~r1

r1

+
3G2M2

0a1m0

r ′31 c2
g

(1−
GM0a1

r ′1c2
g

−
3GM0a2

r ′2c2
g

)
~r1

r1

−
GM0a2m0

r ′22
(1−

3GM0a1

r ′1c2
g

−
3GM0a2

r ′2c2
g

)
~r2

r2

+
3G2M2

0a2m0

r ′32 c2
g

(1−
GM0a2

r ′2c2
g

−
3GM0a1

r ′1c2
g

)
~r2

r2

or

~Feff = (−
GM0a1m0

r ′21
+

6G2M2
0a1m0

r ′31 c2
g

+
3G2M2

0a1M2
0a2m0

r ′21 r ′2c4
g

)
~r1

r1

(−
GM0a2m0

r ′22
+

6G2M2
0a2m0

r ′32 c2
g

+
3G2M2

0a2M2
0a1m0

r ′22 r ′1c4
g

)
~r2

r2
(59)

It is straight forward to extend this result to N= 3, N= 4 and larger values of N in
Eq. (55), although it becomes increasingly cumbersome as N increases beyond the
value 3.

Then by applying the equivalence of inertial acceleration and gravitational ac-
celeration we have

d2~x
dt2
= ~geff (60)

where~geff is give by Eq. (55) at the neighborhood of N gravitational field sources
without approximation, and by Eq, (59) upon dividing through by m0, at the neigh-
borhood of two isolated gravitational field sources, in the post-Newtonian limit.
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Eq. (59) can then be solved for the motion of the test particlewithin the gravita-
tional field of the two isolated bodies on the flat four-dimensional relativistic space-
time (Σ, ct) of the theory of gravitational relativity.

One finds from Eq. (55) and from dividing Eq. (59) bym0, that the effective grav-
itational acceleration does not depend on any property of the test particle (assumed
not containing large quantity of non-gravitational energy). Consequently the weak
equivalence principle is valid for a test particle interacting with two or any number
of isolated gravitational field sources, but with the condition that it contains no large
quantity of non-gravitational energy, such as energy stored in electric field or mag-
netic field or radiation energy. The weak equivalence principle is not valid for a test
particle containing large quantity of non-gravitational energy, as found in [8].

4.2 The two-body, three-body and N-body problems in the contexts of the theory
of gravitational relativity

Although the number of isolated gravitational field sources(or bodies) with which
a test particle interacts in the calculations in the foregoing sub-section can be two,
three, four or larger, the test particle is inherently assumed not to be a gravitational
field source or a source of negligible gravitational field. Onthe other hand, let us
consider two isolated gravitational field sources of inertial massesM1 andM1 (and
rest massesM01 and M02), which are separated by radial distance (from center to
center)r, to interact gravitationally.

First let us considerM1 as the gravitational field source andM2 as the test par-
ticle. Then the gravitational potential due toM1 at the location ofM2 in the context
of TGR is,

Φ1(r ′) = −
GM0a1

r ′
(1−

2GM0a1

r ′c2
g

)1/2 (61)

Now M2 is a gravitational field source, hence its innate inertial massM2i —due to
its gravitational field solely—is related to its rest mass in the context of TGR as

M2i = M02(1−
2GM0a2

R′2c2
g

) (62)

whereR′2 is the radius of the rest massM02. SinceM2 is located in the gravitational
field of M1, at radial distancer from the center ofM1, the mass relation (62) must
be modified further as

M2 = M02(1−
2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′c2
g

) (63)

The inertial massM2 then interacts with the gravitational potentialΦ1(r ′) of
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Eq. (61) yielding the gravitational potential energy possessed byM2 in the relativis-
tic Euclidean 3-spaceΣ in the context of TGR as

U2(r ′) = −
GM0a1

r ′
(1−

2GM0a1

r ′c2
g

)1/2
02 (1−

2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′c2
g

)

= −
GM0a1M0a2

r ′
(1−

2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′c2
g

)3/2 (64)

Division through Eq. (64) byM02 gives the effective gravitational potential ‘seen’
by the rest massM02 in the relativistic Euclidean 3-spaceΣ in the context of TGR
as

Φ2 eff(r
′) = −

GM0a1

r ′
(1−

2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′c2
g

)3/2 (65)

The effective gravitational acceleration suffered byM2 (in the gravitational field
of M1) is then given from definition as

~g21 eff(r
′) = −

d
dr ′











−
GM0a1

r ′
(1−

2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′c2
g

)3/2











~r
r

= −
GM0a1

r ′2
(1−

2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′c2
g

)3/2~r
r

+
3G2M2

0a1

r ′3c2
g

(1−
2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′c2
g

)1/2~r
r

(66)

where~r/r is the unit vector along the radial direction from the centerof M1 to the
center ofM2. The equation of motion of the bodyM2 in the gravitational field of
the bodyM1 is then given as follows

d2~x2

dt 2
= ~g21 eff(r

′)

= −
GM0a1

r ′2
(1−

2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′c2
g

)3/2~r
r

+
3G2M2

0a1

r ′3c2
g

(1−
2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′c2
g

)1/2~r
r

(67)

On the other hand, by makingM2 the gravitational field source andM1 the
test particle, and repeating the derivation from Eq. (61), the effective gravitational
acceleration suffered byM1 in the gravitational field ofM2 is

~g12 eff(r
′) = −

d
dr ′











−
GM0a2

r ′
(1−

2GM0a1

R′1c2
g

)(1−
2GM0a2

r ′c2
g

)3/2











(−
~r
r
)
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= −
GM0a2

r ′2
(1−

2GM0a1

R′1c2
g

)(1−
2GM0a2

r ′c2
g

)3/2(−
~r
r
)

+
3G2M2

0a2

r ′3c2
g

(1−
2GM0a1

R′1c2
g

)(1−
2GM0a2

r ′c2
g

)1/2(−
~r
r
) (68)

whereR′1 is the radius of the rest massM01 and−~r/r is the unit vector along the
radial direction from the center ofM2 to the center ofM1. The equation of motion
of M1 in the gravitational field ofM2 is then given as

d2~x1

dt 2
= ~g12 eff(r

′)

= −
GM0a2

r ′2
(1−

2GM0a1

R′1c2
g

)(1−
2GM0a2

r ′c2
g

)3/2(−
~r
r
)

+
3G2M2

0a2

r ′3c2
g

(1−
2GM0a1

R′1c2
g

)(1−
2GM0a2

r ′c2
g

)1/2(−
~r
r
) (69)

The following remarks shall be made about the effective gravitational accelera-
tions of Eqs. (66) and (68) and the equations of motion (67) and (69):

1. The effective accelerations~g21 eff and~g12 eff are different in magnitude and
oppositely directed in the Euclidean 3-spaceΣ. They are equal in magnitude
only if M01 = M02 andR′1 = R′2.

2. The motion of one body due to the gravitational field of the other expressed
by Eqs. (66) and (68) cannot be neglected in general, unless if the mass of one
is by far larger than that of the other, in which case the acceleration suffered
by the larger body in the gravitational field of the smaller body is negligible.
This is the situation between the Sun and a planet for instance.

3. For the motion of a planet round the Sun, the following post-Newtonian
approximations to~g21 eff and ~g12 eff , obtained with 2GM0a1/r ′c2

g ≈ 0 and
2GM0a2/r ′c2

g ≈ 0, are adequate:

~g21 eff =













−
GM0a1

r ′2
+

6G2M2
0a1

r ′3c2
g

+
2G2M0a1M0a2

R′2r ′2c2
g













~r
r

(70)

and

~g12 eff =













−
GM0a2

r ′2
+

6G2M2
0a2

r ′3c2
g

+
2G2M0a2M0a1

R′1r ′2c2
g













(−
~r
r
) (71)

Further more, given that the bodyM1 is the Sun, that is,M1 = Ms (≡ M⊙)
and the bodyM2 is the planet, that isM2 = Mp of radiusRp, then the effective
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gravitational acceleration~g12 eff suffered by the Sun in the gravitational field
of the planet can be neglected, while the effective gravitational acceleration
suffered by the planet in the gravitational field of the Sun~g21 eff shall be re-
written as follows

~gp s =















−
GM0as

r ′2p s
+

6G2M2
0as

r ′3p sc2
g

+
2G2M0asM0ap

R′p r ′2p sc2
g















~rp s

rp s
(72)

whererp s is the radial distance from the center of the inertial massMp of
the planet to the center of the inertial massMs of the Sun in the relativistic
Euclidean 3-spaceΣ, which corresponds to the radial distancer ′p s from the
center of the rest massM0p of the planet to the center of the rest massM0s
of the Sun in the proper Euclidean 3-spaceΣ ′, and~rp s/rp s is the unit vector
along the radial direction from the center of the planet to the center of the Sun
in Σ.

The approximate post-Newtonian gravitational acceleration (72) suffered
by the planet towards the center of the Sun, when both the Sun and the planet
are considered as two interacting gravitational field sources (or as two-body
system), is a slightly modified form of Eq. (97) of [4], when the planet is
considered as a test particle of negligible gravitational field (or when the Sun –
planet system is considered as a one-body system). Since theextra third term
inside the parentheses in (72) is an inverse-square-law acceleration term like
the Newtonian first term, it does not give rise to further perihelion precession
of the planetary orbit than caused by the second term calculated in section
two of [8].

4. A moderate star may be bound in orbit round a neutron star. Then both the
star and neutron star will be in motion and the exact equations of motion (67)
for the moderate star of massM2 and Eq. (69) for the neutron star of massM1,
must be employed.

5. If we replace the neutron star by a black hole in item 4, so that a moderate star
is bound in orbit round a black hole, then the effective gravitational acceler-
ation~g12 eff of Eq. (68), which the black hole suffers in the gravitational field
of the moderate star is zero; and this is true even if we replace the moderate
star by a star more massive than the black hole, since (1−2GM0a1/R′1c2

g) = 0
for a black hole of rest massM01 and radiusR′1 (of M01) —this is the ra-
dius of the gravitational event horizon of the black hole. Thus the black hole
will remain stationary, while the star will be in motion relative to it. A black
hole is absolutely stationary (relative to all observers) always, since a black
hole possesses it maximum velocity of zero always relative to all observers

A. Joseph. Unified gravity and dynamics at neighborhood of severalgrav. field sources I. 25



Vol. 1(5) : Article 25 THE FUNDAMENTAL THEORY ... (M)
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Fig. 6: Three interacting gravitational field sources in the Euclidean 3-space of the theory of
gravitational relativity.

as established in [9]. Further support for this shall also bederived in the next
article.

Let us now consider the case of interacting three isolated gravitational field
sources (or bodies), where the inertial massesM1, M2 and M3 of the bodies are
scattered in the relativistic Euclidean 3-spaceΣ of TGR, such as illustrated in Fig. 6
at a given instant as the bodies are in motion. This is the three-body problem.

The bodiesM1 andM3 establish gravitational potential at the location B ofM2.
Hence the net gravitational potential at B in the context of TGR is,

ΦB net = Φ21(r
′
12) + Φ23(r

′
23)

= −
GM0a1

r ′12

(1−
2GM0a1

r ′12c
2
g

)1/2 −
GM0a3

r ′23

(1−
2GM0a3

r ′23c
2
g

)1/2 (73)

The net gravitational potential at C due toM1 andM2 is,

ΦC net = Φ32(r
′
23) + Φ31(r

′
31)

= −
GM0a2

r ′23

(1−
2GM0a2

r ′23c
2
g

)1/2 −
GM0a1

r ′31

(1−
2GM0a1

r ′31c
2
g

)1/2 (74)

And the net gravitational potential at A due toM2 andM3 is,

ΦA net = Φ12(r
′
12) + Φ13(r

′
31)

= −
GM0a2

r ′12

(1−
2GM0a2

r ′12c
2
g

)1/2 −
GM0a3

r ′31

(1−
2GM0a3

r ′31c
2
g

)1/2 (75)

The inertial massM2 of the body at B is related to its rest massM02 in its own
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gravitational field and the gravitational fields of the bodies M1 andM3 at B as

M2 = M02(1−
2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′12c
2
g

)(1−
2GM0a3

r ′23c
2
g

) (76)

The inertial massM3 of the body at C is related to its rest massM03 in its own
gravitational field and the gravitational fields of the bodies M1 andM2 at B as

M3 = M03(1−
2GM0a3

R′3c2
g

)(1−
2GM0a1

r ′31c
2
g

)(1−
2GM0a2

r ′23c
2
g

) (77)

And the inertial massM1 of the body at A is related to its rest massM01 in its own
gravitational field and the gravitational fields of the bodies M2 andM3 at A as

M1 = M01(1−
2GM0a1

R′1c2
g

)(1−
2GM0a2

r ′12c
2
g

)(1−
2GM0a3

r ′31c
2
g

) (78)

whereR′1, R′2 andR′3 are the radii of the rest massesM01, M02 andM03 respectively.
The net gravitational potential energy possessed byM2 at B is,

UB net = M2ΦB net(r
′
12, r

′
23)

= [−
GM0a1

r ′12

(1−
2GM0a1

r ′12c
2
g

)1/2 −
GM0a3

r ′23

(1−
2GM0a3

r ′23c
2
g

)1/2]

× [M02(1−
2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′12c
2
g

)(1−
2GM0a3

r ′23c
2
g

)]

= −
GM0a1M02

r ′12

(1−
2GM0a2

R′2c2
g

)(1−
2GM0a3

r ′23c
2
g

)(1−
2GM0a1

r ′12c
2
g

)3/2

−
GM0a3M02

r ′23

(1−
2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′12c
2
g

)(1−
2GM0a3

r ′23c
2
g

)3/2 (79)

The net gravitational potential energy possessed byM3 at C is,

UC net = M3ΦC net(r
′
31, r

′
23)

= [−
GM0a1

r ′31

(1−
2GM0a1

r ′31c
2
g

)1/2 −
GM0a2

r ′23

(1−
2GM0a3

r ′23c
2
g

)1/2]

× [M03(1−
2GM0a2

R′3c2
g

)(1−
2GM0a1

r ′31c
2
g

)(1−
2GM0a3

r ′23c
2
g

)]

= −
GM0a1M03

r ′31

(1−
2GM0a3

R′3c2
g

)(1−
2GM0a2

r ′23c
2
g

)(1−
2GM0a1

r ′31c
2
g

)3/2

−
GM0a2M03

r ′23

(1−
2GM0a3

R′3c2
g

)(1−
2GM0a1

r ′31c
2
g

)(1−
2GM0a2

r ′23c
2
g

)3/2 (80)
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And the net gravitational potential energy possessed byM1 at A is,

UA net = M1ΦA net(r
′
12, r

′
31)

= [−
GM0a2

r ′12

(1−
2GM0a2

r ′12c
2
g

)1/2 −
GM0a3

r ′31

(1−
2GM0a3

r ′31c
2
g

)1/2]

× [M01(1−
2GM0a1

R′1c2
g

)(1−
2GM0a2

r ′12c
2
g

)(1−
2GM0a3

r ′31c
2
g

)]

= −
GM0a2M01

r ′12

(1−
2GM0a1

R′1c2
g

)(1−
2GM0a3

r ′31c
2
g

)(1−
2GM0a2

r ′12c
2
g

)3/2

−
GM0a3M01

r ′31

(1−
2GM0a1

R′1c2
g

)(1−
2GM0a2

r ′12c
2
g

)(1−
2GM0a3

r ′31c
2
g

)3/2 (81)

The effective gravitational potential at the position B ofM2 is,

ΦB eff(r
′
12, r

′
23) = UB net/M02

= −
GM0a1

r ′12

(1−
2GM0a2

R′2c2
g

)(1−
2GM0a3

r ′23c
2
g

)(1−
2GM0a1

r ′12c
2
g

)3/2

−
GM0a3

r ′23

(1−
2GM0a2

R′2c2
g

)(1−
2GM0a1

r ′12c
2
g

)(1−
2GM0a3

r ′23c
2
g

)3/2

(82)

The effective gravitational potential at the position C ofM3 is,

ΦC eff(r
′
12, r

′
23) = UC net/M03

= −
GM0a1

r ′31

(1−
2GM0a3

R′3c2
g

)(1−
2GM0a2

r ′23c
2
g

)(1−
2GM0a1

r ′31c
2
g

)3/2

−
GM0a2

r ′23

(1−
2GM0a3

R′3c2
g

)(1−
2GM0a1

r ′31c
2
g

)(1−
2GM0a2

r ′23c
2
g

)3/2

(83)

The effective gravitational potential at the position A ofM1 is,

ΦA eff(r
′
12, r

′
31) = UA net/M01

= −
GM0a2

r ′12

(1−
2GM0a1

R′1c2
g

)(1−
2GM0a3

r ′31c
2
g

)(1−
2GM0a2

r ′12c
2
g

)3/2

−
GM0a3

r ′31

(1−
2GM0a1

R′1c2
g

)(1−
2GM0a2

r ′12c
2
g

)(1−
2GM0a3

r ′31c
2
g

)3/2

(84)
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The effective gravitational acceleration suffered byM2 at position B is,

~g2 eff = −
∂ΦBeff(r ′12, r

′
23)

∂r ′12

(−
~r12

r12
) −

∂ΦBeff(r ′12, r
′
23)

∂r ′23

~r23

r23

= −
GM0a1

r ′212

(1−
2GM0a2

R′2c2
g

)(1−
2GM0a3

r ′23c
2
g

)(1−
2GM0a1

r ′12c
2
g

)3/2(−
~r12

r12
)

+
3G2M2

0a1

r ′312c
2
g

(1−
2GM0a2

R′2c2
g

)(1−
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r23
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r23
(85)

The effective gravitational acceleration suffered byM3 at position C is,

~g3 eff = −
∂ΦC eff(r ′31, r

′
23)

∂r ′31

~r31

r31
−
∂ΦC eff(r ′31, r

′
23)

∂r ′23

(−
~r23

r23
)

= −
GM0a1

r ′231

(1−
2GM0a3

R′3c2
g

)(1−
2GM0a2

r ′23c
2
g

)(1−
2GM0a1

r ′31c
2
g

)3/2~r31

r31
)

+
3G2M2

0a1

r ′331c
2
g

(1−
2GM0a3

R′3c2
g

)(1−
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g
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2
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−
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)(1−
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)(1−
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)
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3G2M2
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r ′323c
2
g

(1−
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R′3c2
g

)(1−
2GM0a1

r ′31c
2
g

)(1−
2GM0a2

r ′23c
2
g

)1/2(−
~r23

r23
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(86)

And the effective gravitational acceleration suffered byM1 at position A is,

~g1 eff = −
∂ΦAeff(r ′12, r

′
31)

∂r ′12

~r12

r12
−
∂ΦAeff(r ′12, r

′
31)

∂r ′31

(−
~r31

r31
)

= −
GM0a2

r ′212

(1−
2GM0a1

R′1c2
g

)(1−
2GM0a3

r ′31c
2
g

)(1−
2GM0a2

r ′12c
2
g

)3/2~r12

r12
)

+
3G2M2

0a2

r ′312c
2
g

(1−
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R′1c2
g

)(1−
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r ′31c
2
g

)(1−
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r12

A. Joseph. Unified gravity and dynamics at neighborhood of severalgrav. field sources I. 29



Vol. 1(5) : Article 25 THE FUNDAMENTAL THEORY ... (M)

−
GM0a3

r ′231
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R′1c2
g

)(1−
2GM0a2

r ′12c
2
g

)(1−
2GM0a3

r ′31c
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~r31
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+
3G2M2
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(87)

The equations of motions of the bodiesM1, M2 and M3 must then be written
respectively as follows

d2~x1

d t 2
= ~g1 eff(r

′
12, r

′
31) (88)

d2~x2

d t 2
= ~g2 eff(r

′
12, r

′
23) (89)

and
d2~x3

d t 2
= ~g3 eff(r

′
31, r

′
23) (90)

Equations (88), (89) and (90) along with Eqs. (97), (85) and (86) respectively, must
then be solved for the paths~x1(t), ~x2(t) and~x3(t) of M1, M2 andM3 in Σ. It is straight
forward to extend this derivation to the 4-body problem, 5-body problem . . . and N-
body problem, except that it becomes increasingly cumbersome for N> 3.

4.3 The zero effect on the gravitational event horizon (or blackness) of a black
hole of external gravitational field and motion of the observer relative to the
black hole

Let us suppose that the kth gravitational field source of the Nisolated gravitational
field sources that give rise to the resultant factorγ t

g of Eq. (41) at a point in space is
a black hole. Let us suppose further that the point P is located at the gravitational
event horizon surface of this black hole. The factorφγgk at point P on the surface of
the black hole, assuming all other gravitational field sources are absent, is given in
the context of the intrinsic theory of gravitational relativity φTGR as follows

φγgk(φr ′k)
−2 = (1−

2GφM0ak

φr ′kφc2
g

) = 0 (91)

whereφM0k is the one-dimensional intrinsic rest mass of the black holein the proper
intrinsic spaceφρ′ andφr ′k is the length ofφM0k.

The intrinsic gravitational time dilation and intrinsic gravitational length con-
traction formulae at the surface of the black hole due to the gravitational field of the
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black hole solely are given respectively as follows

dφt = φγgk(φr ′k)dφt′ = (1−
2GφM0ak

φr ′kφc2
g

)−1/2dφt′ = ∞ (92)

dφρ = φγgk(φr ′k)
−1dφρ′ = (1−

2GφM0ak

φr ′kφc2
g

)−1/2dφρ′ = 0 (93)

When the presence nearby of the rest N-1 gravitational field sources is taken into
consideration, then the resultant intrinsic gravitational time dilation and resultant
intrinsic gravitational length contraction in the contextof φTGR at the point P at
the surface of the black hole, which is the kth gravitationalfield source, are the
following respectively

dφt = φγg1(φr ′1)φγg2(φr ′2)φγg3(φr ′3) · · · φγgk(φr ′k) · · · φγgN(φr ′N)dφt′

= (1−
2GφM0a1

φr ′1φc2
g

)−1/2(1−
2GφM0a2

φr ′2φc2
g

)−1/2(1−
2GφM0a3

φr ′3φc2
g

)−1/2 · · ·

· · · (1−
2GφM0ak

φr ′kφc2
g

)−1/2 · · · (1−
2GφM0aN

φr ′Nφc2
g

)−1/2dφt′ = ∞ (94)

dφρ = φγg1(φr ′1)−1φγg2(φr ′2)−1 · · · φγgk(φr ′k)
−1 · · · φγgN(φr ′N)−1dφρ′

= (1−
2GφM0a1

φr ′1φc2
g

)1/2(1−
2GφM0a2

φr ′2φc2
g

)1/2(1−
2GφM0a3

φr ′3φc2
g

)1/2 · · ·

· · · (1−
2GφM0ak

φr ′kφc2
g

)1/2 · · · (1−
2GφM0aN

φr ′Nφc2
g

)1/2dφρ′ = 0 (95)

whereφr ′i is the ‘distance’ along the the proper intrinsic spaceφρ′ of the base of the
intrinsic massφM0i of the ith gravitational field source from the surface of the black
hole. Eqs. (94) and (95) are valid by virtues of Eqs. (92) and (93) respectively.

We find from equations (92) and (94) that a proper intrinsic time intervaldφt′

is infinitely dilated at the surface of a black hole, relativeto 3-observers in the rela-
tivistic Euclidean 3-spaceΣ, with or without the presence of other gravitational field
sources at the neighborhood of the black hole. Equations (93) and (95) likewise
show that an intervaldφρ′ of proper intrinsic space is contracted to zero interval at
the surface of a black hole, relative to 3-observers inΣ, with or without the presence
of other gravitational field sources at the neighborhood of the black hole.

Now, no matter how the inertial massesM1,M2,M3, · · · ,MN−1 of the other N-1
gravitational field sources are scattered in the Euclidean 3-spaceΣ of TGR about
the black hole, their intrinsic inertial massesφM1, φM2, · · · , φMN−1 are all aligned
with the intrinsic massφMk of the black hole along the isotropic relativistic intrinsic
spaceφρ and their intrinsic rest massesφM01, φM02, φM03 · · · φM0N lie along the
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curved proper intrinsic spaceφρ′ in the context of TGR/φTGR. Consequently the
intrinsic length contraction formula at the surface of the black hole (95) is valid
no matter how the inertial masses of the other N-1 gravitational field sources are
scattered in 3-spaceΣ about the black hole.

The outward manifestations on the flat four-dimensional relativistic spacetime
(Σ, ct) of Eqs. (92) and (93) on flat two-dimensional relativistic intrinsic spacetime
(φρ, φcφt), obtained by simply dropping the symbolφ in those equations, are the
following respectively

dt = γgk(r
′
k)dt′ = (1−

2GM0ak

r ′kc
2
g

)−1/2dt′ = ∞ (96)

dρ = γgk(r
′
k)
−1dρ′ = (1−

2GM0ak

r ′kc
2
g

)−1/2dρ′ = 0 (97)

We shall for the present purpose replacedρ′ by an elementary volumedΣ′ of the
proper Euclidean 3-spaceΣ′ at the surface of the rest massM0k in Σ′ of the black
hole anddρ by elementary volumedΣ of the relativistic Euclidean 3-spaceΣ of TGR
at the surface of the inertial massMk in Σ of the black hole, and re-write Eq. (97) as
follows

dΣ = γgk(r
′
k)
−1dΣ′ = (1−

2GM0ak

r ′kc
2
g

)−1/2dΣ′ = 0 (98)

Equation (96) states that an intervaldt′ of proper time is infinitely dilated at the
surface of a black hole relative to 3-observers in the 3-spaceΣ, with the assumption
of the absence of every other gravitational field source, andEq. (98) states that an
elementary volumedΣ′ of proper Euclidean 3-space at the surface of a black hole
is contracted to zero volume relative to 3-observers inΣ, with the assumption of the
absence of every other gravitational field source.

The outward manifestations on the flat four-dimensional spacetime (Σ, ct) of
Eqs. (94) and (95) on the flat two-dimensional intrinsic spacetime (φρ, φcφt) are
likewise given respectively as follows

dt = γg1(r ′1)γg2(r ′2)γg3(r ′3) · · · γgk(r
′
k) · · · γgN(r ′N)dt′

= (1−
2GM0a1

r ′1c2
g

)−1/2(1−
2GM0a2

r ′2c2
g

)−1/2(1−
2GM0a3

r ′3c2
g

)−1/2 · · ·

· · · (1−
2GM0ak

r ′kc
2
g

)−1/2 · · · (1−
2GM0aN

r ′Nc2
g

)−1/2dt′ = ∞ (99)

dΣ = γg1(r ′1)−1γg2(r ′2)−1 · · · γgk(r
′
k)
−1 · · · γgN(r ′N)−1dΣ′

= (1−
2GM0a1

r ′1c2
g

)1/2(1−
2GM0a2

r ′2c2
g

)1/2(1−
2GM0a3

r ′3c2
g

)1/2 · · ·
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· · · (1−
2GM0ak

r ′kc
2
g

)1/2 · · · (1−
2GM0aN

r ′Nc2
g

)1/2dΣ′ = 0 (100)

Equations (99) and (100) are valid by virtues of Eqs. (96) and(98) respectively.
Let us write the mass expression for the black hole due to its own gravitational

field solely, that is, with the assumption of absence of the rest N-1 gravitational field
sources. This is given as follows

Mk = M0k(γg k)
−2 = M0k(1−

2GM0ak

r ′kc
2
g

) = 0 (101)

A black hole possesses zero inertial mass in the relativistic Euclidean 3-spaceΣ
according to Eq. (101), but we shall not deliberate further on this in this article.
When the black hole is considered to be located at the neighborhood of the other N-
1 gravitational field sources, then the mass relation for theblack hole in the context
of TGR that follows from Eq. (49) is

Mk = γg1(r ′1)−2γg2(r ′2)−2 · · · γgk(r
′
k)
−2 · · · γgN(r ′N)−2M0k

= (1−
2GM0a1

r ′1c2
g

)(1−
2GM0a2

r ′2c2
g

)(1−
2GM0a3

r ′3c2
g

) · · ·

· · · (1−
2GM0ak

r ′kc
2
g

) · · · (1−
2GM0aN

r ′Nc2
g

)M0k = 0 (102)

Equation (102) again shows that a black hole possesses zero inertial mass inΣ with
the presence of any numberN − 1 of other gravitational field sources that are scat-
tered about the black hole inΣ.

We find from Eqs. (96) and (98) and Eqs. (99) and(100) that any intervaldt′ of
proper time is infinitely gravitationally dilated and any volume dΣ′ of the proper
physical Euclidean 3-space is gravitationally contractedto zero volume at the sur-
face of a black hole, while Eqs. (101) and (102) show that the inertial mass of the
black hole inΣ is zero, both while the black hole is isolated from the gravitational
field of any other source and while it is located within the gravitational field of any
number of other sources. In other words, the properties of a black hole namely, the
radius of the event horizon of a black hole; the zero inertialmass inΣ of a black
hole; the infinite dilation of time at the surface of a black hole; the gravitational
event horizon of the surface of a black hole and the blacknessof a black hole, are
unaltered by its location in the gravitational field of any number of other sources.

The derived facts about black hole in the context of the theory of gravitational
relativity (TGR) in the foregoing paragraph shall be statedas a principle of black
hole thus
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A black hole is the same with respect to all observers where ever it may
be located in the universe.

This derived principle must be one of the principles of blackhole physics in the
context of TGR, to be developed in the next volume of this monograph series.

In order to show that the above principle is valid relative toall observers, as
stated, let us modify Eq. (99), (100) and (102) by incorporating the effect of the ve-
locity of the observer relative to the black hole into them (in the context of combined
TGR and SR) to have as follows

dt = γg1(r ′1)γg2(r ′2)γg3(r ′3) · · · γgk(r
′
k) · · · γgN(r ′N) γ(v) dt′

= (1−
2GM0a1

r ′1c2
g

)−1/2(1−
2GM0a2

r ′2c2
g

)−1/2(1−
2GM0a3

r ′3c2
g

)−1/2 · · ·

· · · (1−
2GM0ak

r ′kc
2
g

)−1/2 · · · (1−
2GM0aN

r ′Nc2
g

)−1/2(1−
v2

c2
γ

)−1/2dt′ = ∞

(103)

dΣ = γg1(r ′1)−1γg2(r ′2)−1 · · · γgk(r
′
k)
−1 · · · γgN(r ′N)−1γ(v)−1dΣ′

= (1−
2GM0a1

r ′1c2
g

)1/2(1−
2GM0a2

r ′2c2
g

)1/2(1−
2GM0a3

r ′3c2
g

)1/2 · · ·

· · · (1−
2GM0ak

r ′kc
2
g

)1/2 · · · (1−
2GM0aN

r ′Nc2
g

)1/2(1−
v2

c2
γ

)1/2dΣ′ = 0 (104)

Mk = γg1(r ′1)−2γg2(r ′2)−2 · · · γgk(r
′
k)
−2 · · · γgN(r ′N)−2γ(v)M0k

= (1−
2GM0a1

r ′1c2
g

) (1−
2GM0a2

r ′2c2
g

) (1−
2GM0a3

r ′3c2
g

) · · ·

· · · (1−
2GM0ak

r ′kc
2
g

) · · · (1−
2GM0aN

r ′Nc2
g

) (1−
v2

c2
γ

)−1/2M0k = 0 (105)

Equations (103), (104) and (105) show that the above principle is not affected by
the velocity of the observer relative to the black hole (or ofthe black hole relative
to the observer). Hence the principle is indeed valid with respect to all observers in
the universe as stated.

Now the gravitational speed at the surface of a black hole hasa numerical value
of 3 × 108 m/s. That is,V′g(r

′
k)/cg = (2GM0ak/r ′k)

1/2 = 1; henceV′g(r
′
k) = cg =

3 × 108 m s−1. The principle derived above, which states that the event horizon of
a black hole is unaltered by its location in an external gravitational field, where the
gravitational speed due to the other sources is non-zero, implies that the maximum
gravitational speedcg, (at the event horizon of a black hole), is an invariant with
both location in the universe and the observer.
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As a matter of fact, the rule for composition of gravitational velocities in the con-
text of TGR, which follows from gravitational local Lorentztransformation (GLLT)
or its inverse, is the same as the rule for composition of dynamical velocities in SR.
It is given as follows, as derived formally in [4]

vg =
V′g(r

′
es) + v

′
g

1+ V′g(r
′
es)v

′
g/c2

g

(106)

For instance, the earth, by virtue of its gravitational field, prescribes gravitational
speedv′g at its surface. The Sun also prescribes gravitational speedV′g(r

′
es) at the

surface of the earth, wherer ′esis the radial distance from the center of the Sun to the
surface of the earth in the proper Euclidean 3-spaceΣ′. The resultant gravitational
speedvg of a point on the surface of the earth, which lies on the line joining the
centers of the earth and the Sun, such that the gravitationalspeedsv′g andV′g(r

′) are
collinear, is given by Eq. (106).

If either V′g(r
′
es) = cg or v′g = cg, thenvg = cg, and ifV′g(r

′
es) = cg andv′g = cg,

thenvg = cg again in Eq. (106). This shows that the gravitational speedcg at the
event horizon of a black hole is unaltered by the presence of other gravitational field
sources. Thus the derived principle of black hole physics stated above can be stated
equivalently as follows

The gravitational speedcg at the event horizon of a black hole (which
is the speed of gravitational waves), is invariant with the observer (or
frame of reference) and with location of the black hole in theuniverse.

Clearly this is the counterpart in the theory of gravitational relativity of the second
principle of the special theory of relativity. This derivedprinciple was stated without
proof at the beginning of the analytical development of TGR in analogy with the
analytical development of SR in [4].

5 The metric theory of absolute intrinsic gravity at the neighborhood of sev-
eral isolated gravitational field sources

As has been well developed in [10] – [11] and [12], the theory of absolute intrin-
sic gravity (φAG) is composed of the metric theory of absolute intrinsic gravity
(φMAG) with absolute intrinsic sub-Riemannian line elementdφŝ2 = φĝikdxidxk,
on curved ‘two-dimensional’ absolute intrinsic spacetime(φρ̂, φĉφt̂ ) with absolute
intrinsic sub-Riemannian metric tensorφĝik, and the starred Newtonian theory of
absolute intrinsic gravity (φNAG*) on the curved (φρ̂, φĉφt̂ ), derived by the ab-
solute intrinsic action principle with the aid of the absolute intrinsic line element of
φMAG, with respect to 3-observers in the relativistic Euclidean 3-spaceΣ in [11]
and [12], althoughφNAG* is non-detectable to these observers.
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TheφNAG* on the curved absolute intrinsic spacetime (φρ̂, φĉφt̂ ) is invariantly
projected as Newtonian theory of absolute gravity without star label (φNAG) into
the underlying flat relativistic intrinsic spacetime (φρ, φcφt), which is made mani-
fest in the Newtonian theory of absolute gravity (NAG) in theflat four-dimensional
relativistic spacetime (Σ, ct), but which is non-observable and non-detectable to 3-
observers inΣ. The non-detectable NAG co-exists with the observed theoryof grav-
itational relativity (TGR) and relativistic Newton’s law of gravity—relativistic in the
context of TGR—on the flat four-dimensional relativistic spacetime (Σ, ct) in every
gravitational field.

All the component theories of absolute intrinsic theory of gravity (φAG) namely,
φMAG, φNAG*, φNAG and NAG, have been well developed at the exterior of a
singular gravitational field source in [12]. Only theφMAG shall be extended to
the neighborhood of several isolated gravitational field sources in this section, since
such extensions of the other theories follow easily from theabsolute intrinsic line
element ofφMAG.

The resultant absolute intrinsic line element and resultant absolute intrinsic met-
ric tensorφMAG shall be derived, and this will be easy, since in the absolute intrinsic
2-geometry ofφMAG, the ‘one-dimensional’ absolute intrinsic rest massesφm̂0 or
φM̂0 of all particles and bodies in the universe lie along the ‘one-dimensional’ uni-
versal isotropic absolute intrinsic spaceφρ̂ and all their intrinsic inertial massesφm
andφM lie along the one-dimensional isotropic universal relativistic intrinsic space
φρ, although their intrinsic massesmandM are scattered arbitrarily in the universal
relativistic Euclidean 3-spaceΣ, with respect to all 3-observers inΣ. Hence all in-
trinsic gravitational field sources are collinear with any given point P in space in the
context ofφMAG. Moreover the components of the absolute intrinsic metric tensor
are always related thus,

φĝ00 = −φĝ
−1
11; φĝ12 = φĝ21 = 0,

as has been established since [13].
Now let us revisit the theory of gravitational relativity (TGR) at the neighbor-

hood of two gravitational field sources formulated in sub-section 2.1. By assuming
that the massM1 is absent in Fig. 1a or 1b, the massM2 gives rise to TGR and
establishes Lorentzian metric tensor at point P, as well as at every other point in
spacetime in all its finite neighborhood. When the massM1 is then brought in place,
operating upon the Lorentzian metric established everywhere by M2, it also gives
rise to TGR and establishes Lorentzian metric tensor at point P, as well as at every
other point in spacetime again in all finite neighborhood of the field source. This
can be continued until the resultant theory of gravitational relativity of as many
isolated field sources as possible is obtained. Each new gravitational field source
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introduced operates upon the Lorentzian metric tensor established by the preceding
field sources in the context of TGR. This superposition procedure in the context of
TGR gives rise to the resultant factorγ t

g of Eq. (43) at the neighborhood of two
gravitational field sources, and Eq. (41) at the neighborhood of N gravitational field
sources in the context of TGR.

The procedure for superposition of spacetime geometry in the context of the
‘two-dimensional’ metric theory of absolute intrinsic gravity (φMAG), is different
from that of TGR described in the preceding paragraph. InφMAG, the absolute
intrinsic rest massφM̂01 of the gravitational field source of inertial massM1 in
Σ, assuming massM2 is absent (in Figs. 1a and 1b), gives rise to the curved ab-
solute intrinsic spacetime (φρ̂′, φĉφt̂′ ) relative to flat relativistic intrinsic spacetime
(φρ, φcφt) and establishes an absolute intrinsic metric tensor ˆg′ik at every point on this
curved (φρ̂′, φĉφt̂′ ), with respect to 3-observers in the physical Euclidean 3-spaceΣ.

Thus whenM2 is brought in place, operating upon the curved absolute intrinsic
spacetime (φρ̂′, φĉφt̂′ ) with absolute intrinsic sub-Riemannian metric tensor estab-
lished byM1, its absolute intrinsic rest massφM̂02 establishes another curved ab-
solute intrinsic spacetime (φρ̂, φĉφt̂ ) relative to the curved (φρ̂′, φĉφt̂′ ) established
by φM̂0 1, as illustrated in Fig. 7.

The two gravitational field sources thereby establish a resultant absolute intrin-
sic sub-Riemannian metric tensor on the upper curved absolute intrinsic spacetime
(φρ̂, φĉφt̂) relative to the flat relativistic intrinsic space (φρ, φcφt) at every point in
spacetime in all their finite neighborhood, with respect to all 3-observers in the phys-
ical Euclidean 3-spaceΣ. Fig. 7 illustrates the curved absolute intrinsic spacetime
(φρ̂, φĉφt̂) established by absolute absolute intrinsic rest massφM̂02 upon the curved
absolute intrinsic spacetime (φρ̂′, φĉφt̂′) established byφM̂01.

Since the absolute intrinsic spacetine (φρ̂′, φĉφt̂′ ) in the absence ofφM̂02 is
curved relative to the flat relativistic intrinsic spacetime (φρ, φcφt), the components
of the absolute intrinsic metric tensor of (φρ̂′, φĉφt̂′ ) at P, due to the gravitational
field sourceM1, assumingM2 is absent, in the context of the present metric theory
of absolute intrinsic gravity is the following

φĝ00 = −φĝ
−1
11 = 1−

2GφM̂0a1

φr̂1φĉ2
g

; φĝ12 = φĝ21 = 0 (107)

Now the components of the intrinsic Lorentzian metric tensor of the flat relativis-
tic intrinsic spacetime (φρ, φcφt) relative to which (φρ̂′, φĉφt̂′ ) is curved in Fig. 7 are
η00 = −η11 = 1;η12 = η21 = 0. Hence system (107) can be written alternatively as
follows

φĝ00 = −φĝ
−1
11 = η00 −

2GφM̂0a1

φr̂1φĉ2
g

; φĝ12 = φĝ21 = 0 (108)
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Fig. 7: The resultant curved absolute intrinsic spacetime at the neighborhood of two isolated
gravitational field sources at the second stage of evolutions of space-time/intrinsic space-time
and of parameters/intrinsic parameters.

System (108) shows that the field sourceM1 establishes curved absolute intrinsic
spacetime (or absolute intrinsic Riemannian spacetime geometry) relative to the flat
relativistic intrinsic spacetime with intrinsic Lorentzian metric tensor (or relative
to an intrinsic Lorentzian boundary condition). Now when the gravitational field
sourceM2 is brought in place, it will establish curved absolute intrinsic spacetime
(or absolute intrinsic Riemnnian spacetime geometry) relative to the absolute intrin-
sic Riemannian spacetime geometry, (or absolute intrinsicsub-Riemannian metric
tensor) thatM1 established. Hence the components of the resultant absolute intrin-
sic metric tensor at P due toM1 andM2 jointly, (in the context ofφMG), are given
as follows, as has been derived formally in [13],

φĝ00 = −φĝ
−1
11 = φĝ00 −

2GφM̂0a2

φr̂2φĉ2
g

; φĝ12 = φĝ21 = 0

= 1−
2GφM̂0a1

φr̂1φĉ2
g

−
2GφM̂0a2

φr̂2φĉ2
g

; φĝ12 = φĝ21 = 0 (109)

And when another gravitational field source of inertial massM3 is brought in place
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at radial distancer3 from point P in the physical Euclidean 3-spaceΣ, then the
components of the resultant absolute intrinsic metric tensor at P are the following

φĝ00 = −φĝ
−1
11 = 1−

2GφM̂0a1

φr̂1φĉ2
g

−
2GφM̂0a2

φr̂2φĉ2
g

−
2GφM̂0a3

φr̂3φĉ2
g

; φĝ12 = φĝ21 = 0 (110)

In general, the components of the resultant absolute intrinsic metric tensor of
the ‘two-dimensional’ metric theory of absolute intrinsicgravity (φMAG) at a point
P in space, due to N gravitational field sources scattered in space about this point is
the following

φĝ00 = −φĝ
−1
11 = 1−

N
∑

i=1

2GφM̂0ai

φr̂ iφĉ2
g

; φĝ12 = φĝ21 = 0 (111)

System (109) can be written in terms of absolute intrinsic anglesφψ̂g1(φr̂1) and
φψ̂g2(φr̂2) and the resultant absolute intrinsic angle,φψ̂gres= φψ̂g1(φr̂1)+φψ̂g2(φr̂2),
in Fig. 7, knowing that

sin2 φψ̂g1(φr̂1) = 2GφM̂0a1/φr̂1φĉ2
g and sin2 φψ̂g2(φr̂2) = 2GφM̂0a2/φr̂2φĉ2

g,

as follows

sin2 φψ̂gres= sin2[φψ̂g1(φr̂1) + φψ̂g2(φr̂2)] = sin2 φψ̂g1(φr̂1) + sin2 φψ̂g2(φr̂2) (112)

Hence

φĝ00 = −φĝ
−1
11 = cos2 φψ̂gres= 1− sin2 φψ̂g1(φr̂1) − sin2 φψ̂g2(φr̂2); φĝ12 = φĝ21 = 0

(113)
The generalization of Eqs. (112) and (113) to the case of N isolated gravitational
field sources are the following respectively

sin2 φψ̂gres= sin2[φψ̂g1(φr̂1) + φψ̂g2(φr̂2) + . . . + φψ̂gN(φr̂N)] =
N
∑

i=1

sin2 φψ̂gi(φr̂ i)

(114)
Hence

φĝ00 = −φĝ
−1
11 = cos2 φψ̂gres= 1−

N
∑

i=1

sin2 φψ̂gi(φr̂ i); φĝ12 = φĝ21 = 0 (115)

Equations (112) and (113) give the rules for finding the sine and cosine of the
sum of two absolute intrinsic angles of rotation on the vertical absolute intrinsic
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spacetime plane, in the context of the ‘two-dimensional’ metric theory of absolute
intrinsic gravity, while Eqs. (114) and (115) give their generalization to the compo-
sition of N absolute intrinsic angles.

Finally the absolute intrinsic curvature parametersφk̂g1(φr̂1) andφk̂g2(φr̂2) at
point P of the curved absolute intrinsic spacesφρ̂′ andφρ̂ in Fig. 7 and the resul-
tant absolute intrinsic curvature parameterφk̂gres are related to the absolute intrinsic
anglesψ̂1(φr̂1) andψ̂2(φr̂2) as follows, as derived in [13] – [14]

φk̂2
g1(φr̂1) = sin2 φψ̂g1(φr̂1) = 2GφM̂0a1/φr̂1φĉ2

g

φk̂2
g2(φr̂2) = sin2 φψ̂g2(φr̂2) = 2GφM̂0a2/φr̂2φĉ2

g

Hence
φk̂2

gres= φk̂2
g1(φr̂1) + φk̂2

g2(φr̂2) (116)

and

φĝ00 = −φĝ
−1
11 = 1− φk̂2

gres= 1− φk̂2
g1(φr̂1) − φk̂2

g2(φr̂2); φĝ12 = φĝ21 = 0 (117)

The generalizations of Eqs. (116) and (117) to the situationof the neighborhood of
N isolated gravitational field sources are given respectively as follows

φk̂2
gres=

N
∑

i=1

φk̂2
gi(φr̂ i) (118)

and

φĝ00 = −φĝ
−1
11 = 1− φk̂2

gres= 1−
N
∑

i=1

φk̂2
gi(φr̂ i); φĝ12 = φĝ21 = 0 (119)

Again Eq. (116) and its generalization (118) give the rule for the composition of ab-
solute intrinsic curvature parameters for the purpose of deriving resultant absolute
intrinsic metric tensor in the context of the ‘two-dimensional’ metric theory of ab-
solute intrinsic gravity.

The absolute intrinsic line element ofφMAG, which is valid with respect to 3-
observers in the physical Euclidean 3-spaceΣ at the neighborhood of isolated N
gravitational field sources is then given as follows from Eqs. (111), (113) and (115)
and (119)

dφŝ2 = φĝ00φĉ2dφt̂ 2 − φĝ11dφρ̂2
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=















1−
N
∑

i=1

sin2 φψ̂gi(φr̂ i)















φĉ2dφt̂ 2 −















1−
N
∑

i=1

sin2 φψ̂gi(φr̂ i)















−1

dφρ̂2

(120)

=















1−
N
∑

i=1

φk̂gi(φr̂ i)
2















φĉ2dφt̂ 2 −















1−
N
∑

i=1

φk̂gi(φr̂ i)
2















−1

dφρ̂2 (121)

=















1−
N
∑

i=1

2GφM̂0ai

φr̂ iφĉ2
g















φĉ2dφt̂ 2 −















1−
N
∑

i=1

2GφM̂0ai

φr̂ iφĉ2
g















−1

dφρ̂2 (122)

This first part of this article shall be ended at this point with a recap of its es-
sential accomplishments. These are the extensions of TGR/φTGR on flat relativistic
spacetime (Σ, ct) and its underlying flat relativistic intrinsic spacetime (φρ, φcφt)
andφMAG on curved absolute intrinsic spacetime (φρ̂, φĉφt̂ ), to the neighborhood
of several isolated gravitational field sources; formulation of the relativistic New-
ton’s law of gravity (RNG) in the context of TGR at the neighborhood of several
gravitational field sources; validation of Einstein’s principle of equivalence at the
neighborhood of any number N of isolated gravitational fieldsources and conse-
quently within the entire universe and the N-body problem for N= 2 and N= 3,
which admits of straight forward extension to N=4 and larger, in the context of
TGR and any value of N in the context ofφMAG. The corresponding theories of
dynamics namely, SR/φSR andφMAM, shall be incorporated into the results of this
article in the second part of it.
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