
International Journal of Mechanical Engineering 

ISSN : 2277-7059               Volume 2 Issue 2 
http://www.ijmejournal.com/                    https://sites.google.com/site/journalijme/ 

 

59 

 

 Free Vibration Analysis of Rectangular Plates 
Using Galerkin-Based Finite Element Method 

 
Neffati M. Werfalli 

1
, Abobaker A. Karoud

2 

 

1
 Department of Mechanical and Industrial Engineering, 

Faculty of Engineering, Tripoli  University, Tripoli, Libya, 

{Neffati M. Werfalli, werfn1954@yahoo.com  
2
Ministry of Education, Tripoli, Libya, 

{Abobaker A. Karoud, a_karoud@yahoo.com  

 

   

Abstract. In the present work a study of free vibration of thin isotropic 

rectangular plates with various edge conditions is conducted. This study 

involves the obtaining of natural frequencies by solving the mathematical 
model that governs the vibration behavior of the plate using a Galerkin-based 
finite element method. Cubic quadrilateral serendipity subparametric 

elements with twelve degrees of freedom are used in this analysis. Even 

though the order of polynomial used is the lowest possible, the effectiveness 
of the method for calculating the natura l frequencies accurately is 

demonstrated by comparing the solution obtained against the existing 
analytical results. The effect of the aspect ratio, the number of elements, and 

the number of sampling points on the accuracy of the solution is also 
presented. 
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1. Introduction 

 
Plates, as structural elements, are extensively used in many fields of engineering 
including aerospace, civil structures, hydraulic structures, containers, ships, 

instruments, and machine parts. When in service, they are subjected to dynamic 
loadings the effect of which is very critical. Much research has been conducted into 
plate behavior, using a wide range of methods. An excellent monograph of the early 
literature relating to vibration analysis of plates was published by Leissa [1]. Most 
researchers, e.g. [1], [2], [3], have used classical thin plate theory in their formulations 
to study the plate response; where the flexural vibration of the thin plate is 

characterized by a fourth-order partial differential equation.  A direct solution of such 
equation might be difficult and most of the reported solutions are based on numerical 
methods such as finite difference method [4], and finite element method

 
[5], [6].  

Despite the fact that the Galerkin finite element approach is very powerful, easy to 
understand, and effectively applicable to the spectrum of engineering problems, no 
much attention was given to it in the literature. This paper is devoted for the 

presentation of the approach as well as the demonstration of its adequacy for the 
solution of bending of isotropic plates.  In this chapter, a four-node twelve degrees of 
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freedom, (4N-12DOF), subparametric quadrilateral element is developed and used for 
the frequency response analysis of a thin rectangular isotropic plate. 
 

2. Thin Plate Model   

 
The governing equation that describes the flexural vibration of thin plates subjected to 
transverse loading, based on classical plate theory, is expressed as[2]:    

                                                                                                                        
(1)      

                                                                                                                         

Where, ),t,y,x(w  is the out of plane motion in positive z -direction, zP  is the 

exciting load per unit area, E, h, ν and )y,x( , are the modulus of elasticity, plate 

thickness, the Poisson's ratio, and density respectively. In order to obtain the natural 

frequencies of the plate, the exciting load zP  is set equal to zero. The flexural rigidity 

is expressed as  
 

                                                                                                                              (2) 

 

3. Finite Element Formulation  

 
The governing equation of a vibrating thin plate, Eq.(1), is a fourth-order partial 

differential equation which requires the continuity of both deflection and slope  with 

respect to both x- and y-directions,  namely  ,w  and   . In other words, at least 

three degrees of freedom are required at each node of the selected element to get a 

unique solution. Thus, the plate model requires 
1C -continuous parameter function.  

  
3.1 Parametric Shape Functions  

  

      A linear quadrilateral element was selected to represent the geometrical, or shape, 
functions.  The coordinates (x and y) of the selected linear element can be 

written in terms of  parent element coordinates ( ,  and  )as, 

                                                                   
                                                             (3) 

 
 
The shape function can be evaluated anywhere inside the parent element using 
the following expression 

 
                                                                                (4) 
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3.2 Parametric Trial Functions 

 

A cubic or third order quadrilateral serendipity subparametric element with 

twelve degrees of freedom was chosen as a 
1C -continuous parameter function.  

The parametric trial functions used in this analysis may be the same as those 
used in the commercial codes; however this subsection is devoted for the 
presentation of such functions.  
For a linear quadrilateral element, the generalized displacement can be 
expressed as 

                                                                                                    (5) 

 
             where;   

                                                               (6) 

     

 
The parameter function, ,w  can be expressed in terms of nodal displacement, 

slopes, and trial  functions as follows 
                                                                                                   (7) 

      where; 

                                                                                            (8) 

 

The parametric trial functions )y,x(j  have values of unity at their respective 

nodes and zeros at the rest of nodes. However, when expressed in local 

coordinates,  and , the nodal values of these trial functions are expressed as: 

 

                                        
  (9) 

 

 
It should be noted that for the cases where  

                                                      
(10) 
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The parametric trial function are evaluated inside the parent element using the 
following expression 

 

                      
       (13) 

 

 

 

4. Exact and Classical Solutions  

 
For simply supported (SSSS) thin isotropic plates; Leissa[1], presented the exact 
natural frequencies mathematically from the following closed form

  

 

           
                     (14) 

 

where mn  is the natural frequency (rad/sec),  a  is the plate dimension measured in 

x-direction, b   is the dimension of the plate measured in the y-direction, h  is the 

plate thickness,  is the material density, D  is the flexural rigidity, and m  and n  

are the  number of half waves in x and y directions respectively. The normalized 

natural frequency can be expressed as 

 

            
                (15) 

 
 
For the cases of clamped plates (CCCC), Leissa[3]

 
presented the nondimensional 

frequency parameter,  , based on  the classical Voigt[7] solution considering 

sinusoidal time response considering 0.3 as the value of Poisson’s ratio.  The 
respective classical natural frequencies are defined by 

 
 

                                     (16) 

 

or 
                                                                                                                                  (17) 

 

5. Finite Element Equations  
 
The residual of Eq.(1) can be expressed as 
  
 

                      (18) 
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The Galerkin weighted residual equation is given by 

                                               
                                         (19) 

 

The approximate trial solutions, ,w
a

 is expressed as 

 

                                                                                          (20) 

 
In a matrix form, the weak formulation over the element can be expressed as 
 

                                                                                                    (21) 

 

The local mass matrix,  M  , the local stiffness matrix,  K  , and the local load matrix, 

 F , can be respectively presented as 

 
                                                                                                               (22) 

 

 
              (23) 

 

 

                         (24) 

 
 

5.1 Numerical Integration   
 

In order to obtain exact numerical integration over the element, it is recommended
 

[8, 9] that at least nine Gauss sampling points be used for the polynomial depicted 

in Eq. 13. Thus, at least three sampling points are needed in  direction, and 

three points in  direction along with the respective weights, wk and wl.  

 
The stiffness and load matrix coefficients, for the element, are written as[9]. 

 
                        (25)            
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  In a similar fashion, the mass matrix is 
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6. Results and Discussion  

 
Rectangular plates were modeled considering aspect ratios of 1. and 1.5 for simply 
supported plates  and with an aspect ratio of 1. for the clamped plate.  The plate 
thickness was considered to be constant and the material had a Poisson’s ratio of 0.3  
The plate was discretized with a progressively refined mesh, i.e. 2×2, 3×3, 4×4, 5×5, 
6×6, 7×7, 8×8 (4N-12DOF) quadrilateral elements. 

The normalized natural frequencies,, were considered instead of their dimensional 

values. 

 
6.1 Numerical Results  

 For the simply supported plate, comparison of the normalized natural frequencies 
with the exact values is presented in Tables 1-3.  The convergence of the six 

lowest modes of vibrations for the simply supported rectangular plate with aspect 
ration a/b = 1 is presented in Table 1. It is clear that the results converge to the 
exact solution using 64 elements which mounts to 243 degrees of freedom. 
Increasing the number of sampling points enhances the rate of convergence as can 
be inferred from Table 2.  For a rectangular plate with aspect ratio of 1.5, the 
results are depicted in Table 3 and they indicate convergence towards the exact 

solution as well. 
 

 

 

Table 1. Normalized natural frequency   compared to exact results, Eq.(14), for 
(SSSS) Rectangular  plate  with aspect ration a/b = 1, and  nsp = 3.  

Elements 
Exact n m # 

8×8 7×7 6×6 5×5 4×4 3×3 2×2  

1.98 1.98 1.97 1.96 1.94 1.90 1.81 2 1 1 1 

4.94 4.92 4.90 4.86 4.80 4.69 4.32 5 1 2 2 

4.94 4.92 4.90 4.86 4.80 4.69 4.32 5 2 1 3 

7.76 7.70 7.61 7.47 7.27 6.88 4.37 8 2 2 4 

9.88 9.85 9.81 9.76 9.71 9.59 6.87 10 1 3 5 

9.88 9.85 9.81 9.77 9.71 10.11 6.87 10 3 1 6 

Table 2.  Normalized natural frequency   compared to exact results, Eq.(14), for 
(SSSS) Rectangular  plate  with aspect ration a/b = 1, and nsp = 5  

Elements 
Exact n m # 

8×8 7×7  6×6  5×5  4×4  3×3  2×2  

1.99 1.99 1.98 1.98 1.97 1.95 1.92 2 1 1 1 

5.00 4.93 5.00 5.01 5.03 5.08 4.84 5 1 2 2 

5.00 4.93 5.00 5.01 5.03 5.08 4.84 5 2 1 3 

7.91 7.89 7.86 7.81 7.75 7.66 6.28 8 2 2 4 

10.14 10.19 10.27 10.42 10.68 10.87 6.28 10 1 3 5 

10.14 10.20 10.28 10.42 10.70 10.93 7.35 10 3 1 6 
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For the clamped plate, the normalized natural frequencies are compared with classical  
values quoted in reference [3] and the results are depicted in Table 4, and 5. The 
convergence towards the classical solution is similar to that in the case of simply 
supported plate. However, no enhancement in the solution was achieved by increasing 

the number of sampling points. 

 

 

Table 3.  Normalized natural frequency   compared to exact results, Eq.(14), for 
(SSSS) rectangular plate  with a/b = 1.5 and   nsp = 3 

Elements 
Exact n m # 

8×8  7×7  6×6  5×5  4×4  3×3  2×2  

3.22 3.21 3.20 3.18 3.14 3.08 2.88 3.25 1 1 1 

6.15 6.13 6.09 6.03 5.92 5.72 4.44 6.25 1 2 2 

9.88 9.85 9.80 9.73 9.60 9.34 5.80 10 2 1 3 

11.07 11.02 10.96 10.87 10.72 9.99 7.98 11.25 1 3 4 

12.58 12.46 12.30 12.04 11.61 10.53 9.04 13 2 2 5 

17.17 16.96 16.23 16.23 15.38 11.40 9.99 18 2 3 6 

Table 4.  Normalized natural frequency   compared to classical results, Eq.(17), 
for (CCCC) rectangular plate  with a/b = 1. and   nsp = 3 

Elements 
classical # 

8×8  7×7  6×6  5×5  4×4  3×3  2×2  

3.59 3.58 3.56 3.52 3.48 3.42 3.57 3.56 1 

7.30 7.27 7.22 7.16 7.10 7.11 9.04 7.39 2 

7.30 7.27 7.22 7.16 7.10 7.11 9.04 7.39 3 

10.51 10.40 10.26 10.09 9.94 10.30 * 10.89 4 

13.11 13.07 13.03 13.01 12.97 14.86 * 13.34 5 

13.20 13.17 13.14 13.15 13.17 16.20 * 13.34 6 

Table 5. Normalized natural frequency   compared to  classical results, Eq.(17), 
for (CCCC) rectangular plate  with a/b = 1. and   nsp = 5  

Elements 
classical # 

8×8 7×7 6×6 5×5 4×4 3×3 2×2 

3.68 3.58 3.70 3.72 3.76 3.89 4.69 3.56 1 

7.63 7.27 7.70 7.84 8.13 8.85 11.71 7.39 2 

7.63 7.27 7.70 7.84 8.13 8.85 11.71 7.39 3 

11.09 10.40 11.15 11.27 11.60 13.23 * 10.89 4 

14.12 13.07 14.44 15.03 16.08 18.63 * 13.34 5 

14.19 13.17 14.53 15.14 16.08 20.58 * 13.34 6 
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To emphasize the accuracy of the results obtained by the Galerkin-based finite 
element, the error percentages were compared with those obtained using (4N-16DOF) 
and (16N-64DOF) elements that were presented in reference [10] .  The results are 
listed in Table 6, and 7. 
In the present work, the maximum degrees of freedom used were 243 to get 0.8% 
error for the first mode and 1.24% error for the sixth mode. For the (4N-16DOF) 

element, 1024 degrees of freedom were necessary to get 0.9% error for the first mode 
and 0.4% error for the sixth mode. However, using (16N-64DOF) elements, 1024 
degrees of freedom needed to get 3.6% error for the first mode and 1.4% error for the 
sixth mode. 
It should be emphasized at this point that in the present work (4N-12DOF), Gauss-
Legender formulation was used to get exact integration, while for the (4N-16DOF) 

and (16N-64DOF) works, the elements’ matrices were obtained in closed forms to 
avoid errors introduced by numerical integration.  

 

 

 

 

 

7. Conclusion 

 
The suitability of the Galerkin-based finite element for studying the convergence of 
natural frequencies of isotropic thin rectangular plates with various edge conditions is 
confirmed. This is accomplished even though a partial third order polynomial was 
used which represents the lowest possible order using quadrilateral serendipity 

elements.  
Amongst the advantages of the method is that only a relatively small mesh size is 
needed to get accurate results. Progressive mesh refinement resulted in pronounced 
decrease in the error involved in the analysis. The results recorded in the case of 
refined (8x8) meshes, is within acceptable and practical range.  

Table 6. Comparison of % Error for first mode of (SSSS) for aspect ratio of a/b=1. 

225 144 81 64 49 36 25 16 9 4 1 
  No. of 

Elements 

    1.05 1.41 2 3.01 4.97 9.59  
(4N-

12DOF) 

0.9 1.1 1.4   2   3.7   
(4N-

16DOF) 

      3.6 4.3 5.5 8.0 4.0 
(16N-

64DOF) 

Table 7.   Comparison of % Error for sixth mode of (SSSS) for aspect ratio of a/b=1. 

225 144 81 64 49 36 25 16 9 4 1 
  No. of 

Elements 

    1.52 1.89 2.34 2.87 -1.12 31.3  
(4N-

12DOF) 

0.4 0.5 0.7   1.8   15.8   
(4N-

16DOF) 

      1.4 1.8 1.7 6.8 10.2 
(16N-

64DOF) 
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The increase in the number of sampling points was advantageous in the case of 
(SSSS) while for the case of (CCCC) such an increase worsen such accuracy.   
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