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Abstract:   The physical nature of proposed electro-cordic guidewaves has been 

demonstrated by applying the theory to relativistic potential wells and a simple harmonic 

system.  Interference observed in Young's slits and the Michelson interferometer has also 

been explained as due to active guidewave fields controlling photons.  Entanglement is 

interpreted in terms of real coupling by interlinked guidewaves between particles or 

photons; so wavefunction collapse occurs when this physical link is broken. 

Superconductivity requires real material binding for electron-pair creation and 

correlation. 
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1 Introduction 

 In the companion paper (Wayte, 2012, Paper I) the need for a causal quantum 

theory to explain experimental results properly was seen as a natural continuation of 

classical physics from astronomical bodies to sub-atomic particles.  Then the proposed 

electro-cordic guidewaves were generated by particles to convey interactions at the 

velocity of light or faster.  Application of this theory to the hydrogen atom showed the 

direct transfer of concepts like orbits from astronomy and general relativity theory to 

atoms and quantum theory.  Remarkable compatibility was found between the relativistic 

systems. 

 Here, the aim in Section 2 is to reveal the physical nature of electro-cordic 

guidewaves of de Broglie wavelength described by the wavefunction, in systems such as 

a potential well and simple harmonic oscillator.  Section 3 covers detailed guidewave 

explanations for interference phenomena seen in Young's slits and Michelson 

interferometer experiments.  Entanglement is interpreted in Section 4 as a real 

superluminal guidewave link between particles or photons, which breaks during 

wavefunction collapse.  In Section 5 the reality of guidewave trajectories between charges 

is demonstrated. Finally, Section 6 describes the material binding of electron-pairs in 

superconductivity, which leads to a heuristic explanation for high temperature 

superconductors. 

 Overall, the guidewave interpretation of the wavefunction is first and necessary, 

while the probability interpretation is not always appropriate. Standard quantum theory 

only describes results of experiments, without interpretation involving mechanisms such 

as guidewaves and wavefunction collapse, or internal structures of particles and photons. 

 

2 Applications of a relativistic wave equation 

 Three of the standard applications of Schrödinger's non-relativistic equation will 

now be considered from a relativistic viewpoint, in order to emphasise the role of the de 

Broglie wavelength and necessity of guidewave physical reality. The non-relativistic 

equation is mathematically easier to apply, but it is incomplete. 
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2.1 The infinite square well potential 

 This is usually given as the simplest example of a theoretical non-relativistic wave 

mechanical system.  It can be converted to a relativistic system to confirm the existence 

of guidewaves with de Broglie wavelength. From Schiff (1968) p38, the time-independent 

Schrödinger non-relativistic wave equation, corresponding to the particle equation 

( )E)x(V/2mp 2 =+ , is: 

   Euu)x(V
dx

ud
m2 2

22
=+−

h
 ,     (2.1) 

where V(x) is zero within the well defined by (–a < x < +a), but is infinite outside.  For 

the usual interpretation, the ground state eigenfunction is then: 
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with energy eigenvalue  )/8ma(E 222
1 hπ= . Given that the de Broglie wavelength is 

defined as h/p)  ( B =λ , then we have 4a)  ( 1B =λ . This fit of )2/( 1Bλ  into the well width is 

the essential physical connection between the well and the guidewave, analogous to a 

standing sound wave in an organ pipe.  The guidewave emitted by the particle in the 

forward direction of travel can then reflect from both walls before returning to the particle 

from the rear, in phase 2π later. Single value wave amplitude at the source particle is 

thereby achieved by constructive interference between the source and reflected 

guidewaves. 

 For the travelling guidewave interpretation of Eq.(2.1), the amplitude ground state 

solution is: 
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with the same energy eigenvalue E1. Phase φ is determined by the instantaneous particle 

position. For example, if the particle moves with velocity v from (x = 0) at (t = 0) towards 

the barrier at (x = +a), then the instantaneous guidewave amplitude at position x and time t 

is: 
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Therefore, from the start at (t = 0), the amplitude u1 at the barrier position (x = a) 

increases sinusoidally from zero up to +a−1/2, then decreases through zero down to −a−1/2, 

and then increases back to zero after total time (t = 4a/v). The particle has moved at 

constant velocity v from (x = 0) to (x = +a) where it was reflected towards (x = −a) to be 

reflected again back to (x = 0). There is no concentration of the particle around (x = 0). 

The guidewaves are reflected continuously at the barriers and confined within the well 

throughout. 

 For the standard interpretation of quantum theory, equation (2.2) represents 

probability amplitude.  This is arbitrary but may be justified when interactions between 

systems are considered because the particle would on average appear to be around (x = 0).  

However, it is important to remember that the analysis leading to eigenfunction Eq.(2.2) 

depends on the particle traversing the box back and forth at constant velocity (v = p/m), 

for E1 = p1
2/2m.  It cannot really avoid the walls to concentrate at the centre because that 

would make p vary and invalidate the initial conditions, so the theory would no longer be 

self-consistent.  Nevertheless, the amplitude Eq.(2.2) can be taken as representing a 

standing guidewave to locate the particle on average, as far as interactions with other 

particles are concerned.   

 This analysis will now be carried over to the relativistic wave equation as follows.  

The relativistic particle equation )cm  p  /c(E 22
o

222 +=  has an equivalent Schrödinger 

wave equation inside the potential well: 
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The ground state eigenfunction for the probability interpretation is: 
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Given (p1 = h /λB1 ), then again (λB1 = 4a), which proves that the relativistic de Broglie 

wavelength ]vm/)c/v1(h[ o
2/122

B −=λ  matches the well dimensions for resonance. 

Thus, it is the physical nature of real guidewaves which essentially determine the allowed 

energies of particles in wells. The energy eigenfunction is dependent upon the momentum 

by means of λB governing the fit to the well width. 
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 Energy eigenvalues above the ground state may be derived in the usually way, 

allowing for (nλB = 4a).  Each increase in energy corresponds with an extra half de 

Broglie wavelength being fitted into the potential well full width.  This is obviously 

analogous to standing waves in organ pipes and supports the reality of guidewaves. 

 For Eq.(2.5), the complete time-dependent wavefunction is: 

   )/tEiexp()x(u)t,x( 111 h±=ψ  ,   (2.6) 

where E1 is the particle relativistic energy.  It is this circularly polarised guidewave which 

propagates at the velocity of light and interacts with other particles, or itself by reflection 

within a system to generate the de Broglie wavelength by interference. Therefore 

Eqs.(2.2), (2.3) and (2.5) only represent the peak amplitude of the guidewave's high 

frequency oscillation, as it varies from place to place within the well.   

 

2.2 Finite square-well potential 

 This example has always been used to explain quantum mechanical tunnelling as a 

particle statistical phenomenon.  Again, Schrödinger’s non-relativistic equation (2.1) can 

be applied for the case within the well, where [V(x) = 0] for (–a < x < a), and outside 

where [V(x) = Vo > E] for (|x| > a). From Schiff (1968) p40, these two regions yield the 

general wavefunction solutions, respectively: 
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For continuous u and du/dx at (x = ±a), the energy eigenvalues are found by solving 

numerically the equations: 

      ]/Vma2aa[and],-acot[or]atan[ 2
o

22222
h=β+αβ=ααβ=αα  . (2.7c) 

It is interesting to calculate a simple ground state example such as when (α = β = π/4a) 

with (E1 = Vo /2), which occurs when (Vo = π2ħ2/16ma2); see Figure 1, where: 
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     Fig.1  Ground state wavefunction amplitude Eq.(2.8a) (____), and probability 

     density u(x)2 (- - -). The classical position density is also shown (▪▪▪▪). 

 

 Then from Eq.(2.7a): 

   )a4/()mE2(p 2/1
11 π== h   ,     (2.8b) 

so that the de Broglie wavelength is: 

   a8p/h 1B1 ==λ   .      (2.8c) 

This λB1 is double the previous value (where Vo = ∞), with momentum 2 times less and 

energy 4 times less. So, the guidewaves penetrate the wall around distance 'a' on average, 

before being reflected back into the well. This is followed by reflection again at the other 

wall, before returning to the source particle from the rear in the required phase 2π for 

single valued amplitude.  

 There is a simple general relationship between E1 and an arbitrary value of Vo : 
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which confirms through Eqs.(2.8b),(2.8c) that guidewavelength λB1 is determined by the 

real well dimensions. 

 Figure 2 shows the wavefunction for a particle with 3 times the momentum within 

a wider well, for (α = β = 3π/4a). That is: 
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       Fig.2  Third harmonic wavefunction amplitude Eq.(2.8e) (____), and probability 

       density u(x)2 (- - -). The classical position density is also shown (▪▪▪▪). 

 

 Now, for the equivalent relativistic analysis, the wave equation produces 

solutions: 
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The energy eigenvalues are found by eliminating E from these equations, then specifying 

Vo and solving numerically with the use of: 

   ]-acot[or]atan[ β=ααβ=αα  .    (2.10) 

Again we can calculate a simple ground state example such as when (α = β = π/4a) with 

(E1 = Vo /2). Then: 

   )a4/()cmc/E(p 2/122
o

22
11 π=−= h  ,            (2.11a) 

so that the de Broglie wavelength is the same as for the non-relativistic case: 
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   a8p/h 11B ==λ   ,               (2.11b) 

which confirms that the relativistic de Broglie wavelength matches the well dimensions, 

as governed by the resonance of real guidewaves. 

 When interpreting the guidewave intensity |ψ(x)|2 as a probability density, the 

probability of a particle tunnelling through the wall may be calculated.  What this means 

physically is that the wall of potential Vo is not impervious in a classical sense.  It consists 

of repelling charges between which the particle may squeeze due to local fluctuations in 

the quantised electric field.  Penetrating particles which do not get through the wall 

completely are reflected back into the well. Evanescent waves in optics demonstrate 

quantum mechanical tunnelling by photons. 

 It is not always necessary for the wavefunction to represent probability density in 

addition to the guidewave amplitude.  For example, the hydrogen radial and angular 

eigenfunctions have to be selected from a number of mathematical solutions.  

Consequently, the probability density interpretation is thought to apply only to 

guidewaves emitted in the direction of motion.  Guidewaves emitted laterally do not 

cause the particle to zigzag either side of its classical trajectory, as suggested by Bohm & 

Hiley (1993).  We saw in the companion paper how the hydrogen radial eigenfunction 

represents possible guidewave amplitude, not electron position probability.  The electron 

travelled in precise controlled orbits, compatible with sharp energy spectra. 

 

2.3 Linear harmonic oscillator 

 Some features of the harmonic oscillator will be described which demonstrate the 

physical properties of the wavefunction.  Classically, the energy equation is: 

                                  EKx
2
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p 2

2
=+
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where  the  restoring  force  on  the  particle  is  (F = −Kx)  and  the potential energy  is 

(½Kx2) increasing from zero at (x = 0) to a maximum (E = ½Kxmax
2). 

 In quantum theory, Schrodinger’s non-relativistic wave equation is given by 

Schiff  p67 as: 
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The general wavefunction solution of this is conveniently expressed: 
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When (n = 0), the ground state solution is as shown in Figure 3: 
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The guidewave intensity equivalent to probability density |u(ξ)|2 is also shown; and the 

classical position density proportional to (ξο
2 − ξ2)−1/2, for (ξο = 1). The wavefunction 

represents guidewave amplitude as a function of x, at the instant when the particle is at 

position (x = 0). Likewise, Figure 4 shows the wavefunction for harmonic (n = 4) as: 
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The guidewave intensity equivalent to probability density |u4(ξ)|2 is shown; and the 

classical position density proportional to (ξο
2 − ξ2)−1/2,  for (ξο = 3). 

 

                     
 

      Fig.3  Ground state wavefunction amplitude Eq.(2.14) (____), and probability 

 density uo(ξ)2 (- - -). The classical position density is also shown (▪▪▪▪). 
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     Fig.4  The harmonic wavefunction amplitude Eq.(2.15) (____), and probability  

     density u(ξ)2 (- - -). Classical position density is shown (▪▪▪▪). 

 
It is immediately apparent that Figure 3 is very similar to Figure 1 because an 

oscillating particle restrained by a central force behaves somewhat like a free particle 

constrained by low potential walls. Similarly, Figure 4 is like Figure 2 where the 

wavefunction/guidewaves accommodate the particle constraints, and thereby determine 

the allowed energy levels.  

We can interpret the ground state wavefunction Eq.(2.15) in terms of the de 

Broglie wavelength, to illustrate its control, as was shown in Eqs.(2.7a) and (2.8c): 
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where pmax is the maximum momentum found at (x = 0) in Eq.(2.12a). This means that 

the minimum de Broglie wavelength (λB0min = h/pmax = 2πxmax) is the standard for 

determining the energy eigenvalues in the linear harmonic oscillator. For energy states in 

general, the minimum de Broglie wavelength would be (λBNmin = h/pmax = 2πxmax/N), 

where N = 1, 3, 5, - - -).  

 In reality, the value for λB0min is slightly smaller, but it is still determined by xmax. 

That is, the relativistic equivalent of Eq.(2.12a) is: 

-5 -4 -3 -2 -1 0 1 2 3 4 5ξ

n = 4
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422222 cm)KxE(cp
2
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so for (x = 0), and (p = 0) respectively, we find: 

 ]cmEcp[ 42222
max −=  ,   and   ]cm)KxE(0[ 4222

max2
1 −−=  .  (2.19) 

Then, upon eliminating E : 

 ]c4/)xK(mKxp[ 24
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22
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 To summarise this  Section, the wavefunction for a particle, restrained by a square 

well potential or linear oscillator, has been interpreted as the amplitude of the real 

guidewaves emitted spontaneously and continuously by the particle itself. The square of 

the wavefunction is then guidewave intensity, which may be equivalent to probability 

density in some circumstances but not necessarily always. Obviously, this ontological 

interpretation of the wavefunction has been compatible with the particle’s reality. 

 

3. Interference phenomena 

 In physical optics, interference profiles have always been explained 

accurately as a wave phenomenon; see Jenkins and White (1957).  For example, Young's 

slits eventually produce fringes on a screen even when the light source is very weak. 

Similarly, the two-arm Michelson interferometer directs individual photons 

proportionally, in the same way as calculated for a bright light flux. The wave and particle 

nature of light are therefore compatible in a single experiment, and the concept of 

continuous photon trajectories is advantageous. However, problems of interpretation arise 

when a predictable high quality interference pattern with its information content grows 

from nothing as single photons pass through the system. Standard quantum theory simply 

states what will probably be observed and is apparently incapable of addressing the need 

for physical processes underlying such observational results. 

One viable explanation requires every photon to interfere with its own advance 

guidewave field, which is sent ahead of it at superluminal velocity to prepare the system 

by interacting with the Coulomb fields of nearby atoms. Similarly, when interference of 

electron beams occurs, each electron interferes with its own guidewave field, and fringe 

profiles are determined by the de Broglie wavelength according to wave theory; see 

Jönsson (1974), Hitachi (2012). 
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Some examples of interference, which benefit from an explanation involving 

guidewaves, will now be given.  

 

3.1 Young's slits 

 We have suggested that the quanta and particles passing through Young’s slits 

emit guidewave fields which help guide them individually to fringes, being distributed 

according to the predicted wave amplitude while arriving randomly in time.  A guidewave 

induces the local environment of the slits’ to impose necessary angles of trajectory by 

incorporating the distance to the screen and induced excitation of the screen atoms. 

 Some understanding of fringe patterns may be derived by relating to the 

electromagnetic theory of radiation from antennas. Consider first the diffraction pattern of 

a single slit illuminated by a coherent beam of light, see Jenkins and White (1957) p.291.  

The slit is regarded as being equivalent to Huygen elemental isotropic radiators which 

generate interference in amplitude at any given point on the screen.  Such a diffraction 

pattern is analogous to the radiation polar diagram of Hertzian dipoles stacked across the 

slit; see Glazier and Lamont (1958), Terman (1955).  In such dipoles, the energy is 

introduced continuously as a sinusoidal current but is converted into coherent radiation 

quanta by the oscillating electrons.  These quanta are emitted at random but the average 

rate of emission, at a given angle from a dipole, is governed by electric potential and 

continuous field produced by many charges within the dipole.  This controlled 

randomness, with strict dependence upon net Coulomb field strength in a given direction, 

is fundamental.  It appears that the electrons take energy steadily from the input source as 

they are being accelerated, and then shed energetic quanta from their fields.  The 

coherence of radiated quanta indicates continuous interaction due to guidewaves linking 

all quanta as they are created. 

 If two antennas are placed side by side and energised in phase, then a receiver will 

detect interference which depends upon its position in the crossed radiation field. 

Participation of the receiver is essential for interference to occur because without it the 

two beams of radiation would carry on into space without interfering.  

 Now, the photons excite electrons in the slit jaws into oscillation, analogous to a 

receiving antenna in which electrons are excited by incoming radiation and may re-radiate 

directionally.  An optical slit behaves much like a slot antenna. These slit electrons then 

react back through their Coulomb fields on the photons, and scatter them.  However, the 
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destination at P (say 20 nsec for D = 6m). If the photon is absorbed by the screen or 

detector, its total energy including gathered guidewave energy is converted to kinetic 

energy or heat. This means that wavefunction collapse is total. A new 

guidewave/wavefunction will be generated by an excited electron. If the guidewave and 

photon are reflected by the screen, they will have a phase shift of π. 

Various animations of interference on the Internet convey the optical illusion that 

power flows from the origin O, but of course power flows from the slits. This means that 

photons heading straight for the bright fringes are unperturbed as they cross regions 

where dark fringes would be observed if the screen were moved there. When the screen is 

moved inward say, the photon trajectories for bright fringes shift laterally due to 

momentum being induced by the guidewave field at the slit, in accord with the current 

screen position. 

For interference generation at all, there must be feedback of the guidewave 

through the other slit in order to make the amplitude at the photon coherent and single 

valued. The photon interferes with its own reflected guidewave, subject to participation of 

the excited slits and screen Coulombic fields. The interference pattern is naturally set-up 

by a photon’s guidewaves obeying wave theory in advance, so every photon is guided 

continuously and smoothly from the source to the screen. However, it is interesting to 

estimate roughly how much lateral momentum would be necessary to produce an 

interference pattern from a uniform field, by quantum jumps. First, let there be 

theoretically uniform illumination on the screen, then to build a bright fringe, it is 

necessary for some photons (32% ) to jump from a dark position to the bright position. If 

these photons have forward momentum (p = hν/c), and each acquires lateral momentum 

px to move half a fringe, then: 

   )m(,
d
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D
x

p
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2
1x =∆

λ
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∆
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and so, 

   
d2

h
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Here, the slits appear to interact with each other and the screen and source S, by way of 

guidewaves. 

 Some tests can be carried out on the interference pattern: 



  

Test 1, Figure 6: An aperture stop A, mid

introduced to confirm that photons travel in straight

half of them do cross the centre

ruin the phase coherence necessary for interference

 

                
    Figure 6  Aperture stops A, M, F

                   and independence of nearby fringes

 

Test 2: The screen stop F or the screen itself 

prove that adjacent fringes do not contribute to each other

between bright fringes without affecting them.

involve the entire apparatus

Test 3, Figure 7: An inclined

one slit more than the other. On the screen, the

will sit upon a continuum of light. If the light intensity is 

single photon is in the system at a time, then each photon must either interfere with itself, 

or not interfere at all. This can only be achieved if the laser polar diagram is 

determining the interference pattern. T

Test 1, Figure 6: An aperture stop A, mid-field stop M, and screen field stop F may be 

introduced to confirm that photons travel in straight lines without wild zig

do cross the centre-line (unlike in Bohm’s theory). Any zig

ruin the phase coherence necessary for interference. 

Figure 6  Aperture stops A, M, F, confirm straight-line photon trajectories

and independence of nearby fringes 

or the screen itself may be reduced to a single

prove that adjacent fringes do not contribute to each other. Similarly, stops G may be put 

without affecting them. Therefore, a fringe pattern does not 

the entire apparatus, except for minor edge effects. 

inclined laser beam with its directional polar diagram may illuminate 

one slit more than the other. On the screen, the depth of interference will be reduced and 

will sit upon a continuum of light. If the light intensity is decreased to en

single photon is in the system at a time, then each photon must either interfere with itself, 

or not interfere at all. This can only be achieved if the laser polar diagram is 

determining the interference pattern. Therefore, photon guidewaves must
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Any zigzagging would 

 
trajectories 

may be reduced to a single fringe width to 

stops G may be put 

a fringe pattern does not 

directional polar diagram may illuminate 

interference will be reduced and 

to ensure that only a 

single photon is in the system at a time, then each photon must either interfere with itself, 

or not interfere at all. This can only be achieved if the laser polar diagram is involved in 

ton guidewaves must refer to source S 



  

               
 Figure 7  An inclined 

 

and be subject to the polar diagram weighting 

fringe intensity is given by:

   =Iab

where a and b are the effective 

Test 4, Figure 8: An off-axis coherent laser beam illuminates a double slit and screen. The 

central bright fringe is at P

angle α from this, in the usual manner calculated from wave theory. The photons 

therefore retain some of their pre

straight lines and crossing the axis as required. In addition, the phase of slit S

slit S1 depends upon arbitrary choice of 

the source S throughout its existence, as well as to the slits and screen.

 

           
           Figure 8  An off-axis laser beam illuminates the slits 

 

 laser beam may illuminate the slits unequally 

polar diagram weighting as well as path length considerations. 

fringe intensity is given by: 









λ
π

++= )
D
d

(
x2

cosab2ba 22  ,  

effective amplitudes at S1 and S2 respectively. 

axis coherent laser beam illuminates a double slit and screen. The 

central bright fringe is at P0
/ on the laser axis with the fringe pattern determined by the 

from this, in the usual manner calculated from wave theory. The photons 

therefore retain some of their pre-slit forward momentum and polar diagram; travelling in 

ng the axis as required. In addition, the phase of slit S

depends upon arbitrary choice of φ, so a photon and its guidewave need to refer to 

the source S throughout its existence, as well as to the slits and screen. 

axis laser beam illuminates the slits with different phases
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path length considerations. The 

  (3.6) 

axis coherent laser beam illuminates a double slit and screen. The 

on the laser axis with the fringe pattern determined by the 

from this, in the usual manner calculated from wave theory. The photons 

slit forward momentum and polar diagram; travelling in 

ng the axis as required. In addition, the phase of slit S2 relative to 

so a photon and its guidewave need to refer to 

 
different phases 
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 In another experiment (Fonseca et al. 1999), the quantum interference by a non-

local double slit strongly indicates that guidewaves lead the way through the system in 

addition to coupling the entangled photons.  An earlier experiment (Pfleegor & Mandel, 

1967) involving interference produced by two separate lasers emitting single photons is 

interpretable by letting a photon's guidewaves assess the complete system dimensions of 

the two lasers plus screen in order to select its ultimate fringe position. 

 For a double- or multi-slit experiment it is necessary that every incident photon 

assesses the geometry by sending guidewaves through all slits ahead of it, as already 

allowed by quantum theory, although the photon really does pass through only one slit.  

Every photon therefore interacts with its own guidewave field, and the electromagnetic 

field of the slit atoms and detector/screen.   

 Finally, when a parallel beam of mono-energetic particles falls upon slits, it is the 

de Broglie guidewavelength which interacts with the slit jaws to cause scattering, and the 

guidewave interference governs particle trajectories in great detail.  Given that the 

generation of a de Broglie wavelength depends upon self interference of the fundamental 

guidewave, it is necessary that the guidewaves pass through one slit and reflect from the 

screen before returning through the other slit, in order to assess the whole system 

continuously, before and after the particle passes through one slit and is guided to its 

place on the screen. In reality, a flow of single electrons through the system will steadily 

build an interference pattern from nothing; see Jönsson (1974), Hitachi (2008).  

 Recent measurements of atomic interference have shown how atomic microwave 

absorption is enough to eliminate any interference pattern, see (Durr, Nonn & Rempe, 

1998). This is in agreement with Bohm's postulate that heat destroys quantum 

entanglement, as demonstrated for Cooper-pairing in superconductivity.  Other 

experiments on neutron interference have clearly revealed how it is necessary for a 

neutron to interfere with its own field; see review by Selleri (1982) p.1099. 

 According to Bohm & Hiley (1993), particles pass through the slits in laminar 

flow then diverge and bunch into unusual fringe profiles while never crossing the plane of 

symmetry.  This contrasts with our more standard interference model, as calculated from 

wave theory, wherein particles or photons are allowed to scatter and cross trajectories 

from every element of each slit to produce the observed fringe profiles. 
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3.2 Michelson Interferometer 

 This two-beam instrument is well understood from wave theory in terms of 

division of amplitude; see Jenkins & White (1957) p.244.  However, there are problems 

of interpretation because individual photons are not thought to divide into two less 

energetic photons at the beamsplitter; and other evidence indicates that each photon must 

interfere with itself to determine which port it will exit.  Then when one arm is much 

longer than the other, a photon which traverses the short arm would have to wait until the 

long arm has been traversed before exiting one way or the other. 

 Problems like these are removed when photons possess guidewaves to travel 

ahead and assess the instrument dimensions.  Guidewaves interact with the beamsplitter 

and mirrors to determine the required division of amplitude, which governs the photon 

selection process. 

Remarkable evidence for an advance guidewave field comes from an experiment 

by Brendel, Mohler & Martienssen (1991).  Photon pairs produced by spontaneous 

parametric down-conversion were passed through a Michelson interferometer and 

detected by a time-resolved coincidence-detector.  High visibility two-photon interference 

fringes were observed, even though the two photons must have travelled together down 

only one arm of the interferometer. 

 It should be possible to gain photon which-way information plus interference by 

sending the idler photon straight into one detector, prior to the signal photon entering the 

interferometer.  Then the signal photon would take longer to traverse the long arm than 

the short arm, and reveal photon path selection. Confirmation of photon self-interference 

has been provided by Aspect & Grainger (1990) using a two beam Mach-Zehnder 

interferometer with a genuine one-photon source plus gated coincidence detection. 

 One way to confirm that a photon must interfere with its own guidewave is to 

replace a plane mirror of the interferometer by a cube corner reflector.  This will reflect a 

bright coherent beam, but individual photons are displaced laterally so they cannot travel 

back along the same path to interfere.  

 

3.3 Wiener's experiment 

 In this experiment, a photographic film is placed at a small angle to a mirror 

surface, see Jenkins & White (1957) p.217.  Monochromatic light is then allowed to pass 

through the film and reflect from the mirror at normal incidence.  In perfect agreement 
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with wave theory, the film is exposed by the light only where the electric field antinodes 

lie in the film. 

 Quantum theory would require that no photon is allowed to expose the 

photographic film directly from the top, but must first pass through the film to assess the 

mirror position before exposing the film in a fringe on its return journey.  This constraint 

on photon interaction with the film does not arise when advance guidewaves can gauge 

the film-mirror spacing well before the photon reaches the film. 

 

4 Entanglement 

Many papers on the experimental confirmation of entanglement or non-local 

action have been published, see for example, Freedman & Clauser (1972), Aspect, 

Dalibard & Roger (1982), Chiao, Kwiat & Steinberg (1993), Rarity et al (1990), Ou et al 

(1990), Zbinden H et al (2001), Salart D et al (2008), and references therein. 

 Given the above description for guidewaves producing the observed interference 

phenomena, it is a small step to postulate that entanglement occurs when guidewaves 

from two photons interlink through each other coherently.  A pair then results such that 

any external influence affecting one particle would be communicated rapidly to the other, 

as if the two particles constitute a single entity.  A convenient time for entanglement to 

occur in photons would be during pair creation in down-converter crystals, as 

demonstrated in the references. Alternatively, stimulated emission of a photon in a laser 

would appear to involve coherent guidewave interaction from the stimulating photon 

rather than a direct photon-photon collision, see Blake & Scarl (1979). In the case of 

electrons in a superconductor, the periodic atomic structure at low temperature may help 

electrons coordinate into Cooper-pairs, via their coherent guidewaves. These examples 

indicate that physical guidewaves exist continuously between the components. 

 Derivation of a particle’s de Broglie wavelength in Paper I assumed that the 

guidewaves propagate at the velocity of light, like electromagnetic field quanta.  However 

they need not be arbitrarily restricted to the velocity of light, since relativity theory 

applies to a particle or photon as a whole, rather than their internal processes. In fact, we 

cannot rule out the possibility that entangled photons and particles could naturally 

communicate at superluminal velocity through their linking guidewaves. Evidence from 

experiments to investigate Bell's inequality may be interpreted here such that when one 

photon of a pair is detected, the entanglement breaks and the guidewave material flies 
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back to the other photon at superluminal velocity to carry back information regarding 

polarisation or spin.  During flyback, the guidewave would be out of equilibrium so its 

velocity could be higher than normal, while it searches for new equilibrium. Dirac's 

equation appears to specify the velocity of light for the wavefunction, but it is only 

necessary for (ħc) to be constant; see Paper 1, Section 3.2. Schrödinger's non-relativistic 

equation is incomplete, and has no indication of the interaction velocity. 

 The experiment by Chiao, Kwiat & Steinberg (1993), following Franson, involved 

a down-converter crystal source of the entangled photons which went through identical 

Michelson interferometers, each with a long and short arm. Detected photons showed a 

degree of coincidence as if they had pre-arranged to both use either the long arm or short 

arm of their interferometers. To explain this in terms of guidewave theory, the two 

photons were continuously interlinked through their superluminal (≈ 4c) guidewaves 

during their travels from the source, and each photon sensed both allowed paths ahead. At 

the detectors, the two guidewaves decoupled and were gathered superluminally by their 

photons, ending all communication between the photons as they were absorbed by 

detector electrons.  

 An experiment on the timing of photon twins through a barrier versus free 

propagation also requires the two photons to sense both paths from start to finish. This 

compares with Young’s double-slit experiment, wherein each photon has to sense the 

paths through both slits in order to interfere with itself at the screen. 

 

5. The reality of trajectories, field quanta and particles 

 In standard quantum theory we are encouraged to disregard the reality of particle 

and quanta trajectories. Yet, by including these it is easier to comprehend how a fixed 

charge experiences force from a moving charge as if  instantaneously; see French (1968) 

p.242.   

 Consider Figure 9, in which a moving charge q1 at A emits a field quantum 

towards a stationary charge q2 at P.   
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Fig. 9   Diagram showing the scattering of a field quantum emitted  

from q1 at A, by a charge q2 at P, such that it rejoins q1 later at C. 

 
 

It exerts a force on q2 then returns to q1 at C, thereby conserving total energy of q1.  If the 

velocity of q1 is v and the quantum has the velocity of light c, then: 

AB / AP  =  BC / PC  =  v/c .     (5.1) 

Geometry reveals that angles α and β are equal, so the quantum exerts a Newtonian force 

on q2 , and the force vector F extrapolates back to the instantaneous position of q1 at B 

even though the quantum was emitted from earlier position A.  The interaction described 

is to be understood as an average over many field quanta. Some mystery remains in the 

way that the position of C is fixed in advance, as if superluminal guidewaves go ahead of 

the field quanta and charge q1 to plan their trajectories. 

 

6. Application to superconductivity 

 When the theory of electro-cordic field is applied to superconductivity, it accounts 

for electronic pairing primarily, followed by induced phonon resonance as a positive 

feedback interaction. Elsewhere there have been reviews of superconductivity in which 

pairing can be predominantly electronic while phonons are no longer central to the 

process, see for example Monthoux, Pines & Lonzarich (2007), Hackl & Hanke (2010), 

Oh et al, (2011), Dal Conte (2012). Various explanations for high temperature 

superconductivity are discussed in the book by Schrieffer & Brooks (2007). Here, a 

pairing mechanism will be introduced, which involves real material linking of electrons 

(the glue), rather than the tenuous assembling of coherent electrons in spite of Coulombic 
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Integration of Eq.(6.2) yields the work expended in forming the pair: 
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At final equilibrium )2/( Bλ=l , zero work has been done overall; therefore the inherent 

kinetic energy of electron orbit velocity (c/274) must come from part of the total pair 

energy (2mc2). In addition, no work has been done by the lattice ion which enables the 

process, so the pair is not bound to it. Figure 12 shows how work must be done against 

the Coulomb repulsion, from ∞=l  until the attractive force takes control at a critical 

distance )]2/(51.3[ Bc λ≈l . In vacuo (ε = 1) this would require 880meV, but due to the 

positive central ion and surrounding dielectric constant in perovskites (i.e. screening) this 

may be reduced to a few meV, (Peter, Weger, Pitaevskii, 1998).  

 

 

 
   Figure 12  Net electron-electron force from Eq.(6.2) and total potential energy from Eq.(6.3).       

Electron separation distance around circumference is in units of )]2//([ Bλl . 

 

Now in order to stop the electron-cordelieres from being disrupted as easily as 

they are created, it is necessary for them to move from the high-ε charge reservoirs to the 

low-ε conduction region of the CuO2 planes, where much greater thermal jostling will be 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10

F
O
R
C
E
 A
N
D
 E
N
E
R
G
Y
 (A

R
B
IT

R
A
R
Y
 U
N
IT

S)

ELECTRON SEPARATION  [l /(λΒ/2)]

total potential energy

net force



  25

required to separate the electrons by their escape distance )( cl . It is this distinct layering 

of materials with different dielectric constants which preserves the electron-cordelieres 

and makes the high temperature superconductors superior. 

Given the above description of electron-pair creation with angular momentum 2ħ 

for high temperature superconductors, it is equally applicable to the production of an 

electron-pair with zero angular momentum for conventional superconductors, wherein the 

electrons vibrate linearly at λB/2 separation. Even angular momentum ħ appears feasible 

for parallel electron spins. 

In all superconductors, the above proposed ionic resonance mechanism depends 

on the structural parameters in an essential way for electron-cordeliere creation, and 

survival during conduction. For example, in orthorhombic YBCO we have [a = 3.823Å, b 

= 3.887Å, c = 11.680Å = 3.373Å (YCuO unit-cell) + 4.1535Å (BaCuO-cell) + 4.1535Å 

(BaCuO-cell)], according to Jorgensen et al (1990); therefore, the yttrium cell will 

resonate for (3.373Å x 2 ≈ λB ). A perfect fit to λB is not necessary because guidewaves 

reflected from these Cu ions will still be almost in phase with the source electron-pair and 

its attached coherent pairs, in order to enhance resonance. Distance [2(Ba-Cu) ≈ λB] 

allows Cu ions to reflect guidewaves back constructively to the Ba layer where electron-

pairs are created. The diagonal (Ba-Cu-Y ≈ λB ) also partakes in the resonance, and assists 

the electron-cordeliere flowing through the lattice; probably zigzagging across the CuO2 

plane. For some iron-based superconductors, the anion height above the iron layer 

appears important; see Okabe et al (2010). This can be explained in terms of the distance 

[2x(La-As) ≈ λB ] in LaFeAsO:F; or the distance [2x(Ba-As) ≈ λB ] in BaFe2As2 . The 

electron-pairs and cordelieres are produced in the LaO layer, but the superconducting 

flow is thought to be in the FeAs plane, supported by guidewave resonance. 

In the following examples, the de Broglie wavelength is matched to lattice 

dimensions within a few percent, which assists electron-pair and cordeliere formation, 

and superconduction.  

Tables 1a,b give the lattice parameters of several high temperature 

superconductors which are matched to resonance. Survival of coherence depends upon 

there being sufficient in-phase reflections from the surrounding ions, to enhance the 

extended guidewave links in spite of any jostling by the ions. Of course, other materials 

may satisfy this λB condition but fail to superconduct for different reasons; e.g. tetragonal 
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YBa2Cu3O7-δ . The Hg cuprates are interesting in that Hg-1223 has the highest Tc with its 

3 CuO2 layers, yet more layers are detrimental to Tc. One explanation for this is that the 

diagonal resonance (Ba- Cu- Ca ≈ λB) is weakened by adding extra CuO2 layers which 

allow leakage of the guidewaves and quasiparticles. Applied pressure up to 30GPa 

increases Tc by 25K according to Chu et al (1993) and Gao et al (1994). In fact for most 

cuprates, pressure causes a better fit to λB by a few percent, but this may not account 

totally for the increases in Tc . It is noteworthy that CuBa2Ca3Cu4O11-δ has the same Tc as 

Hg-1234 (see Liu et al. 1996), which shows that electron-pairing is not an aspect of the 

HgO/CuO charge reservoir layer. 

 

Table 1a. Lattice parameters of some Cu-superconductors matched for resonance.   
 
Superconductors a, b (Å) c (Å) Resonance Reference 

 
YBa2Cu3O7 

Y-123      (92K) 
 

 
a=3.8227 
b=3.8872 

 
11.68 

 
2 x(Ba-Cu) ≈ λB 

Ba-Cu- Y ≈ λB 
2 x ∆c(Y) ≈ λB 

 

 
Jorgensen et al 1990 

HgBa2CuO4  
Hg-1201   (94K) 
 

3.874 9.504 2 x(Ba-Cu) ≈ λB 

Ba-Cu-Ba ≈ λB 

Bertinotti et al 1996 

HgBa2CaCu2O6 

Hg-1212  (128K) 
 

3.855 12.665 2 x(Ba-Cu) ≈ λB 

Ba- Cu- Ca ≈ λB 

Radaelli et al 1993  

HgBa2Ca2Cu3O8 

Hg-1223   (134K) 
 

3.851 15.830 2 x(Ba-Cu) ≈ λB 

Ba- Cu- Ca ≈ λB 
Bertinotti et al 1995 

HgBa2Ca3Cu4O10 

Hg-1234   (116K) 
 

3.850 18.934 2 x(Ba-Cu) ≈ λB 

Ba- Cu- Ca ≈ λB 
Loureiro et al 1996 

HgBa2Ca4Cu5O12 

Hg-1245   (110K) 
 

3.850 22.126 2 x(Ba-Cu) ≈ λB 

Ba- Cu- Ca ≈ λB 
Akimoto et al 1997 

CuBa2Ca3Cu4O11 

Cu-1234   (116K) 
 

3.859 18.000 2 x(Ba-Cu) ≈ λB 

Ba- Cu- Ca ≈ λB 
Liu et al 1996 

Tl2Ba2CuO6 

Tl-2201     (80K) 
 

3.866 23.239 2 x(Ba-Cu) ≈ λB 

Ba-Cu-Ba ≈ λB 

Torardi et al 1988 

Tl2Ba2CaCu2O8 

Tl-2212   (108K) 
 

3.855 29.318 2 x(Ba-Cu) ≈ λB 

Ba- Cu- Ca ≈ λB 
Subramanian et al 1988 
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Tl2Ba2Ca2Cu3O10 

Tl-2223   (125K) 
3.853 35.640 2 x(Ba-Cu) ≈ λB 

Ba- Cu- Ca ≈ λB 
Hasegawa,Matsushita, 
Takei 1996  

Bi2Sr2Ca2Cu3O10 

Bi-2223   (110K) 
a’ = 5.411 
b’ = 5.409 

37.082 2 x (Sr-Ca) ≈ λB 

Sr- Cu- Ca ≈ λB 
Shamray,Mikhailova, 
Mitin (2009) 

 

 

 

Table 1b. Lattice parameters of some Fe-superconductors matched for resonance.    

Terms like Fe(1)-La(2) indicate a distance from one cell to the next. 

   Li(2)(±) is the averaged distance to both Li ions in the next cell. 
 
Superconductors a, b (Å) c (Å) Resonance Reference 

LaFeAsO:F 
1111        (26K) 

4.0195 8.6653 2 x(La- As) ≈ λB 

Fe(1)-La(2) ≈ λB 

 

Nomura et al (2008) 

CeFeAsO:F 
1111        (41K) 
 

3.9959 8.6522 2 x(Ce- As) ≈ λB 

Fe(1)-Ce(2)≈ λB 

Zhao et al (2008) 

SmFeAsO:F 
1111        (43K) 
 

a’=5.5611 
b’=5.5732 

8.4714 2 x(Sm-As) ≈ λB 

Fe(1)-Sm(2)≈λB 

Martinelli et al (2008) 

NdFeAsO 
1111        (51K) 
 

3.9467 8.531 2 x(Nd-As) ≈ λB 

Fe(1)-Nd(2)≈ λB 

Kumai et al (2009) 

BaFe2As2 

122  (29K) 
 

3.9570 12.968 2 x(Ba-As) ≈ λB 

Fe(1)-Ba(2)≈ λB 

Alireza et al  
(2009) 

SrFe2As2 

122  (27K) 
 

3.917 12.36 2 x(Sr-As) ≈ λB 

Fe(1)-Sr(2) ≈ λB 

Zhao et al (2008) 
Schnelle et al (2009) 

LiFeAs 

111   (16K) 
 

3.775 6.355 Fe(1)-Li(2)(±)  
   ≈ λB 

Pitcher et al (2008) 

NaFeAs 

111   (9-30K) 
 

3.9473 6.9911 2 x(Fe-Na) ≈ λB 

2 x(Na-Na)≈ λB 
Parker et al (2008) 
Liu et al (2011) 

FeSe 

11    (8K) 
3.769 5.4861 Fe-Fe  ≈ λB 

(diagonal)   
                             

Hsu et al (2008) 
Margadonna et al  
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Table 2 covers compound superconductors, where we have for example hexagonal 

MgB2 with [ a = 3.0823Å, c = 3.5146Å] according to Jorgensen et al (2001); therefore the 

unit plane of Mg will resonate for guidewave reflections from neighbouring ions, ie: the 

average of 2a and 2c is around λB. Some stretching of a cable sample by 1% would match 

λB better and probably increase Tc by 2K, see Tang et al (2001).  

 

Table 2. Lattice parameters of some compound superconductors matched for resonance. 
  

Superconductor a   (Å) c (Å) Resonance Reference 

ΜgΒ2      (39Κ) 3.0822 3.5146 a + c ≈ λB 

averaged 
 

Jorgensen et al 2001 

Nb3Sn    (18.3K) 5.29 
 

5.29 2 x(Nb-Nb) ≈ λB 

 
Escudero, Morales 
2010 

Nb3Ge    (23.6) 5.17 5.17 2 x(Nb-Nb) ≈ λB 

 
Paduani 2007 

Nb3Ga    (20.2) 5.17 5.17 2 x(Nb-Nb) ≈ λB 

 
Paduani 2007 

Nb3Al    (18.8) 5.19 5.19 2 x(Nb-Nb) ≈ λB 

 
Paduani 2007 

NbN       (16K) 4.39 4.39 2 x(Nb-Nb) ≈ λB  

(diagonal) 
 

Shiino et al 2009 

ZrN       (10K) 4.59 4.59 2 x(Zr-Zr) ≈ λB  

(diagonal) 
 

Saha et al 2010 

TiN       (5.6K) 4.22 4.22 2 x(Ti-Ti) ≈ λB  

(diagonal) 
 

LeClair, Berera,  
Moodera 2000 

Rb3C60    (29.5K) 14.38 14.38 2x(Rb-Rb) ≈3λB  

(diagonal) 
 

Saito et al 2004 

   

 

 

 

Table 3 shows how many elemental Type I superconductors are matched to 

resonance. Elements Na, K, Rb, Mn, Co, Cu, Ag, Au, may not be superconductors 

because they are inefficient at electron-pair creation and lattice resonance feedback. 
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Table 3. Lattice parameters of some Type I superconductors matched for resonance. 

          Notation (a,b,c) etc. indicates distance from origin, ie. (a2+b2+c2)1/2. 

Reference: www.superconductors.org/Type1.htm 
 

Superconductor a, b (Å) c (Å) Resonance Type 

Pb      (7.196K) 4.9508 4.9508 2(a/2,0,c/2) ≈ λB   FCC 

La      (4.88K) 3.772 12.144 (a,b,0) ≈ λB   HEX 

Ta      (4.47K) 3.3013 3.3013 2a ≈ λB   BCC 

Hg     (4.15K) 3.005 3.005 2(-a,0,c) ≈ λB   RHL 

Sn      (3.72K) 5.8318 3.1819 2c ≈ λB   TET 

In       (3.41K) 3.2523 4.9461 2a ≈ λB   TET 

Tl       (2.38K) 3.4566 5.5248 2a ≈ λB   HEX 

Re      (1.697K) 2.761 4.456 (a,b,c) ≈ λB   HEX 

Pa       (1.40K) 3.925 3.238 2c ≈ λB   TET 

Th       (1.38K) 5.0842 5.0842 2(a/2,b/2,0) ≈ λB   FCC 

Al        (1.175K) 4.0495 4.0495 (a,b,c) ≈ λB   FCC 

Ga       (1.083K) 4.52 7.6633 (a,b,0) ≈ λB   ORC 

Mo      (0.915K) 3.147 3.147 2a ≈ λB   BCC 

Zn       (0.85K) 2.669 4.9468 (a,b,c) ≈ λB   HEX 

 
 
 
 

To get higher Tc in the future, the CuO2 planes in cuprates might be 

compounded/mixed/interleaved under high temperature/pressure with material of lower 

dielectric constant, while retaining the lattice parameters supporting guidewave 

resonance; for example, add oxides of Sn, Zn, Ni, and various dopants. The iron-pnictide 

superconductors can be improved in a corresponding manner. Besides sintering bulk 

mixtures, one could sputter and laminate materials onto different cores, or try diffusion 

and implantation. A sample of coaxial cable containing superconducting surface layers 

could have a travelling electric field applied to encourage electron flow over the surface, 

where ε  is lower. Evacuation might also help. 

 

http://www.superconductors.org/Type1.htm
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8. Conclusion 

 The physical nature of proposed electro-cordic guidewaves has been demonstrated 

by applying guidewave theory to relativistic potential wells and simple harmonic motion, 

interference phenomena, entanglement and superconductivity.  The guidewave quanta 

described mathematically by the wavefunction travel ahead of particles and photons, and 

link entangled pairs. Overall, the interpretation of quantum theory can be self-consistent 

and physically reasonable by making it more causal; and this will allow continuity into 

the realms of particle and photon structure. 
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