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Article 25:

Hierarchy of Theories of Unified Gravity and Dynamics at the
neighborhood of Several Gravitational Field Sources. Part
Akindele O. Adekugbe Joseph

The two-theory approach to gravitation at the second stage of evolutfosisace-
time/intrinsic spacetime and paramet@rginsic parameters in a gravitational field of
arbitrary strength, comprising of the theory of gravitational relatiintyinsic theory of
gravitational relativity (TGRSTGR) on flat spacetim@lat intrinsic spacetime and the
metric theory of absolute intrinsic gravityIAG) on curved absolute intrinsic space-
time, isolated at the neighborhood of one gravitational field source in thiereaticles,

is advanced to the situations where two, three and several gravitatiddaldieces are
scattered in the Euclidean 3-space about a location where the theorfesnaméated.
Gravitational time dilation, gravitational length contraction and assemblagarafme-

ter transformations in the context of TGR, are extended to the neightdfceveral
gravitational field sources. Extension of TGR to the situation where a nuhhiud
gravitational field sources are interacting (the N-body problem), israptished for

N = 2 andN = 3 and shown to admit of straight forward extension to larger values of
N, except that it becomes increasingly cumbersome as N increagesdé. On the
other handgpMAG admits of easy and straight forward extension to the N-body prob-
lem for any value of N. Einstein’s principle of equivalence is validated ircthr@ext of
TGR at the neighborhood of any number of gravitational field soufoas, which its
universal validity follows.

1 Intrinsic theory of gravitational relativity at the neigh borhoods of two and
several isolated gravitational field sources

1.1 Deriving intrinsic gravitational local Lorentz trangirmation and establish-
ing intrinsic gravitational local Lorentz invariance at te neighborhood two
and several isolated gravitational field sources

Let us start with two gravitational field sources of inertiaassedM; and M, in
the relativistic Euclidean 3-spaéeof the theory of gravitational relativity (TGR),
whose centers are at radial distancesandr, respectively from a point P i&x.
This implies that the centers of the rest maskks and Mg, of the field sources
are at radial distance$ andr’, respectively from the corresponding poiritif the
proper Euclidean 3-spac# (at the end of the first stage of evolutions of space-
time/intrinsic spacetime prior to the second stage). The cenofare field sources
may be collinear with the point P as illustrated in Fig. 1anot, as illustrated in
Fig. 1b.

Let different spherical coordinate systems (101, 1 Sinf1¢1) and 2, r,0-,
ro sinfopy) of the Euclidean 3-spacg, originate from the centers of the inertial
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massed; andM, respectively of the gravitational field sources. By addhmgtime
coordinatest; andct; to the spherical coordinates of the Euclidean 3-space-origi
nating from the centers d¥l; and M, respectively, we obtain the four-dimensional
space-time coordinate system (rq, r161, r1 Sinfip1) and €y, ra, r262, 12 Sindpz)
associated with the gravitational field sources on flat fiiorensional relativistic
spacetimed, ct) in the context of the theory of gravitational relativityGR).
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Fig. 1: The inertial masses of two gravitational field sources in the relatiEsiclidean 3-
pace witha their centers collinear with a point P in 3-space #rttieir centers not collinear
with the point P in 3-space.

In the context of the two-dimensional theory of gravitatibrelativity (#TGR)
due to the field sources on flat two-dimensional relativigtitinsic spacetime
(¢p, pcot), on the other hand, the point P ihis at ‘distancesgr; from the base
of the intrinsic inertial mas#M; and at ‘distance¢r, from the base o$M,. The
intrinsic inertial masseM; and M, can be considered to be aligned along the
singular isotropic universal relativistic intrinsic sgagp, irrespective of how their
inertial masses are arranged in the Euclidean 3-spat¢¢ence the intrinsic space
coordinategr; andgr, from the bases afM; and¢M, to point P respectively, both
lie along the singular isotropic intrinsic spage, in both the situations where the
centers ofM; andM;, are collinear with point P as in Fig. 1a, and not, as in Fig. 1b.

In other words, the diagrams in the contextdfGR that correspond to Fig. 1la
or Fig. 1b is Fig. 2, where only the first and second quadrafntisecfull two-world
diagrams involving four quadrants are shown and the curveatdimensional’ ab-
solute intrinsic spacetime@p, ¢&¢t) of the metric theory of absolute intrinsic gravity
(¢MAG) is also hidden. The curved proper intrinsic spgpécontaining the intrin-
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sic rest masgMg; at its origin is curved relative to the curved proper intigrepace
¢p”’ containing the intrinsic rest magd/o; at its origin in Fig. 2. This corresponds
to a situation where a gravitational field source of miglsds contained within the
gravitational field of a gravitational field source of largeassM;.
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Fig. 2:

Let us temporarily disregard the presencebf; in Fig. 1. We must also con-
sider the proper intrinsic spa@g’ to temporarily lie along the horizontal in the
place ofg¢p, so that the curvedp’ containinggMy, at its origin is temporarily
curved relative to straight lingo”” along the horizontal, anglMq; in the curvedpp’
‘projects’ an intermediate intrinsic inertial maghl; into ¢p” along the horizontal,
as illustrated in the temporary diagram of Fig. 3a.

The following intrinsic gravitational local Lorentz traiosmation ¢GLLT) of
elementary interval of intrinsic spacetime coordinalés’ andgcdgt’ of the curved
(9o, pcgpt’) into the projective elementary interval of intrinsic spime coordinates
dgp” andgcdgt’) of the flat p”, pcot”), at point P in the complete form of Fig. 3a,
and its inverse, in the context ¢fTGR, derived originally with the complete dia-
grams in [1, 2], arise due to the presencebfy, along the curvedyp’ in the partial

A.Joseph. Unified gravity and dynamics at neighborhood of segessl field sources |. 3



Vol. 1(5) : Article25 THE FUNDAMENTAL THEORY ... (M)

%) 1'2, './'%@Moz
vxn /!
DY, @15) 0P

Fig. 3
temporary diagram of Fig. 3a.
V!, (415)
dot = gralor)(dat” - —4 o =dep") "
g
dgp’ = ¢yea(¢ry)(dsp” — ¢V, (¢ry)det”)
PV, (415)
Aot = Grp(ory) (gt + —2 o don') -
g9
dgp” = ¢yga(dry)(dep’ + ¢V ,(ry)det’)
where
PV (pr5)? 2G¢M
I e -
(4 279
PV o (¢15)  2GeM
i) = 5 = (30)

System (1) or (2) yields intermediate intrinsic gravitaéiblocal Lorentz invari-
ance ¢GLLI) (with the complete form of the intermediate geometfyFay. 3a) at
point P and at every point in spacetime in all the finite neahbod ofM, in the
context ofg TGR namely,

¢C2d¢t”2 _ d¢p"2 — ¢C2d¢t/2 _ d¢p/2 (4)
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This invariance implies that the field souree (with the assumed absenceMtf),
prescribes an intermediate flat 2-dimensional intrinsacsggime p”’, pcpt”’) (with
constant Lorentzian metric tensor) in the contex¢ 8GR in all its finite neighbor-
hood.

Thus when the field sourdd; is allowed to be in place, so thaMy, appears in
the straight lingsp” along the horizontal, at ‘distancer; from point P in Fig. 3a,
it will cause the curvature ofp” containing bothpMg, and Moz, and thereby
prescribe partial geometry of Fig.3b, in whigip” containinggM(, and ¢Moy,
is curved relative its projective relativistic intrinsipacegp along the horizontal.
In other words, by bringindv; in place, the following intrinsic gravitational local
Lorentz transformation and its inverse will arise from tieenplete form of Fig. 3b,

OV, (011)
dot = gyalor)(dot - —25—dop) -
9
dop’ = dy,a(9r;)(ddp - 9V,(#r))de)
e RGA
’ r/
Aot = Gra(oraet + —o—dep") ©
9
dop = dy,(@r(dep” + ¢V, (ory)dgt”)
where
V1(pr)? 2G¢M
oraory = a-TEGEy - o e o
NV (9r1)  2GoM
Malort) = Lo = (S (7b)

The presence of the intrinsic rest maddg, solely, transforms the curved proper
intrinsic spacetimedfp’, gcgt’) into intermediate flat intrinsicgp”, pcpt”’) in all
its finite neighborhood in the intermediate diagram of Fay. 3'he intrinsic rest
massp Mo, along the curvegy’ is likewise transformed into intermediate intrinsic
inertial masspMy, in ¢p” along the horizontal in Fig. 3a. And when the intrinsic
rest masg My, of the other field source is brought into the”” along the horizontal,
it causes the curvature g¢p” containinggMg, and¢Mo; in Fig. 3b. The resulting
curved @p”, #cgt”) in the complete form of Fig. 3b is then transformed into the
final flat relativistic intrinsic spacetimeg, #c¢t), and the intrinsic rest massebl;,
and¢Mp; in the curvedpp” are transformed into the final intrinsic inertial masses
¢Moz andg Mo, respectively at their respective positionsgmalong the horizontal.
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The partial two-world diagram of Fig. 2 is the resultant of$:i3a and 3b with the
respective curved proper intrinsic time dimensions inetlid
Again system (5) or (6) yields intrinsic gravitational lb¢arentz invariance
(¢GLLT) at point P an at every point in space in all finite neighitond of My
namely,
¢c’dgt? — dgp? = gc’dgt”? — dep"”? (8)

Thus the simultaneous presence of the gravitational fialdcesM; and M, pre-
scribe intrinsic gravitational local Lorentz invariancenda consequently the
Lorentzian metric tensor afTGR on the resultant relativistic intrinsic spacetime
(¢p, pcot) at point P and at every point in spacetime in all their finggghborhood.

It is actually the intrinsic spacetime intervalgp” andgcdst”, which the cor-
responding intervalslgp’ and ¢cdgt’ in the curved ¢o’, pcpt’), projects into the
curved proper intrinsic spacetimgo’, gcot”’) at point P in the complete two-world
form of the intermediate Fig. 3a, that becomes curved aldtigtive curvedsp” and
¢cgt” and project intervalslgp and ¢cdgpt respectively into the flat relativistic in-
trinsic spacetimedp, ¢cgt) at point P in the complete two-world form of Fig. 3b
or in the complete two-world form of the resultant Fig. 2. $hhe intrinsic grav-
itational local Lorentz invariance (8) can therefore be barad with the intrinsic
gravitational local Lorentz invariance (4) to have

gePdgt? — dep? = pc’dgt”? — dgp”? = gc*dgt’ — dgp'? (9)

Equation (9) states formally intrinsic gravitational lbdaorentz invariance
(¢GLLI) in the context of the intrinsic theory of gravitatidn@lativity (#TGR), in
terms of the intrinsic spacetime coordinate intervals efdb-existing curved proper
intrinsic spacetimesp’, ¢¢t’) and @p”’, p¢t”) and their underlying flat relativistic
intrinsic spacetimedp, ¢¢t), at the neighborhood of two gravitational field sources
of inertial massedM; and M,. The curved proper intrinsic spacetimgp(, ¢¢t’)
due to the presence dl,, is curved relative to the curved proper intrinsic space-
time (@p”, pét”) due to the presence dfl;, and @p”, pgt”’) is curved relative to
the underlying flat relativistic intrinsic spacetimgo(#¢t), as illustrated partially
in Fig. 2. Theg¢GLLI (9) states the flatness of the underlying relativistitrinsic
spacetime everywhere at the neighborhoogfand M.

The procedure used to establish ¢@LLI (9) at the neighborhood of two iso-
lated gravitational field sources above, admits of straigiward extension to the
neighborhood of three isolated gravitational field sourcdés third gravitational
field source of inertial masMl3 is brought into the neigborhood ®f; and M; in
Fig. 1la or 1b, such tha¥l; is located at radial distanag from the point P, where
it shall be assumed thdds is contained within the gravitational field M5, which,
in turn, is contained in the gravitational field bf;, then we must leM3 establish a
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third curved proper intrinsic spacetimeo(, ¢cot’); M, to establish curved proper
intrinsic spacetimeyp”, ¢cgt’”’) and M; to establish curved proper intrinsic space-
time (o, pcpt””), such that the curvedp’, pcpt’) due toMs is curved relative to
the curved §p”’, pcot’’) due toM,, which, in turn, is curved relative to the curved
(¢p””, pcot”’) due toM; that is curved relative to resultant flat relativistic insic
spacetimedp, ¢cot) in modified form of the partial diagram of Fig. 2.

The tandem of intrinsic gravitational local Lorentz treorsfiation at two levels
above must then be extended to three levels. The elementénsic coordinate in-
tervals fgp” andgcdgt’ of the upper most curved intrinsic spacetinge’( cot’),
must be transformed intadg¢p”” and ¢cdgt” of the underlying curved intrinsic
spacetime p”’, cgt”’) in the gravitational field of isolatetils at the first level,
followed by transformation ofdgp” and ¢cdst” into (dgp”’ and ¢cdpt’” in the
gravitational field of isolatedV, at the second level, and followed by the trans-
formation of @@p””’ andgcdgt” into (dgp and pcdgt in the gravitational field of
isolatedM; at the third level. Doing these will lead to the followiggLLI

dCPdgt? — dpp? = pcPdet”’? — dep’’? = ¢pc?dpt”’? — dgp”’? = ¢pc?det’? — dgp’?
(10)

ThegGLLI (10) again says that the resultant relativistic insimspacetime afTGR
is flat everywhere in all finite the neighborhood of threeasedl gravitational field
sources of inertial massed; M, and Mg in the relativistic Euclidean 3-spacg
irrespective of how they are scatteredtin

The procedure used to derive Eq. (9) for two isolated grawital field sources
and Eq. (10) for three isolated gravitational field souraésyits of extension to four,
five and any number N of isolated gravitational field soureceE.i We conclude
from this that the relativistic intrinsic spacetimgo(#cgt) of the intrinsic theory
of gravitational relativity §TGR) is everywhere flat in all finite neighborhood of
any number N of gravitational field sources that are scatterarbitrary manner in
3-space.

1.2 The resultant intrinsic gravitational time dilation ad resultant intrinsic
gravitational length contraction at the neighborhood of twand several
gravitational field sources

The intrinsic time dilation and intrinsic length contraxtiformulae implied by sys-

tems (1) and (2), as derived in [2, 3], are the following

2G¢Moze
Pra0c;

-1 ’ _ _ 2G¢Moaz
Pyga(pry) dgp” = (1 o0

d¢t//

PYga(pry)det’ = (1 - ) 2dgt’ (11)

dep” )Y2dgp’ (12)
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The intrinsic time dilation and intrinsic length contraxtiformulae implied by sys-
tems (5) and (6) are likewise given as follows

_ ’ " o_ _ ZG¢M0a1 -1/2 ”
it = oraloraan” = (1= ) (13)
2GoM
dbp = yea(@r) dep” = (1 o0 0y1r2gy,y (14)
Prioc;

By eliminatingdgt” between Egs. (11) and (13) and by eliminatihgp” be-
tween Egs. (12) and (14) we obtain the resultant intrinsawiggitional time dilation
and resultant intrinsic gravitational length contractiespectively as follows

dgt = @yua(eri)dyg(ers)det’
_ _2G¢|V|oa1 1/2(1 2GpMoax V2qst’
= - ) s T (15)
dop = dya(dr) ey,e(sry) tdgp’
2GpMoan 201 2GopMozp 172 ,
= (1- d 16
(- V= e ) e (16)

As follows naturally (by induction) from the above, the riéant intrinsic grav-
itational time dilation and the resultant intrinsic gragional length contraction of
the elementary intrinsic spacetime intervadp’ anddgt’ of the (upper most) Nth
curved proper intrinsic spacetimed(, gcét’), of a tandem of N curved proper
intrinsic spacetimes namely, a curvegp(, #cgt’) above a curvedgp”, pcgt”),
above a curvedgp’”’, gcet””’), above a curvedgp””’, pcopt’””’), ... , above a curved
(¢p"™, pcoppt™) above a flatdp, gpcet), as in Fig. 2a for N2, W|th|n alocal Lorentz
frame at a point P in the Euclidean 3-spageat the neighborhood of the N gravita-
tional field sources scattered arbitrarilydrabout this point, are given respectively
as follows

dpt = ¢y(Pr)eyea(dra)eyea(drs). .. ¢yon(ery)det’

2GpMoa 12(1 2G¢Mozz, 1/, 2G¢Moan\_1/2 . ..,
1- (= det
7 A Gy B B Gy R B
(17)
or
N N
_ ’ ’r _ _ 2G¢Moak -1/2 ’
d¢t—g¢ygk(¢rk)d¢t = Q(l o) et (18)
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and
dop = dya(dr)  evea(dr) "ey.a(ers) ... dyon(ery) tdep’
2G¢Moar\1/2,,  2GPMoaz, 1/ 2G¢Moan 1/
= (1- 1- L l-— d
( oy WA oy ) ( oy )Y2dg,
(19)
or N N
2GoM
dop = | [vactory) "oy’ = | [ - 22002, (20)
k=1 k=1 ¢rk¢c.f/

Thedgp anddgt in Egs. (17) — (20) are the relativistic intrinsic space asld-r
tivistic intrinsic time coordinate intervals (in the retant underlying flat relativis-
tic intrinsic spacetimedp, ¢cgt) at the neighborhood of the N gravitational field
sources, andgr, is the ‘distance’ from the base of the intrinsic rest mb&g to
point P in the proper intrinsic spag@g’, which corresponds to ‘distancety from
the base of the intrinsic inertial magd/x to point P in the relativistic intrinsic
spacepp, of the kth gravitational field source of intrinsic inertraasspMy. Equa-
tions (17) through (20) have been written at point P algngwhich corresponds to
point P in the relativistic Euclidean 3-spaE@bout which the N gravitational field
sources are scattered.

Let us denote the resultant factpy, in the resultant intrinsic length contraction
and resultant intrinsic time dilation formulae abovedy,. Then as follows from
Egs. (18) and (20)y, is given as follows

2G¢pMoak
l—[m(wk)—ﬂ( e =) (21)
ForN = 2,
_ _ 2GpMoan ~1/2 _ZG¢M032 ~1/2
7, = Q- SRS
2
- - DM 280Woe A0 Moalllom)az (g

Pri¢c; Pro¢c; Prigrogey

1.3 Intrinsic mass relation and intrinsic kinetic energy fation at the neighbor-
hood of two and several isolated gravitational field sources

Intrinsic mass relation in the context of the intrinsic theof gravitational relativity
(¢RTG) at the neighborhood of a singular gravitational fieldrse derived formally
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in[2]is

2GpMoa
Pr'gcs

We must simply replacedy,(¢r’)~2 by the resultant facto¢b7;2 in this relation

to have intrinsic mass relation at the neighborhood of tedi&N gravitational field

sources that are scattered arbitrarily in the Euclideapa®eX as follows

¢M = pMogy,(¢r') % = pmo(1 — ) (23)

N

i 2G¢Moak
gm=gpmp(¢y) 2 = oo | [(1- ——7) (24)
! lkl Prepcs
ForN = 2,
2GpMoar,, 2GpMoa
m = 1— —
¢ ¢m( e ) P )
2GpMoan  2GpMozz  4G?pMoadMoap
= 1-— — 25
e e T e ) &

The corresponding intrinsic special relativistic kineditergy expression in the con-
text of pTGR at the neighborhood of the isolated N gravitational fegldrces is

T = ¢mopciey, [y(¢v) - 1]
N 2G¢Moa ¢
= Al la-=1->=)Y-1 26
pmogcs | (1= eI - o) -1 (26)
For N=2,
2 2
T = pmopc2(1- 2Gflﬂ\/'oal_2G¢>’\/|0a2+46 ¢Moa1¢Moa2)[(1_ pv )y 2_1] (27)

N AT ¢c
The transformation of every other intrinsic parameter e¢bntext offTGR at the
neighborhood of N isolated gravitational field source, daawise be written by

simply replacing the factapy,(¢r’) in the expression at the neighborhood of one
gravitational field source byy,.

2 Theory of gravitational relativity at the neighborhood of two and several
isolated gravitational field sources

2.1 Deriving gravitational local Lorentz transformationrad establishing grav-
itational local Lorentz invariance at the neighborhood ofvb and several
isolated gravitational field sources

Let us consider Fig. 1a and 1b again. In deriving the graeital local Lorentz
transformation GLLT and its inverse at point P due to botlvigational field sources

10 A.Joseph. Unified gravity and dynamics at neighborhood of abgeav. field sources I.
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M1 andM,, we must leMM; to be temporarily absent and derive GLLT and its inverse
due toM; solely on an intermediate spacetina’(ct”). The GLLT and its inverse

to be derived foM, assumingM; is temporarily absent, are the outward manifesta-
tions on the intermediate four-dimensional spacetifig ¢t”) of thepGLLT and its
inverse of systems (1) and (2) on intermediate flat intrispi@cetimedp”’, pcot”’)
established byMg,, assuming the temporary absences®o; in Fig. 2 (with the
partial geometry of Fig. 3a). They are given as follows

V(1))
dt, = y(dy - ~5dr);
’ —_ 17 _ g ’ 4 . ’ / " /7. (28)
dry = ye(dry —Ve(ry)dt) ; ride, = ryde; ;

and r}, sing,dy’, = r sing; de}

and
V/,(r5)
dy = y(dy+ —5dr)
9
dry = ye(dry + Vea(ry)dy) 5 rydey = ryde; ; (29)

" 1 24 o ’ 1 / ’
and rj sinf; dyy = r’, sing,dy),

Either the GLLT (28) or its inverse (29) yields gravitatibtecal Lorentz invari-
ance at point P on the intermediate spacettigie ¢t”),

c2dty?— dry? 15 2(de52 +singy%d?) = c2dt? —dr2 —r2(de + sineZde?) (30)

This GLLT guarantees the flatness at point P and everywhehedfitermediate flat
four-dimensional spacetim&(, ct”’) that evolves due to the presence\df solely,
with the assumed temporary absencé/af

Then letM; be brought in place at radial distancefrom the point P on the
intermediate flat spacetim&/(, ct’”’) prescribed byM, solely. The intermediate flat
(=7, ct”) will be transformed into the final flat relativistic spaeeé €, ct) due to
the presence of;. The following GLLT and its inverse, which are the outward
manifestations on the flat relativistic spacetiiect) of the¢GLLT and its inverse
of systems (5) and (6) obtain,

V()
dty = yu(dt - 912 ~dry) ;

G (31)
dry = yeu(dry = Ve(r)dy) ; rydey = rido; ;

and r} sinf;'dy’ = ry sinf1de;
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and V()
7 r/
dtl = ')/ql(dt;_, + %drf X
_ ’7 7 ’ AN e 72 (32)
drl = 7gl(drl + Vgl(l’l)dtl) ) rldel = l'ldHl )

and ry sinf1de; = r7 singydyy

Either the GLLT (31) or its inverse (32) yields gravitatiblecal Lorentz invari-
ance on the final (or rfesultant) relativistic spacettirBecf),

c?dtf — dr{ — r{(des + sintfde?) = cdty? — dr? — ry?(dey? + sing;de}?) (33)

This GLLT guarantees the flatness at point P and everywhettgeaiesultant rela-
tivistic four-dimensional spacetim&,(ct) that evolves due to the presence of both
M, and M;. As a matter of fact, the flathess of the resultant relatwisitrinsic
spacetime dp, pcgt) in all finite neighborhood oM; and M, guaranteed by the
intrinsic gravitational local Lorentz invarianceGLLI) of Eq. (9) or (10), already
implies the flatness o ct) in all finite neighborhood oM; and M3, since £, ct)

is the outward manifestation ag, ¢cet).

The tandem of gravitational local Lorentz transformatiGh(T) and its inverse
done to two levels due to the presence of two isolated gtawiial field sources
above, admits of straight forward extension to the thir@legue to the presence of
three isolated gravitational field sources; to the fourtielledue to the presence of
four isolated gravitational field sources; ; and to the Nth level, due to the presence
of N isolated gravitational field sources. It then followstlthe final (or resultant)
relativistic spacetime}, ct) that evolves in the tandem of GLLT is flat everywhere in
all finite neighborhood of any number N of gravitational fistslirces, whose inertial
massedMi, Mo, M3, ..., My are scattered arbitrarily in the relativistic Euclidean
3-space.

2.2 The resultant gravitational time dilation at the neigloibhood of two and
several isolated gravitational field sources

The gravitational time dilation formula implied by syste(@8) and (29), as derived
in [2, 3], is the following
24 ’ / ZGM az - /
dt] = y,(rp)dt, = (1- r,_cg) Vzgt, (34)
2%
The gravitational time dilation formula implied by syste(84) and (32) is likewise

given as

’ /! ZGM a]- - ’
dty = y(rdt = (1- =-2%)dy (35)
1%9
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The proper spacetime coordinate systetf, (/, r,60, r’, sind,?) attached to the
rest masdy, of the second gravitational field source is contained withégravita-
tional field of the first gravitational field sourdé;. Consequently the time interval
dty in Eq. (34) at point P is further dilated tii; by the gravitational field oM; as
follows
2G Moaw

o — |4 (36)

dtz = ygl(r’l)dté’ = (1 -

On the other hand, the proper spacetime coordinate systénni(, r{6;, ry’ sin6; ¢}

attached tdpy; is not contained within the gravitational field Mz Consequently

dt; in Eq. (35) at point P is not further dilated by the gravitatibfield of Mg,.
Eliminatingdt] between Eqgs. (34) and (36) we have

2G Moar
res

2G Moap
rycs

dte = Y (r)yee(ro)dty = (1 - — =) 121~ — =) V2dt,  (37)

Equation (37) shall be written in terms of unsubscriptecktintervalsdt anddt’ at
the neighborhood of the gravitational field), as follows

2GMpar
rn 02

2G Moz

e — gy (38)

dt = y,1(r)y,2(rp)dt = (1 - ——=)"Y2(1 -

The procedure used to derive Eq. (38) in the case of two mblgtavitational
field sources, admits of direct extension to the case of tis@ated gravitational
field sources; four isolated gravitational field sources;.and any number N of
isolated gravitational field sources. Thus the resultanétdilation formula in the
case of N gravitational field sources whose inertial masdgsM,, Ms, ..., My
are scattered arbitrarily in the relativistic Euclidean@ceX is the following

dt = 7u(r)y52(r2)¥es(ra) . - yon(ry)dt
= (- 2? “226“) VA1~ 2(?::':;""2)‘1/2...(1— %r“zdt’ (39)
or
dt = ]—[ygk(rk)dt = ]_[(1 _ 2OMoa 12 (40)

2
kC

Equations (39) and (40) are the outward manifestations osgcetimeX, ct) in
the context of TGR of Eqgs. (17) and (18) on flat intrinsic spiace (¢, ¢cot) in the
context ofp TGR.

A.Joseph. Unified gravity and dynamics at neighborhood of seges&l field sources I. 13
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We shall denote the resultant facigrin the resultant gravitational time dilation
formula (40) in the context of TGR by, and write,

N N 2G Moax
Vo= [ratd = | [a- =577 (41)
i=1 k=1 k™g

ForN = 2, Eq. (41) simplifies as follows

_ 2GMopas . _ 2GMoaz, _
e I B
1%g 279
- - Mo Mo AGWMoaMozy sz )
re e rrac

2.3 Resultant gravitational length contraction at the néigorhood of two and
several isolated gravitational field sources

While the manner in which the gravitational field sources aadtered in 3-space
about point P does not count in the formulae for resultantrisic gravitational
length contraction and resultant intrinsic time dilationthe context oy TGR, as
well as in resultant time dilation formula in the context d&R, as found too this
point, it does in the resultant gravitational length coctian in the context of TGR.

Let us consider first the case of two gravitational field sesmhose centers are
collinear with a point P of interest iB, as illustrated in Fig. 1a. In this situation,
the radial coordinate; of the spherical coordinates, r16, andr; sind,¢; of the
Euclidean 3-spacg that originate from the center of the assumed spheftal
and the radial coordinate of the spherical coordinates, ro6, andr, sinfp, of
¥ that originate from the center of the assumed spheiallie along the same
line at point P. Consequently there is gravitational lerggthtraction of the proper
elementary radial coordinate intend’ that lies along the straight line joining the
centers of the field sources and point P at point P, due to tmbdioed gravitational
fields of My and M, but gravitational contraction does not occur along anoth
direction in the 3-spack at point P.

If we prescribe proper elementary coordinate interdalsr’dg’ andr’ sing’ dy’
within the local Lorentz frame at P, such tltht lies along the straight line joining
the centers oM; and M, and point P, themr’ will be contracted by virtue of the
gravitational fields of both sources. The resultant gréeiteal length contraction at
point P in this situation is the following

dr = y,1(r;) fy,2(ry)~tdr’; rdé = r’'de’ andr sindde = r’ sing’dy’ (43)

14 A.Joseph. Unified gravity and dynamics at neighborhood of abgeav. field sources I.
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or
2GM 2GM
dar = (1- © A1 © RN 2dr ; rd6 = 1'dd ;
ryc rycz
and r sinddy = r’ sing’dy’ (44)

The resultant gravitational length contraction formuld)(#h the case of isolated
two gravitational field sources whose centers are collimégdra point P in 3-space
at which (44) is written, can be generalized to a situatiorenhthe centers of N
gravitational field sources are collinear with the point Frgérest. In that case,
Eq. (44) becomes the following

N
dr = l_[ ygi(r(()‘ldr’; rdg = r’d¢’ andr sinfdy = r’ sing’dy’ (45)
k=1

or

N

2GM - i
r=] Ja- T gak)”zdr’; rdé = r’d¢’ andr singdy = r’sing’dy’  (46)
k=1

Now let us consider the situation where the centers of thenasd gravitational
field sources are not collinear with the point P of interest,llastrated for two
gravitational field sources in Fig. 1b. In this situatione ttadial coordinate; of
the spherical coordinatas, r16; andr; sinfy¢p; that originate from the center of
M; do not lie along the same line with the radial coordingtef the spherical
coordinates,, r 0, andr;,sind,p, that originate from the center dfl, at point
P. In this situation there is no length contraction by virafegravitational fields
of M; and M, conjointly. Rather an observer would measure gravitatiterayth
contraction,dl = y;lldl’ = (1 - 2GMga/rjc2)*4dl’, along the radial directiom
originating from the center dfl; anddl = y_3dlI’ = (1~ 2GMogp/r,c)"/?dl’, along
the radial coordinate, originating from the center ofl,, and zero gravitational
length contraction along every other directiondirat point P, in Fig. 1b. On the
other hand, the resultant time dilation at P in this situatid Fig. 2b, as in the
situation of Fig. 2a, is given by Eqg. (40) for42.

Let us consider four assumed spherical gravitational fieldrces of masses
Ms, Mo, M3 and My, whose centers are at radial distanBesR,, Rz andR, respec-
tively from a point P of interest in the physical Euclideasfacex, as illustrated in
Fig. 4. The resultant gravitational length contractionpant P are the following:

dl = (1-2GMoar/Ric)"*(1 - 2GMoau/R,c5)"?dI’; (alongry andrs)

A.Joseph. Unified gravity and dynamics at neighborhood of seges&l field sources I. 15
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r3\/|r2
Iy OM] . Ra - 1

x O

M3

M,

Fig. 4: The inertial masses of four gravitational field sources scattdredt a point in the
physical Euclidean 3-space.

dl = (1-2GMoa/R,c5)"?dl’; (alongry)
dl = (1-2GMoas/R;c)"?dl’; (alongrs)
dl = dlI’; (along every other direction iB)

Whereas the resultant gravitational time dilation at P in i given by Eq. (40)
for N=4.

2.3.1 Gravitational deformation of the shape of a solid abjecated in the grav-
itational field of several sources

A solid object located within the gravitational field of a gie source will be con-
tracted along a direction from the center of the field souncettgh the object. The
shape of the object will be altered as a consequence, asalied for a spherical
object in Fig. 5a, while Fig. 5b illustrates the resultardysh of a spherical object
located within the gravitational field of three isolated mmms. The deformations of
the shapes of the objects have been exaggerated in botfb&igsd 5b for clarity.

2.4 Transformations of mass and other physical parameterglghysical con-
stants in the context of TGR at the neighborhood of two and el isolated
gravitational field sources

The mass relation derived in the context of TGR in [2, 4] afabdistancer from
the center of the inertial ma$4 of a gravitational field source ig is the following

G Moa
102
r Cg

M= 5, 2(F)my = my(1 - 2o 0ay (47)

whereMg is the rest mass of the gravitational field source in the figper Euclidean

3-spacex’ of inertial massM in X ; r’ is the radial distance from the centerdf
in X’; mg is the rest mass iB’ of the test particle of inertial masgsin X.

16 A.Joseph. Unified gravity and dynamics at neighborhood of abgeav. field sources I.
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M A ;‘%‘) r

s M

Fig. 5: The gravitationally deformed shape of a spherical object locdtdwe neighborhood
of a one gravitational field source abdwo gravitational field sources.

If we now consider this test particle to be located at a pairggace, which is
of radial distances;, r, andrs from the centers of the inertial masdds, M, and
M3 respectively of gravitational field sources, then the matation (47) must be
replaced by the following

m= (Vg) Mo = y,3(r3)” 792(r2) Ygl(rl) Mo

or

2GMoas 2GMoa 2G Moau
m=(1- 1- 1- 48
- =20 = 2Be- = gm (48)

In general, for N gravitational field sources scattered imcgpabout a test particle
we must write,

2G Moa.
m = ]_[(1 = (49)

It is the resultant facto1yg in the resultant gravitational time dilation formula
at a point in space at the neighborhood of N gravitationadl fsglurces, given by
Eq. (41) that must appear in the mass relation as writteneglzonwd in the relations
for other physical quantities and physical constants inctirgext of TGR, derived
in [2,4] and [5] and summarized in Table | of [5]. We must signptplaced the
factorsy,(r'), v,(r)* andyg(r')‘2 that appear in those relations ﬁy, (7;)‘1 and
(7))~? respectively.

For example, an inertial fordg, impressed on the inertial massof a test par-
ticle located at a point at the neighborhood of the inertiabsges of N gravitational
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field sources that are scattered about the test particlecimefativistic Euclidean
3-spaceX, is related to the proper inertial forcfé{ impressed on the rest masg
of test particle at the neighborhood of the rest masses otheavitational field
sources in the proper Euclidean 3-spatas follows

N
e - 1—[(1 26 |\é|20a' )Ifi/ (50)
i=1

ity

And the relativistic gravitational potentidl;(r?) at the location of the test particle,
due to the jth gravitational field source ¥) is related to the proper (or primed)
gravitational potentiaID’j (r]) of that field source iz’ as follows

oy GMoa 2G Moai
q)] (rJ’ N = i l_[( r Cg I)l/2 (51)

The modified forms at the neighborhood of N gravitationalffieburces of the
relations for the gravitational values in the context of T@®Rthe other physical pa-
rameters in Table | of [5] can similarly be written. However parameters such as
density and current density, which involve division by vokl of space occupied by
matter and flow cross-sectional area, one must carefulbultztke the resultant vol-
ume and area of the gravitationally deformed shape of the#etcle, as illustrated
in Figs. 5(a) and 5(b) in the cases of a test particle locatdideaneighborhoods of
one and three gravitational field sources respectively.

3 Validating Einstein’s principle of equivalence at the nejhborhood of sev-
eral gravitational field sources

The principle of equivalence of Albert Einstein is composédhe local Lorentz
invariance (LLI), the weak equivalence principle (WEP) amel $trong equivalence
principle (SEP). The definitions of these component prilesiadapted from their
definitions in [6] have been presented in section 3 of [5]. Vakdity of LLI at
the neighborhood of several gravitational field sourceshegs confirmed in sub-
section 2.1 above.

For WEP, let us multiply the mass relation (49) into the giianal potential
relation (51) to have the gravitational potential energyheftest particle located at
a point P inZ, due to the jth gravitational field source solely as follows

, G|\/|oa 2G Moai
Uj = mCDj (I’j) = J 1_[( I’ Cg |)3/2 (52)
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Then by dividing through Eq. (52) by the rest massof the test particle, we obtain
the dfective gravitational potential ‘seen’ by the rest mag®f the test particle, due
to the jth gravitational field source solely, at the point Fhia relativistic Euclidean
3-spacex as follows

G Mog; 2G Moa;
Pjer = - °’H( - (53)

rc2
J i=1 ri Cg
The dfective gravitational accelerationféered by the test particle towards the cen-
ter of the jth gravitational field source in the relativisHaclidean 3-spack is then
given from definition as follows

o GMoa 2G Moai r
gieffz_ / Jl_[( I’C2 I)S/Zr_;

(54)
wherer’j/r; is the unit vector of the radial coordinate from the centethefinertial
massM; of the jth gravitational field source to the test particle e trelativistic
Euclidean 3-spack.

The net ective gravitational force on the test particle towardsjtheravita-
tional field source solely, in the relativistic Euclidearsi3acex, must be obtained
by multiplying the é€fective acceleration (54) by the rest magsof the test particle
(sinceUj¢r in Eq. (52) has been divided by in obtaining®; « in Eq. (53)), and
summing the result over j for the N gravitational field sosres follows

N N _)
. GMoa 2GMoai 37, Fi
For = > Mogj eff = § - = 1oa; Mo | |( 1- 22y ) (55)

2 .
I'ng I

We find from Eq. (54) thatj; & does not depend on any property of the test
particle. Hence as long as WEP is valid in the context of thesatal (or Newtonian)
gravitation, as multitude of experiments have confirmed YEP is valid at the
neighborhood of several isolated gravitational field sesrin the context of the
theory of gravitational relativity.

We are thus left to demonstrate the validity of SEP at thehimighood of several
isolated gravitational field sources and, hence, in theesatiiverse, to validate EEP
in the context of TGR. This is easy however, because (i) thidityaof SEP at the
neighborhood of several isolated gravitational field searfollows directly from its
validity at the neighborhood of one gravitational field smialready demonstrated
in [5], and (ii) LLI is valid at the neighborhood of severabiated gravitational field
sources, from which it follows that non-gravitational latake on their usual classi-
cal and special-relativistic forms but in terms of gravdasl-relativistic parameters
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and constants (i.e. their transformations in the conteXi@R) at the neighborhood
of several isolated gravitational field sources. All we mdsthen is substitute the
derived expressions for (or the transformations of) ptalgiarameters and physical
constants in the context of TGR into the natural laws andlckigbeir effect cancel
out.

Since we have simply replaced the facgr= (1 - 2GMoa/r’c2)~2 in the de-
rived expressions for physical parameters at the neiglolooriof one gravitational
field source (in Table | of [5]) by} = [11,(1 — 2GMoa/r{c2) of Eq. (41), at the
neighborhood of several isolated gravitational field sesy@s derived above, the
effect of gravity will cancel out in non-gravitational laws &tetneighborhood of
several isolated gravitational field sources, just as isd¢he neighborhood of one
gravitational field source in [5]. This implies the invarg@nof non-gravitational
laws with position in space and with time at the neighborhobdny number N
of isolated gravitational field sources. Consequently thie-gravitational laws re-
tain their usual forms everywhere and at all times in the ensig, and this implies
the validity of SEP. We have again validated LLI, WEP and SEBBR,@nsequently,
Einstein’s principle of equivalence, in the context of thedry of gravitational rel-
ativity.

4 Modified Newton'’s gravitational force law in the field of isolated gravita-
tional field sources in the context of the theory of gravitatonal relativity

4.1 The resultant gravitational force on a test particle (the context of TGR)
at the neighborhood of two and several isolated gravitat@bfield sources

The resultant force on a test particle of inertial mawsat a point P in the relativistic
Euclidean 3-spack, at the neighborhood of N gravitational field sources that ar
scattered irk about point P, is given by Eq. (55). It shall be assumed inghis
section that the particle is not a gravitational field souncis a source of negligible
gravitational field. Let us consid® = 2, such as in Fig. 1a or 1b, in Eq. (55) then,

M 2GM 2GM g
Fet = _9 /.G Oalmo(l_ G Ow)s/z(l_M)S/z N
ary r ryc rycz ry
B 3’ _GMOfazﬁb(l_ZG,Mgal)s/z(l_ZG/Mgaz)s/z r (56)
or) r rc rycs r
M 2GM 2GM g
Fo = G oium)(l_ G/ gal)s/z(l_ G/ gaz)s/zr_l
ry rc; r,c; r
3(32Mga1rrb( ~ 2G|v|oaz)3/2(1_ 2G Moal)l/zﬁ
ridc2 ryc2 ric r
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_GMoaleb(l _ ZGM0a1)3/2(1 _ ZGMOGZ)g/ZE
re ric? ryc2 r
2012 N

S Moazmo(l_ 26Moar 312y _ 26Moae o2 57)
rc2 ryc2 r,c2 r

In the Newtonian gravitation limit, @Moay/r;c2 = 0 and L Mog/r,c2 = 0,
Eq. (57) simplifies as follows
GM i GM F
Fag = -0 1 2200 2 (58)
ry r rs ro

And in the post-Newtonian gravitation limitGMoay/ric; ~ 0 and Z5Mogz/r,c; ~
0, Eq. (57) simplifies as follows

'feff _ _GMO?_ITb(l_ 3G|V|gal B 3GM232)I’:1
ry rcg ryeg 'r
SGZMSalrrb(l_ GMoar 3GM032)?_1
ric res reg
_GMoaerb(l_ 3G Moar B SGMom)F_z
rz ric? rscz 'ra
+3Gzl\/léaznrvo(1_ GMoz 3GM0a1)P_2
rac2 ryc2 ric2
or
o - S OV e
ry ric ri?ryc r
(_GMoazmo N 6G*MgaMo N 3Gch2)azM§a1”b)E (59)
ry ryic2 ri?rich ra

It is straight forward to extend this result to=NB, N= 4 and larger values of N in
Eq. (55), although it becomes increasingly cumbersome axitases beyond the
value 3.
Then by applying the equivalence of inertial acceleratind gravitational ac-
celeration we have
X _s 60
ae - geft (60)
wheregeg is give by Eq. (55) at the neighborhood of N gravitationaldisburces
without approximation, and by Eq, (59) upon dividing thrbuzy my, at the neigh-
borhood of two isolated gravitational field sources, in tlestgNewtonian limit.
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Eq. (59) can then be solved for the motion of the test partiéthin the gravita-
tional field of the two isolated bodies on the flat four-dimenal relativistic space-
time (, ct) of the theory of gravitational relativity.

One finds from Eqg. (55) and from dividing Eqg. (59) iny, that the &ective grav-
itational acceleration does not depend on any propertyeofekt particle (assumed
not containing large quantity of non-gravitational engrggonsequently the weak
equivalence principle is valid for a test particle intenagtwith two or any number
of isolated gravitational field sources, but with the coiedithat it contains no large
quantity of non-gravitational energy, such as energy dtoreslectric field or mag-
netic field or radiation energy. The weak equivalence ppiledis not valid for a test
particle containing large quantity of non-gravitationakegy, as found in [8].

4.2 The two-body, three-body and N-body problems in the eat of the theory
of gravitational relativity

Although the number of isolated gravitational field sour@asbodies) with which
a test particle interacts in the calculations in the foraga@ub-section can be two,
three, four or larger, the test particle is inherently assdimot to be a gravitational
field source or a source of negligible gravitational field. Be other hand, let us
consider two isolated gravitational field sources of irnmassed; andM; (and
rest masse®p; and Myy), which are separated by radial distance (from center to
center)r, to interact gravitationally.

First let us consideM; as the gravitational field source aMy} as the test par-
ticle. Then the gravitational potential dueNb at the location oM in the context
of TGR s,

_GMoan ) _ 26Moay 61)

q)l(rl) =
2
r’ r'cg

Now M; is a gravitational field source, hence its innate inertiabsi,; —due to
its gravitational field solely—is related to its rest masshia tontext of TGR as

2G Moz

Mo = Mg2(1 —
2i 02( R,ch

) (62)

whereR’; is the radius of the rest mab&,. SinceM; is located in the gravitational
field of My, at radial distance from the center oM;, the mass relation (62) must
be modified further as

2G Moa
R 205

B 2G Moar

Mz = Mo2(1 -
2 02( re2

)1 ) (63)

The inertial masdM, then interacts with the gravitational potentigi(r’) of
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Eq. (61) yielding the gravitational potential energy pessel byM, in the relativis-
tic Euclidean 3-spack in the context of TGR as

, G Moaw 2GMoa \1/2 2G Moz 2G Mpan
U2(r ) = - r’ (1 - r/CZ 02 (1 - R/ZCZ )(1 - rICZ )
9 9 9
G Moar Moz 2G Moz 2GMoa \3/2
= - 1- 1- / 64
- e e (64)

Division through Eq. (64) by, gives the &ective gravitational potential ‘seen’
by the rest masMy; in the relativistic Euclidean 3-spaéein the context of TGR
as

G Moz
r’ (@ R5,c2
2C;
The dtective gravitational accelerationféered byM, (in the gravitational field
of M3) is then given from definition as

d {_GMoal

B 2G|v|oa2)(1_ 2G Moal)g/z (65)

Do e(r') = -
2
r'ca

2GMpz
1- 1
- S
B 2G Mom)(l B 2G M0a1)3/2f’
Rc2 rez r
B 2G Moap
R'zcg

. , 2G Moan 32 r
r —_— — -
Gorer(r’) ar’ r’c_g ) r

GMoa
- r/2

(1

3G2MZ,

_ 2GMoay )1/2f
r’3¢c2
9

- (66)
r cg

@ )
wherer/r is the unit vector along the radial direction from the cemteM; to the
center ofM,. The equation of motion of the bodW, in the gravitational field of
the bodyM; is then given as follows

d?%, . ,
—_— (r
dt2 gorar(r’)
G Moar 2G Moz 2GMoat 2o
- 72 (1 - /.2 )(l - 102 )3/2_
r chg rc; r
3G?M2 2GM 2GM P
oaL 022 0a11/2
r3c2 (- R>C2 (- r'c2 - (67)

On the other hand, by makinil, the gravitational field source and; the
test particle, and repeating the derivation from Eq. (618, dfective gravitational
acceleration dtiered byM; in the gravitational field oM, is

d [ GMoa,. 2GMoa.. 2GMoa.sy,), F
=3 ’ — ) 1_ _ /2 _
ngd‘f(r) dr’ { r’ ( R’ng r,cg ) ( r)

)
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G Moz 2G Moaw 2GMoaz 32, T
— 1- 1- —
r/2 ( R/lcs )( rlcg ) ( r)
3G*M; 2GM 2GM P
o 0al 032 11/2
r3c2 (- R1C2 )= r'c2 ED (68)

whereR is the radius of the rest madé,; and—r/r is the unit vector along the
radial direction from the center &fl, to the center oM;. The equation of motion
of My in the gravitational field oM is then given as

d?%y . ,
-5 r
at2 Jroer(r’)
GMoa,, 2GMoar,,, 2GMoa 3, T
- - 1— ——
r/2 ( R/lcg )( r,Cs ) ( r)
3G’Mag .  2GMoa 2GMoazy/p, T
/2
r3c2 - R1C2 )= r'c2 ED (69)

The following remarks shall be made about tlie€tive gravitational accelera-
tions of Egs. (66) and (68) and the equations of motion (6@)(&8):

1. The dfective accelerationg,; & and iz« are diferent in magnitude and
oppositely directed in the Euclidean 3-spaceThey are equal in magnitude
only if Mo1 = Mg andR’; = R%.

2. The motion of one body due to the gravitational field of ttieeo expressed
by Egs. (66) and (68) cannot be neglected in general, urilgesinass of one
is by far larger than that of the other, in which case the a&raéibn stfered
by the larger body in the gravitational field of the smalledds negligible.
This is the situation between the Sun and a planet for instanc

3. For the motion of a planet round the Sun, the following pdstvtonian
approximations taj,; ¢ and gio¢r, Obtained with BMoal/r'cg ~ 0 and
2G Moaz/r’cg ~ 0, are adequate:

GMoar | 6G°MGa = 2G*MoaMoze | P
7. == + - 70
garet ( r2 r3cz Rar2ca r (70)
and -
L (_GMoz  6G"Mgz  2G*MoaeMoa (_f) (71)
iz et r’2 rcz Rarr2c2 r

Further more, given that the bod; is the Sun, that isVl; = Mg (= M)
and the bod; is the planet, that i, = Mp of radiusR,, then the éective
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gravitational acceleratiof, & Sutered by the Sun in the gravitational field
of the planet can be neglected, while tHEeetive gravitational acceleration
sufered by the planet in the gravitational field of the Siip shall be re-
written as follows

212 2
. [ GMoas  6G°Mgas  2G"MoasMoap) ps
Ips= |~ I,/2 + r/3C2 + /r/2c2 r

ps ps¥g p'ps 9 ps

(72)

wherer, is the radial distance from the center of the inertial mistgs of
the planet to the center of the inertial mads of the Sun in the relativistic
Euclidean 3-spack, which corresponds to the radial distamge from the
center of the rest maddop of the planet to the center of the rest madgs
of the Sun in the proper Euclidean 3-spaceandfys/rps is the unit vector
along the radial direction from the center of the planet todénter of the Sun
inX.

The approximate post-Newtonian gravitational accelenafir2) sifered
by the planet towards the center of the Sun, when both the Siitha planet
are considered as two interacting gravitational field sesi(or as two-body
system), is a slightly modified form of Eq. (97) of [4], wheretblanet is
considered as a test particle of negligible gravitatiomddiffor when the Sun —
planet system is considered as a one-body system). Sineatiagthird term
inside the parentheses in (72) is an inverse-square-laglexation term like
the Newtonian first term, it does not give rise to further pelion precession
of the planetary orbit than caused by the second term caézlia section
two of [8].

4. A moderate star may be bound in orbit round a neutron staenoth the
star and neutron star will be in motion and the exact equsitdmotion (67)
for the moderate star of mab& and Eq. (69) for the neutron star of mdds,
must be employed.

5. If we replace the neutron star by a black hole in item 4, abatmoderate star
is bound in orbit round a black hole, then théeetive gravitational acceler-
ation g1 o Of EqQ. (68), which the black hole ffiers in the gravitational field
of the moderate star is zero; and this is true even if we replae moderate
star by a star more massive than the black hole, sineé(ElMoal/R’lcg) =0
for a black hole of rest masi¥lp; and radiusR’;y (of Mg;) —this is the ra-
dius of the gravitational event horizon of the black holeu3the black hole
will remain stationary, while the star will be in motion réle to it. A black
hole is absolutely stationary (relative to all observeigjags, since a black
hole possesses it maximum velocity of zero always relativalltobservers
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Fig. 6: Three interacting gravitational field sources in the Euclidean 8espfthe theory of
gravitational relativity.

as established in [9]. Further support for this shall alsdéx@ved in the next
article.

Let us now consider the case of interacting three isolateditgtional field
sources (or bodies), where the inertial masgs M, and M3 of the bodies are
scattered in the relativistic Euclidean 3-spaaef TGR, such as illustrated in Fig. 6
at a given instant as the bodies are in motion. This is theethoely problem.

The bodiesV; and M3 establish gravitational potential at the location B\Gf.
Hence the net gravitational potential at B in the context GRIis,

Dpnet = Do1(r,) + Pa3(ra)
GMoaw 2G Moan GMoas 2G Moas
= = - (1_ = CZ )1/2 _ = (1_ - C2 )1/2 (73)
12 12~g 23 23%9

The net gravitational potential at C duelkty andM; is,

Dcnet = P3p(rp3) + Pau(r3y)
G Mg 2G Moz GMoaw 2G Moaw
= - - (1 _ s )1/2 _ - (1 _ = )1/2 (74)
23 23%g 31 319

And the net gravitational potential at A dueMy andM; is,

Qpnet = Di12(ry) + P13(ra)
GMoa 2G Moz GMoas 2G Mpas
= - - (1_ - CZ )1/2 _ = (1_ - CZ )1/2 (75)
12 12~g 31 31%g

The inertial mas$, of the body at B is related to its rest madg; in its own
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gravitational field and the gravitational fields of the badié, andM3 at B as

2G Moz 2G Mpar 2G Moas

My = Mgo(1 — 1- 1-
2 02( R X 2 ) s )

(76)

The inertial masdVi; of the body at C is related to its rest madsgs in its own
gravitational field and the gravitational fields of the badié, andM,, at B as

2GMpas 2GMpan )1 - 2G Moz
R3] M s

M3 = Moa(1 - )1 - ) (77)

And the inertial mas$/; of the body at A is related to its rest madl; in its own
gravitational field and the gravitational fields of the badi4, andM3 at A as
2G Mpay 2G Moz 2G Mpaz
— 2 J1-——)1-—;
R1cy I12C5

M1 = Moy(1 - ) (78)

whereR’;, R, andR’; are the radii of the rest massiélg;, Mg, andMgs respectively.
The net gravitational potential energy possesselpyt B is,

uBnet = M2®Bnet(r12,ré3)
B G Moaw 2GMpaw 12 GMoas 2GMpas 1/2
= [—Q-——=)" " -——1-——77)"]
o 112G M3 123G
2GMozo. .  2GMoa. . 2GMoas
><[’\AOZ(:I-_ =% 2 )(1_ 7 2 )(l_ 7 2 )]
2G5 r12Cy I53Cy
GMoaM 2G Moz 2GMoas 2GMoar
= (- R (- SR (- S
D) 2Cy 123G 1G5
G Mpaz Mo 2G Moap 2G Moay 2G Moas
Mooz, 26Woez) ) 20y 28Nz (7
I3 2G5 I12C I'23C5

The net gravitational potential energy possesselfipwat C is,

UCnet = M3®Cnel(r’31,r/23)
GMoa . 2GMoa GMuz .  2GMoas
= [——Q-—— - —=(1-— > )]
M3y 3Gy M3 I23Cy
2GMoap 2G Moar 2G Moas
Mo -~ 51 = =)A= ==l
3Cy 316 3G
G Moz Mos 2G Moas 2G Moap 2G Moay
- CMoaulloyy 2w, 26Ny, 25 Voan o
M3y 3Gy 123G I31Cy
GMumMos . 2GMom... 2GMoar. .. 2GMoa
; (1- R-c2 (- ——)1-—— )¥%(80)
I3 3G I31Cy I53C5
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And the net gravitational potential energy possesselfibgat A is,

Uanet = Mi®p net(riz, rél)
G Moz 2G Moz GMoas 2GMpas
= [_ ’ (l - ’ 2 )1/2 - ’ (1 - ’ 2 )1/2]
Mo 112G M1 r31C5
2G Moar 2G Moap 2G Moas
X[M01(1— R C2 )(1_ v C2 )(1_ r! C2 )]
1%y 12% 319
G MoaxMg 2G Moar 2G Moas 2G Moap
i (e o e (e R
Mo 1G r31% 2%
G Mpae Mo, 2G Moay 2G Moap 2G Moas
- ’ (1 - R 2 )(1 - 7 2 )(1 - 7 2 )3/2 (81)
M1 1G r1265 r31C5

The dfective gravitational potential at the position BMdf is,

Dpe(rinros) = Usnet/Moz
GMoay 2G Moz 2G Moas 2G Moar
= - r (1_ =% 2 )(l_ 7 2 )(1_ 7 2 )3/2
12 2Cy r23C5 1265
GMoms,, 2GMoz,. 2GMoar,,, 2GMoas s
. Ry W )
23 2% 12%g 23%

(82)
The dfective gravitational potential at the position Cd§ is,

Dcer(rinros) = Ucne/Mos
_GMoar | 2GMuag, | 2GMozo) | 2GMoa g5

= —(1-—=)1-— 1-—
M3 R3¢ r5aC5 r3:C3
M 2GM 2GM 2GM
_CMozp ) _ 20Mozs);  2CMoan, ) 20Moze s,
M3 Ri3¢) I31Cy I53Cy

(83)

The dfective gravitational potential at the position A is,

Dper(rinrz) = Uanet/Mot
GMox,, 2GMoar,,, 2GMos,,. 2GMom.gp
I (1- R1C2 - r. c2 - r’.c2 )
12 1% 31% 12%%
GMom,, 2GMoar,,, 2GMoz,,. 2GMom.s),
. AR e )
31 1%y 12%g 3179

(84)
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The dfective gravitational accelerationfSered byM, at position B is,

dpa = —Feerllipley)  Fiay  Peen(ly M) Fog
ar’, r2 a3 23
_ _GMoay 2OMu | Mo 2oMoaygs i)
2 RC2 FaC2 r12C5 M2
3G2M2,, - 2G Moaz)(l 26 Moag)(l _2G Moal)l/z(_@)
r’l?écg RaC2 r53C5 raCs f12
~ GMoas (1- 2G |\/|oa2)(l 26 Moal)(:L _ 26 MO&)S/Z@
ra R>C r2C 2% 23
3G2M§a3(1 .26 Moa?_)(l 26 Moal)(l _2G Moas)l/z@. (85)
roac? R:C2 r2c a5 f23

The dfective gravitational accelerationfsered byMj; at position C is,

Grar = 0%cen(ry o) o 0Pcen(rays M) (_@)
oy a1 Ors r23
_GMuay | 20Mo),  20Moam),  26Moan g
s R3¢ r55C2 r4,C2 ra
3G2'V|c2>a1 (1- 2G Moas,)(:L 3 2G Moaz)(l _ 2G Moal)l/zf’_sl
rac Ricj MG r4,C2 rs1
_G '\{lgaZ (1- 2G,I\/|02a3)(1 _ ZG,M%al)(l _ 2G/M02a2)3/2(_@)
23 R3C) F31% 230 r
+3G2M§az (1- 2G Moas)(l 26 Moal)(l 26 Moaz)l/z(_@)
536 Riscj r3C F5aCs ra3

(86)
And the dfective gravitational accelerationféered byM; at position A is,

Jret = ar’, r oy, 31
M 2GM 2GM 2GM P
R
rs 1C5 r3:.C r12C; M
?)GZMSa2 @ 2G M0a1)( 2G Moag)(l 2GMpa )1/2 12
r3c? R1cZ r3:C5 raCs M2
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GMoas,, 2GMoa 2G Moz 2G Moag M31
——2 - R -T2 -5 )
rsa 1G5 126 r31C; r
SGZMSaS 2G Moa1 2G Moz 2GMoas 12, Ta1
t— 5 (- RAC2 - = - =) ()
r5c; 1G5 126 r31C; Fa1

(87)

The equations of motions of the bodibt, M, and M3 must then be written
respectively as follows

d?%;

9z - Jrer(rin r3y) (88)

s L,

Fzz =92 eﬁf(rlz, r23) (89)
and

dZX d 7 ’

FZB = Jaer(I31 123) (90)

Equations (88), (89) and (90) along with Egs. (97), (85) @8) (espectively, must
then be solved for the path¥g(t), X (t) andxs(t) of My, M, andM3 in X, Itis straight
forward to extend this derivation to the 4-body problemdeipproblem ... and N-
body problem, except that it becomes increasingly cumipeesfor N> 3.

4.3 The zero gect on the gravitational event horizon (or blackness) of abk
hole of external gravitational field and motion of the obsewrelative to the
black hole

Let us suppose that the kth gravitational field source of thgohted gravitational
field sources that give rise to the resultant fagtpof Eq. (41) at a point in space is
a black hole. Let us suppose further that the point P is ldcateéhe gravitational
event horizon surface of this black hole. The faatgyi at point P on the surface of
the black hole, assuming all other gravitational field searare absent, is given in
the context of the intrinsic theory of gravitational reléf pTGR as follows

_ 2G¢Moa

n-2 _
¢')/gk(¢rk) - (1 ¢r|,(¢cg

)=0 (91)
wheregM is the one-dimensional intrinsic rest mass of the black imalee proper
intrinsic spacepp’ andé¢r, is the length ofpM.

The intrinsic gravitational time dilation and intrinsicagtitational length con-
traction formulae at the surface of the black hole due to theitational field of the
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black hole solely are given respectively as follows

2G¢Moak
Priecs
r\— ’ ZG¢Moak -1/2
Pyo(gri)tdgp’ = (1 - ————=)""d
e Priecs
When the presence nearby of the rest N-1 gravitational fielcces is taken into
consideration, then the resultant intrinsic gravitatiditae dilation and resultant
intrinsic gravitational length contraction in the conteXtpTGR at the point P at

the surface of the black hole, which is the kth gravitatiofield source, are the
following respectively

dpt = ¢ye(dr)edye(¢ro)dyes(@rs) - - dye(@ry) - - - dyon(dry)det’

det Pyg(or)dst’ = (1- ) V2dgt’ = oo (92)

dep oo’ =0 (93)

1- ZG¢>M0a1) 121 ZGq)Moaz) 121 2G¢M0a3)_1/2_“
P17 ¢C2 Pri¢c? Prigc?
2GpMoak_1/2 2GHMoan \_1/2 4 s
(- 20012 (g 2PN 12 o (94)
Priocs Pryocs
dgp = Gya(dr)  dvealers) ™ dyalor) ™ - dyon(ory) tdep’
(1_ ZG¢M02al)1/2( _ ZG¢M02a2)1/2( _ ZG¢MO§3)1/2"'
Pric2 Priopc? Pripe?
(1. LMoy 25PMoan iz o
- (- )0 =0 (95)

wheregr{ is the ‘distance’ along the the proper intrinsic spapeof the base of the
intrinsic mas®Myg; of the ith gravitational field source from the surface of theck
hole. Egs. (94) and (95) are valid by virtues of Egs. (92) &8) (espectively.

We find from equations (92) and (94) that a proper intringitetintervaldgt’
is infinitely dilated at the surface of a black hole, relative3-observers in the rela-
tivistic Euclidean 3-spackg, with or without the presence of other gravitational field
sources at the neighborhood of the black hole. Equationsd88 (95) likewise
show that an intervalgp’ of proper intrinsic space is contracted to zero interval at
the surface of a black hole, relative to 3-observeis, iwith or without the presence
of other gravitational field sources at the neighborhoodheflilack hole.

Now, no matter how the inertial massils, M,, M3, - - -, My_1 of the other N-1
gravitational field sources are scattered in the Euclideapa®eX of TGR about
the black hole, their intrinsic inertial massg®li, oMo, - - -, #My_; are all aligned
with the intrinsic masgMjy of the black hole along the isotropic relativistic intriasi
spacegp and their intrinsic rest masseédo1, oMoz, ®Mos - - - pMon lie along the
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curved proper intrinsic spacgp’ in the context of TGRS TGR. Consequently the
intrinsic length contraction formula at the surface of thack hole (95) is valid
no matter how the inertial masses of the other N-1 gravitalifield sources are
scattered in 3-spacgabout the black hole.

The outward manifestations on the flat four-dimensionaitigktic spacetime
(=, ct) of Egs. (92) and (93) on flat two-dimensional relativistitrinsic spacetime
(¢p, pcot), obtained by simply dropping the symbglin those equations, are the
following respectively

dt = yu(rpdt = (1- ZGIV'Oak) V2qy = (96)
k*g
\— ’ ZGM ’
do = yu(r) o’ = (1- = Cg% V2gy = (97)
k™g

We shall for the present purpose replaizeé by an elementary voluméX’ of the
proper Euclidean 3-spac# at the surface of the rest maby in X’ of the black
hole anddp by elementary volumdz of the relativistic Euclidean 3-spaZef TGR
at the surface of the inertial mab% in X of the black hole, and re-write Eq. (97) as
follows

2G Moak
1-—

k f/

Equation (96) states that an interell of proper time is infinitely dilated at the
surface of a black hole relative to 3-observers in the 3-aBawith the assumption
of the absence of every other gravitational field source,Eond98) states that an
elementary volumelY’ of proper Euclidean 3-space at the surface of a black hole
is contracted to zero volume relative to 3-observes, iwith the assumption of the
absence of every other gravitational field source.

The outward manifestations on the flat four-dimensionatepime g, ct) of
Egs. (94) and (95) on the flat two-dimensional intrinsic gbiaee @p, pcot) are
likewise given respectively as follows

dE = yu(rp) 1Y = (1 - ———) 4y’ = (98)

dt = yeu(r)ye2(ra)yes(rs) - - vek(r) - - - yon(ry)dt

1c e 5C2 rscg
2GM 2GM
B . O oL ST TN (99)
reca e
dE = yu(r) My yak(ri) T vn(ry) THAE
= - BNy DMz 2V
ryc rocz ryce

32 A.Joseph. Unified gravity and dynamics at neighborhood of abgeav. field sources I.



THE FUNDAMENTAL THEORY ... (M) Vol. 1(5) : Article 25

(- %)1/2 - %)Wdy =0 (100)
Ny 'NGG
Equations (99) and (100) are valid by virtues of Egs. (96) @&) respectively.
Let us write the mass expression for the black hole due tontsgravitational
field solely, that is, with the assumption of absence of teNel gravitational field
sources. This is given as follows

2GM
Mic = Moi(yy1) > = Mox(1 - =-2%) = 0 (101)

k™g

A black hole possesses zero inertial mass in the relativisticlidean 3-spacg
according to Eqg. (101), but we shall not deliberate furtherttds in this article.
When the black hole is considered to be located at the neigbbdrof the other N-
1 gravitational field sources, then the mass relation fobthek hole in the context
of TGR that follows from Eg. (49) is

M = 710D 52ty 2 yar) 2 - Yan(ri) *Mok
2GMpan 2GMpa 2GMpas
= - r/cg - r’cg (- r’cg )
1~9 2%g 3%g
2G Moak 2G Moan
(- =) (L= ) Mok = 0 (102)
2 e

Equation (102) again shows that a black hole possesseswstiai mass irtE with
the presence of any numbir— 1 of other gravitational field sources that are scat-
tered about the black hole b

We find from Egs. (96) and (98) and Egs. (99) and(100) that atgrvaldt’ of
proper time is infinitely gravitationally dilated and anylwme dX’ of the proper
physical Euclidean 3-space is gravitationally contratctedero volume at the sur-
face of a black hole, while Egs. (101) and (102) show that legtial mass of the
black hole inX is zero, both while the black hole is isolated from the getidnal
field of any other source and while it is located within thevifetional field of any
number of other sources. In other words, the properties tdekthole namely, the
radius of the event horizon of a black hole; the zero inertiaks inX of a black
hole; the infinite dilation of time at the surface of a blackehahe gravitational
event horizon of the surface of a black hole and the blackakaslack hole, are
unaltered by its location in the gravitational field of anymher of other sources.

The derived facts about black hole in the context of the thebigravitational
relativity (TGR) in the foregoing paragraph shall be staisca principle of black
hole thus
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A black hole is the same with respect to all observers whesgeitmay
be located in the universe.

This derived principle must be one of the principles of blacke physics in the
context of TGR, to be developed in the next volume of this ngwaph series.

In order to show that the above principle is valid relativeatbobservers, as
stated, let us modify Eq. (99), (100) and (102) by incorgotathe dfect of the ve-
locity of the observer relative to the black hole into themtfie context of combined
TGR and SR) to have as follows

dt = yu(rD)ye(r2)yes(rs) -« - ve(ri) - - yon(ry) y(v) dt
2GMoa, 15, _ 2GMoze 4 2GMozs.
- (- / 12(1 vz,
( ryc e ) - rycz e ) (- ryce e )
2GM 2GM 2
(- G,_gak)—l/z - G/_OzaN)—l/z(l_ )2t = oo
rkcg rNcg C7
(103)
_ -1 -1 -1, 7 \-1 -1 ’
X = Vgl(rl) Vt/Z(rz) s qu(rk) 'VqN(rN) y(v)""dZ
2GMpar 2GM32 2GMoas
B M i R R
3%
2GM 2 M
(l— G 0a<)1/2.”(l G OaN)]_/Z(l )l/ZdZ/ZO (104)
r’kcg rNcq y
Mc = ¥6a(rD) 2¥52(ry) 2 - vt % - Yon (i) 2y(©)Mok
ZGMal 2G Moap 2G Moas
= A-= - =)
1 q 2%g 3%
2GM 2GM v
S-S (- A - 5) PMee=0 (105)
ric? rc2 c

Equations (103), (104) and (105) show that the above piimdgpnot dfected by
the velocity of the observer relative to the black hole (oth&f black hole relative
to the observer). Hence the principle is indeed valid widpeet to all observers in
the universe as stated.

Now the gravitational speed at the surface of a black holehmasnerical value
of 3x 1% mys. That is,V/(r;)/c, = (2GMoac/ri)*? = 1; henceV/(r;) = ¢, =
3x 10®mst. The principle derived above, which states that the everizto of
a black hole is unaltered by its location in an external dediginal field, where the
gravitational speed due to the other sources is non-zemigsthat the maximum
gravitational speed,, (at the event horizon of a black hole), is an invariant with
both location in the universe and the observer.
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As a matter of fact, the rule for composition of gravitatibvelocities in the con-
text of TGR, which follows from gravitational local Lorentansformation (GLLT)
or its inverse, is the same as the rule for composition of dyoal velocities in SR.
It is given as follows, as derived formally in [4]

V/(rag + v,

b = % (106)
o (regvy/C5

For instance, the earth, by virtue of its gravitational figddescribes gravitational
speedv, at its surface. The Sun also prescribes gravitational spéedg at the
surface of the earth, wherggis the radial distance from the center of the Sun to the
surface of the earth in the proper Euclidean 3-spicé he resultant gravitational
speedy, of a point on the surface of the earth, which lies on the lirigifjg the
centers of the earth and the Sun, such that the gravitatspesids; andV/(r’) are
collinear, is given by Eq. (106).

If either V; (reg = ¢, or v, = ¢,, thenv, = ¢,, and ifV,(reg = ¢, andu;, = ¢,
theny, = ¢, again in Eq. (106). This shows that the gravitational spgeat the
event horizon of a black hole is unaltered by the presenceef gravitational field
sources. Thus the derived principle of black hole physiatedtabove can be stated
equivalently as follows

The gravitational speed), at the event horizon of a black hole (which
is the speed of gravitational waves), is invariant with theerver (or
frame of reference) and with location of the black hole indhéeverse.

Clearly this is the counterpart in the theory of gravitatibrelativity of the second
principle of the special theory of relativity. This derivpdnciple was stated without
proof at the beginning of the analytical development of T@Ranalogy with the
analytical development of SR in [4].

5 The metric theory of absolute intrinsic gravity at the neichborhood of sev-
eral isolated gravitational field sources

As has been well developed in [10] — [11] and [12], the thedralmsolute intrin-
sic gravity @AG) is composed of the metric theory of absolute intrinsiavify
(¢MAG) with absolute intrinsic sub-Riemannian line elemdn&® = ¢gidxXdx,
on curved ‘two-dimensional’ absolute intrinsic spacetif@g, #st) with absolute
intrinsic sub-Riemannian metric tensgji, and the starred Newtonian theory of
absolute intrinsic gravitydNAG*) on the curved §p, ¢&gt), derived by the ab-
solute intrinsic action principle with the aid of the abgelintrinsic line element of
¢#MAG, with respect to 3-observers in the relativistic Euebah 3-spac& in [11]
and [12], althouglyNAG* is non-detectable to these observers.
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The sNAG* on the curved absolute intrinsic spacetingd,(¢tst) is invariantly
projected as Newtonian theory of absolute gravity withaat s&abel ¢NAG) into
the underlying flat relativistic intrinsic spacetimgo( ¢cét), which is made mani-
fest in the Newtonian theory of absolute gravity (NAG) in fta four-dimensional
relativistic spacetimeX, ct), but which is hon-observable and non-detectable to 3-
observers k. The non-detectable NAG co-exists with the observed thebgyav-
itational relativity (TGR) and relativistic Newton’s lavi gravity—relativistic in the
context of TGR—on the flat four-dimensional relativistic spéime g, ct) in every
gravitational field.

All the component theories of absolute intrinsic theory @ty (#)AG) namely,
#MAG, ¢NAG*, pNAG and NAG, have been well developed at the exterior of a
singular gravitational field source in [12]. Only tl®AG shall be extended to
the neighborhood of several isolated gravitational fielarees in this section, since
such extensions of the other theories follow easily fromahsolute intrinsic line
element opMAG.

The resultant absolute intrinsic line element and restiétbsolute intrinsic met-
ric tensoyMAG shall be derived, and this will be easy, since in the altgdhtrinsic
2-geometry ofpMAG, the ‘one-dimensional’ absolute intrinsic rest masgig or
#M, of all particles and bodies in the universe lie along the ‘direensional’ uni-
versal isotropic absolute intrinsic spag&and all their intrinsic inertial massegsn
andgM lie along the one-dimensional isotropic universal relatig intrinsic space
¢p, although their intrinsic massesandM are scattered arbitrarily in the universal
relativistic Euclidean 3-spacg with respect to all 3-observers 1 Hence all in-
trinsic gravitational field sources are collinear with amyeg point P in space in the
context ofpMAG. Moreover the components of the absolute intrinsic rn¢énsor
are always related thus,

$Go0 = —311; $g12 = ¢g21 = 0,

as has been established since [13].

Now let us revisit the theory of gravitational relativity GR) at the neighbor-
hood of two gravitational field sources formulated in subtism 2.1. By assuming
that the mas#/; is absent in Fig. la or 1b, the malk gives rise to TGR and
establishes Lorentzian metric tensor at point P, as wellt &vexy other point in
spacetime in all its finite neighborhood. When the mdgss then brought in place,
operating upon the Lorentzian metric established everyavhg My, it also gives
rise to TGR and establishes Lorentzian metric tensor at ppias well as at every
other point in spacetime again in all finite neighborhoodhaf field source. This
can be continued until the resultant theory of gravitatiaoedativity of as many
isolated field sources as possible is obtained. Each nevitaienal field source
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introduced operates upon the Lorentzian metric tensobkstiad by the preceding
field sources in the context of TGR. This superposition pdace in the context of
TGR gives rise to the resultant factpj, of Eq.(43) at the neighborhood of two
gravitational field sources, and Eq. (41) at the neighbadhafd\ gravitational field
sources in the context of TGR.

The procedure for superposition of spacetime geometry énctintext of the
‘two-dimensional’ metric theory of absolute intrinsic gity (#MAG), is different
from that of TGR described in the preceding paragraphgNAG, the absolute
intrinsic rest masa&l\?lm of the gravitational field source of inertial mab4; in
¥, assuming mashl, is absent (in Figs. 1a and 1b), gives rise to the curved ab-
solute intrinsic spacetimeyp’, Cot’) relative to flat relativistic intrinsic spacetime
(¢p, pcot) and establishes an absolute intrinsic metric tepg@t every point on this
curved @p’, ¢Cot’), with respect to 3-observers in the physical Euclideapazer.

Thus whenM; is brought in place, operating upon the curved absolutesitr
spacetimedp’, ¢&at’ ) with absolute intrinsic sub-Riemannian metric tensoalest
lished by My, its absolute intrinsic rest ma%?loz establishes another curved ab-
solute intrinsic spacetimepp, ¢Cet) relative to the curvedd’, pcot’ ) established
by ¢Mo 1, as illustrated in Fig. 7.

The two gravitational field sources thereby establish altastabsolute intrin-
sic sub-Riemannian metric tensor on the upper curved afesivitrinsic spacetime
(#p, pEol) relative to the flat relativistic intrinsic spaced, ¢cot) at every point in
spacetime in all their finite neighborhood, with respecilt8-@bservers in the phys-
ical Euclidean 3-spack. Fig. 7 illustrates the curved absolute intrinsic spacetim
(¢p, peaf) established by absolute absolute intrinsic rest m#4s upon the curved
absolute intrinsic spacetimgd’, ¢&¢f’) established byMo;.

Since the absolute intrinsic spaceting’( #&4f') in the absence opMo, is
curved relative to the flat relativistic intrinsic spacetifppo, ¢cgt), the components
of the absolute intrinsic metric tensor aff(, ¢&¢t’) at P, due to the gravitational
field sourceM;, assumingM, is absent, in the context of the present metric theory
of absolute intrinsic gravity is the following

_ 2G¢Moa .

A a1l <@ iVical PP
®¢goo = —¢g11 =1 91922 ; 0912 = ¢g21=0 (107)

Now the components of the intrinsic Lorentzian metric term$ohe flat relativis-
tic intrinsic spacetimegp, ¢cet) relative to which ¢p’, ¢éet’) is curved in Fig. 7 are
noo = —n11 = 1;m12 = n21 = 0. Hence system (107) can be written alternatively as
follows ~
2G¢Moan .

PMoan . = 3y = 0 108
9102 $g12 = $g=1 (108)

$Goo = —dG11 = 100 —
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Fig. 7: The resultant curved absolute intrinsic spacetime at the neighdmbdf two isolated
gravitational field sources at the second stage of evolutions of spaeftiinsic space-time
and of parametefiatrinsic parameters.

System (108) shows that the field soukdgestablishes curved absolute intrinsic
spacetime (or absolute intrinsic Riemannian spacetimmmgé®g) relative to the flat
relativistic intrinsic spacetime with intrinsic Lorenéri metric tensor (or relative
to an intrinsic Lorentzian boundary condition). Now whee tjravitational field
sourceM; is brought in place, it will establish curved absolute im$ic spacetime
(or absolute intrinsic Riemnnian spacetime geometry}ikedo the absolute intrin-
sic Riemannian spacetime geometry, (or absolute intrisigic Riemannian metric
tensor) thatM; established. Hence the components of the resultant abdotun-
sic metric tensor at P due td; andMj jointly, (in the context oisMG), are given
as follows, as has been derived formally in [13],

2GpMozz .~ ~
— = =0
972082 #g12 = $go1

- 2G¢Moan  2G¢Mozz
¢h1pC  PfapC2

And when another gravitational field source of inertial mlsss brought in place

2 ~-1 ~
®goo = —9g11 = ¢Pgoo—

$G12=dg1 =0  (109)
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at radial distance; from point P in the physical Euclidean 3-spatethen the
components of the resultant absolute intrinsic metricdeasP are the following

~ a1 2GoMoms  2G¢Mozz  2GoMozs . =~ -
= _¢gy, =1 2o 2PV o070, = =0 (110
®goo = —Pg11 9102 9 202 P02 ®g12 = 9921 (110)

In general, the components of the resultant absolute gitrimetric tensor of
the ‘two-dimensional’ metric theory of absolute intringi@vity (¢\MAG) at a point
P in space, due to N gravitational field sources scattereplanesabout this point is
the following

- -1 Y 2GoMoai .~ -
$G00 = 011 = 1= )| =3 012 = ¢G21 =0 (112)

System (109) can be written in terms of absolute intrins'g:leswl/?gl(qsfl) and

d,2(472) and the resultant absolute intrinsic an@ié,res = ¢ur1(¢F1) + diry2(¢F2),
in Fig. 7, knowing that

SIr? gug1(¢71) = 2GpMoan/¢P16€2 and  sif giyo(¢2) = 2GdMoap/ ¢ 26C2,
as follows
S ¢igres = SIP[@dg1(#F1) + Giga(9F2)] = SIMP piga(9F1) + SIF irga(9F2) (112)
Hence

~ ~-1 ~ . ~ ~ . ~ ~ 2~ ~
$Goo = —$g11 = COS PUigres = 1 — SIP P2 (#F1) — SIP Pihy2(#F2); $g10 = ¢gy = 0
(113)
The generalization of Eqgs. (112) and (113) to the case of Mtisd gravitational
field sources are the following respectively

N
SIMP igres = SIP[gug1(¢1) + Pllga(9F2) + ... + ggn(9in)] = ) sin? @il (o)
i=1

(114)
Hence

N
G0 = ~0711 = COF llyres= 1~ > SIF $ii(dF); 6510 = 631 =0  (115)
i=1

Equations (112) and (113) give the rules for finding the sima& @osine of the
sum of two absolute intrinsic angles of rotation on the waitiabsolute intrinsic
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spacetime plane, in the context of the ‘two-dimensionaltringheory of absolute
intrinsic gravity, while Egs. (114) and (115) give their gealization to the compo-
sition of N absolute intrinsic angles.

Finally the absolute intrinsic curvature paramet@ﬁ;l(qsfl) and ¢R92(¢f2) at
point P of the curved absolute intrinsic spaggs and¢p in Fig. 7 and the resul-
tant absolute intrinsic curvature parameﬁé;res are related to the absolute intrinsic
anglesy(¢f1) andy,(f-) as follows, as derived in [13] — [14]

$R2\(#F1) = S duiga(of1) = 2GpMoan /b 16C2
¢ (9F2) = SN drga(¢fa) = 2GPMoaa/ ¢ 20C;
Hence X A A
PKGes = K2 (9F1) + PK2,(4F2) (116)
and

G0 = ~ 41y = 1 - 0es = 1= $R2(8F1) — 9K(072); 6315 = 9521 =0 (117)

The generalizations of Egs. (116) and (117) to the situaifdhe neighborhood of
N isolated gravitational field sources are given respelgtias follows

N
¢R§res = Z ¢R3| (¢1i) (118)
i=1
and
- 2-1 r2 & £2 /a8y, 2 -
$goo = —#g11 = 1 - PKjes=1- Z oK (o11); ¢g12 = ¢go1 =0 (119)
i=1

Again Eqg. (116) and its generalization (118) give the rulelie@ composition of ab-
solute intrinsic curvature parameters for the purpose afieg resultant absolute
intrinsic metric tensor in the context of the ‘two-dimensid metric theory of ab-
solute intrinsic gravity.

The absolute intrinsic line element 8MAG, which is valid with respect to 3-
observers in the physical Euclidean 3-spacat the neighborhood of isolated N
gravitational field sources is then given as follows from Efj$1), (113) and (115)
and (119)

d¢3% =  Pgoop?det? — ¢gy, dgp?
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N N -1
(1 - ) Sirt ¢l (¢ﬂ)) ¢C2dot? - (1 - ) Sitt ¢l (¢ﬂ)] dep®
i=1 i=1

(120)

N N -1
[1 - > ok (¢fi)2] ¢Edgt? - [1 - > ok, (¢ﬂ)2) dgp®  (121)
i=1 i=1

& 2G¢|\’/\|Oc’:li A2 11582 N 2(-?"flﬂ\?IO(:li - )
e R O R

This first part of this article shall be ended at this pointhwatrecap of its es-
sential accomplishments. These are the extensions of #TGR on flat relativistic
spacetime X, ct) and its underlying flat relativistic intrinsic spacetimgp(¢cet)
andpMAG on curved absolute intrinsic spacetingp(¢cst), to the neighborhood
of several isolated gravitational field sources; formolatof the relativistic New-
ton’s law of gravity (RNG) in the context of TGR at the neightood of several
gravitational field sources; validation of Einstein’s mijple of equivalence at the
neighborhood of any number N of isolated gravitational fisbdirces and conse-
quently within the entire universe and the N-body problemMNc=2 and N=3,
which admits of straight forward extension to=Nl and larger, in the context of
TGR and any value of N in the context 8MAG. The corresponding theories of
dynamics namely, SRSR andpMAM, shall be incorporated into the results of this
article in the second part of it.
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