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Abstract - In the Web database 

scenario, the records to match are 

highly query-dependent, since they 

can only be obtained through online 

queries. Moreover, they are only a 

partial and biased portion of all the 

data in the source Web databases. 

Consequently, hand-coding or offline-

learning approaches are not 

appropriate for two reasons. First, the 

full data set is not available 

beforehand, and therefore, good 

representative data for training are 

hard to obtain. Second, and most 

importantly, even if good 

representative data are found and 

labeled for learning, the rules learned 

on the representatives of a full data set 

may not work well on a partial and 

biased part of that data set.  
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Introduction 

Today, more and more databases that 

dynamically generate Web pages in 

response to user queries are available on 

the Web. These Web databases compose 

the deep or hidden Web, which is 

estimated to contain a much larger 

amount of high quality, usually 

structured information and to have a 

faster growth rate than the static Web. 

Most Web databases are only accessible 

via a query interface through which 

users can submit queries. Once a query 

is received, the Web server will retrieve 

the corresponding results from the back-

end database and return them to the user.  

 

To build a system that helps users 

integrate and, more importantly, 

compare the query results returned from 

multiple Web databases, a crucial task is 

to match the different sources’ records 

that refer to the same real-world entity. 

The problem of identifying duplicates, 



that is, two (or more) records describing 

the same entity, has attracted much 

attention from many research fields, 

including Databases, Data Mining, 

Artificial Intelligence, and Natural 

Language Processing. Most previous 

work is based on predefined matching 

rules hand-coded by domain experts or 

matching rules learned offline by some 

learning method from a set of training 

examples. Such approaches work well in 

a traditional database environment, 

where all instances of the target 

databases can be readily accessed, as 

long as a set of high-quality 

representative records can be examined 

by experts or selected for the user to 

label.  

 

Previous Work 

Data integration is the problem of 

combining information from multiple 

heterogeneous databases. One step of 

data integration is relating the primitive 

objects that appear in the different 

databases specifically, determining 

which sets of identifiers refer to the 

same real-world entities. A number of 

recent research papers have addressed 

this problem by exploiting similarities in 

the textual names used for objects in 

different databases. (For example one 

might suspect that two objects from 

different databases named “USAMA 

FAYYAD” and “Usama M. Fayyad” ” 

respectively might refer to the same 

person.) Integration techniques based on 

textual similarity are especially useful 

for databases found on the Web or 

obtained by extracting information from 

text, where descriptive names generally 

exist but global object identifiers are 

rare. Previous publications in using 

textual similarity for data integration 

have considered a number of related 

tasks. Although the terminology is not 

completely standardized, in this paper 

we define entity-name matching as the 

task of taking two lists of entity names 

from two different sources and 

determining which pairs of names are 

co-referent (i.e., refer to the same real-

world entity). We define entity-name 

clustering as the task of taking a single 

list of entity names and assigning entity 

names to clusters such that all names in a 

cluster are co-referent. Matching is 

important in attempting to join 

information across of pair of relations 

from different databases, and clustering 

is important in removing duplicates from 

a relation that has been drawn from the 



union of many different information 

sources. Previous work in this area 

includes work in distance functions for 

matching and scalable matching and 

clustering algorithms. Work in record 

linkage is similar but does not rely as 

heavily on textual similarities. [1] 

 

Important business decisions; therefore, 

accuracy of such analysis is crucial. 

However, data received at the data 

warehouse from external sources usually 

contains errors: spelling mistakes, 

inconsistent conventions, etc. Hence, 

significant amount of time and money 

are spent on data cleaning, the task of 

detecting and correcting errors in data. 

The problem of detecting and 

eliminating duplicated data is one of the 

major problems in the broad area of data 

cleaning and data quality. [2] 

 

 

Many times, the same logical real world 

entity may have multiple representations 

in the data warehouse. For example, 

when Lisa purchases products from 

SuperMart twice, she might be entered 

as two different customers due to data 

entry errors. Such duplicated 

information can significantly increase 

direct mailing costs because several 

customers like Lisa may be sent multiple 

catalogs. Moreover, such duplicates can 

cause incorrect results in analysis 

queries (say, the number of SuperMart 

customers in Seattle), and erroneous data 

mining models to be built. We refer to 

this problem of detecting and 

eliminating multiple distinct records 

representing the same real world entity 

as the fuzzy duplicate elimination 

problem, which is sometimes also called 

merge/purge, dedup, record linkage 

problems. This problem is different from 

the standard duplicate elimination 

problem, say for answering “select 

distinct” queries, in relational database 

systems which considers two tuples to be 

duplicates if they match exactly on all 

attributes. However, data cleaning deals 

with fuzzy duplicate elimination, which 

is our focus in this paper. Henceforth, 

we use duplicate elimination to mean 

fuzzy duplicate elimination. [2] 

 

Proposed System 

 

Weighted Component Similarity 

Summing Classifier 

In our algorithm, classifier plays a vital 

role. At the beginning, it is used to 



identify some duplicate vectors when 

there are no positive examples available. 

Then, after iteration begins, it is used 

again to cooperate with other classifier 

to identify new duplicate vectors. 

Because no duplicate vectors are 

available initially, classifiers that need 

class information to train, such as 

decision tree, cannot be used. An 

intuitive method to identify duplicate 

vectors is to assume that two records are 

duplicates if most of their fields that are 

under consideration are similar. On the 

other hand, if all corresponding fields of 

the two records are dissimilar, it is 

unlikely that the two records are 

duplicates. To evaluate the similarity 

between two records, we combine the 

values of each component in the 

similarity vector for the two records. 

Different fields may have different 

importance when we decide whether two 

records are duplicates. The importance is 

usually data-dependent, which, in turn, 

depends on the query in the Web 

database scenario.   

 

Component Weight Assignment 

In this classifier, we assign a weight to a 

component to indicate the importance of 

its corresponding field. The similarity 

between two duplicate records should be 

close to 1. For a duplicate vector that is 

formed by a pair of duplicate records r1 

and r2, we need to assign large weights 

to the components with large similarity 

values and small weights to the 

components with small similarity values. 

The similarity for two nonduplicate 

records should be close to 0. Hence, for 

a nonduplicate vector that is formed by a 

pair of nonduplicate records r1 and r2, 

we need to assign small weights to the 

components with large similarity values 

and large weights to the components 

with small similarity values.  The 

component will be assigned a small 

weight if it usually has a small similarity 

value in the duplicate vectors. 

 

Duplicate Identification 

After we assign a weight for each 

component, the duplicate vector 

detection is rather intuitive. Two records 

r1 and r2 are duplicates if they are 

similar, i.e., if their similarity value is 

equal to or greater than a similarity 

threshold. In general, the similarity 

threshold should be close to 1 to ensure 

that the identified duplicates are correct. 

Increasing the value of similarity will 

reduce the number of duplicate vectors 



identified while, at the same time, the 

identified duplicates will be more 

precise.  

 

Similarity Calculation 

The similarity calculation quantifies the 

similarity between a pair of record 

fields. As the query results to match are 

extracted from HTML pages, namely, 

text files, we only consider string 

similarity. Given a pair of strings a 

similarity function calculates the 

similarity score between Sa and Sb, 

which must be between 0 and 1. Since 

the similarity function is orthogonal to 

the iterative duplicate detection, any 

kind of similarity calculation method can 

be employed. Domain knowledge or user 

preference can also be incorporated into 

the similarity function. In particular, the 

similarity function can be learned if 

training data is available. 

  

Results 

The concept of this paper is 

implemented and different results are 

shown below 

 

 

 

 

 

 

 

 

 



Performance Analysis 

The proposed paper is implemented in 

Java technology on a Pentium-III PC 

with 20 GB hard-disk and 256 MB RAM 

with apache web server. The propose 

paper’s concepts shows efficient results 

and has been efficiently tested on 

different Messages. 

 

Conclusion 

Duplicate detection is an important step 

in data integration and most state-of-the-

art methods are based on offline learning 

techniques, which require training data. 

In the Web database scenario, where 

records to match are greatly query-

dependent, a pretrained approach is not 

applicable as the set of records in each 

query’s results is a biased subset of the 

full data set. To overcome this problem, 

we presented an unsupervised, online 

approach, UDD, for detecting duplicates 

over the query results of multiple Web 

databases. Two classifiers, WCSS and 

SVM, are used cooperatively in the 

convergence step of record matching to 

identify the duplicate pairs from all 

potential duplicate pairs iteratively.  
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