
On Demand Quality of web services using Ranking by multi criteria

N. Rajanikanth
 M.Tech
 Dept of CSE

Vivekananda Institute Technology
& Science, Karimnagar.

Rajanikanth86@gmail.com

Prof. P.Pradeep Kumar
 Hod, CSE Dept
Vivekananda Institute Technology

& Science, Karimnagar.
pkpuram@yahoo.com

B. Meena
 M.Tech(CSE),Asst. Porfessor

 Dept of CSE
Vivekananda Institute Technology

& Science, Karimnagar.
vinaymeena@gmail.com

Abstract - In the Web database

scenario, the records to match are

highly query-dependent, since they

can only be obtained through online

queries. Moreover, they are only a

partial and biased portion of all the

data in the source Web databases.

Consequently, hand-coding or offline-

learning approaches are not

appropriate for two reasons. First, the

full data set is not available

beforehand, and therefore, good

representative data for training are

hard to obtain. Second, and most

importantly, even if good

representative data are found and

labeled for learning, the rules learned

on the representatives of a full data set

may not work well on a partial and

biased part of that data set.

Keywords: - SOA, Web Services,

Networks

Introduction

Today, more and more databases that

dynamically generate Web pages in

response to user queries are available on

the Web. These Web databases compose

the deep or hidden Web, which is

estimated to contain a much larger

amount of high quality, usually

structured information and to have a

faster growth rate than the static Web.

Most Web databases are only accessible

via a query interface through which

users can submit queries. Once a query

is received, the Web server will retrieve

the corresponding results from the back-

end database and return them to the user.

To build a system that helps users

integrate and, more importantly,

compare the query results returned from

multiple Web databases, a crucial task is

to match the different sources’ records

that refer to the same real-world entity.

The problem of identifying duplicates,

that is, two (or more) records describing

the same entity, has attracted much

attention from many research fields,

including Databases, Data Mining,

Artificial Intelligence, and Natural

Language Processing. Most previous

work is based on predefined matching

rules hand-coded by domain experts or

matching rules learned offline by some

learning method from a set of training

examples. Such approaches work well in

a traditional database environment,

where all instances of the target

databases can be readily accessed, as

long as a set of high-quality

representative records can be examined

by experts or selected for the user to

label.

Previous Work

Data integration is the problem of

combining information from multiple

heterogeneous databases. One step of

data integration is relating the primitive

objects that appear in the different

databases specifically, determining

which sets of identifiers refer to the

same real-world entities. A number of

recent research papers have addressed

this problem by exploiting similarities in

the textual names used for objects in

different databases. (For example one

might suspect that two objects from

different databases named “USAMA

FAYYAD” and “Usama M. Fayyad” ”

respectively might refer to the same

person.) Integration techniques based on

textual similarity are especially useful

for databases found on the Web or

obtained by extracting information from

text, where descriptive names generally

exist but global object identifiers are

rare. Previous publications in using

textual similarity for data integration

have considered a number of related

tasks. Although the terminology is not

completely standardized, in this paper

we define entity-name matching as the

task of taking two lists of entity names

from two different sources and

determining which pairs of names are

co-referent (i.e., refer to the same real-

world entity). We define entity-name

clustering as the task of taking a single

list of entity names and assigning entity

names to clusters such that all names in a

cluster are co-referent. Matching is

important in attempting to join

information across of pair of relations

from different databases, and clustering

is important in removing duplicates from

a relation that has been drawn from the

union of many different information

sources. Previous work in this area

includes work in distance functions for

matching and scalable matching and

clustering algorithms. Work in record

linkage is similar but does not rely as

heavily on textual similarities. [1]

Important business decisions; therefore,

accuracy of such analysis is crucial.

However, data received at the data

warehouse from external sources usually

contains errors: spelling mistakes,

inconsistent conventions, etc. Hence,

significant amount of time and money

are spent on data cleaning, the task of

detecting and correcting errors in data.

The problem of detecting and

eliminating duplicated data is one of the

major problems in the broad area of data

cleaning and data quality. [2]

Many times, the same logical real world

entity may have multiple representations

in the data warehouse. For example,

when Lisa purchases products from

SuperMart twice, she might be entered

as two different customers due to data

entry errors. Such duplicated

information can significantly increase

direct mailing costs because several

customers like Lisa may be sent multiple

catalogs. Moreover, such duplicates can

cause incorrect results in analysis

queries (say, the number of SuperMart

customers in Seattle), and erroneous data

mining models to be built. We refer to

this problem of detecting and

eliminating multiple distinct records

representing the same real world entity

as the fuzzy duplicate elimination

problem, which is sometimes also called

merge/purge, dedup, record linkage

problems. This problem is different from

the standard duplicate elimination

problem, say for answering “select

distinct” queries, in relational database

systems which considers two tuples to be

duplicates if they match exactly on all

attributes. However, data cleaning deals

with fuzzy duplicate elimination, which

is our focus in this paper. Henceforth,

we use duplicate elimination to mean

fuzzy duplicate elimination. [2]

Proposed System

Weighted Component Similarity

Summing Classifier

In our algorithm, classifier plays a vital

role. At the beginning, it is used to

identify some duplicate vectors when

there are no positive examples available.

Then, after iteration begins, it is used

again to cooperate with other classifier

to identify new duplicate vectors.

Because no duplicate vectors are

available initially, classifiers that need

class information to train, such as

decision tree, cannot be used. An

intuitive method to identify duplicate

vectors is to assume that two records are

duplicates if most of their fields that are

under consideration are similar. On the

other hand, if all corresponding fields of

the two records are dissimilar, it is

unlikely that the two records are

duplicates. To evaluate the similarity

between two records, we combine the

values of each component in the

similarity vector for the two records.

Different fields may have different

importance when we decide whether two

records are duplicates. The importance is

usually data-dependent, which, in turn,

depends on the query in the Web

database scenario.

Component Weight Assignment

In this classifier, we assign a weight to a

component to indicate the importance of

its corresponding field. The similarity

between two duplicate records should be

close to 1. For a duplicate vector that is

formed by a pair of duplicate records r1

and r2, we need to assign large weights

to the components with large similarity

values and small weights to the

components with small similarity values.

The similarity for two nonduplicate

records should be close to 0. Hence, for

a nonduplicate vector that is formed by a

pair of nonduplicate records r1 and r2,

we need to assign small weights to the

components with large similarity values

and large weights to the components

with small similarity values. The

component will be assigned a small

weight if it usually has a small similarity

value in the duplicate vectors.

Duplicate Identification

After we assign a weight for each

component, the duplicate vector

detection is rather intuitive. Two records

r1 and r2 are duplicates if they are

similar, i.e., if their similarity value is

equal to or greater than a similarity

threshold. In general, the similarity

threshold should be close to 1 to ensure

that the identified duplicates are correct.

Increasing the value of similarity will

reduce the number of duplicate vectors

identified while, at the same time, the

identified duplicates will be more

precise.

Similarity Calculation

The similarity calculation quantifies the

similarity between a pair of record

fields. As the query results to match are

extracted from HTML pages, namely,

text files, we only consider string

similarity. Given a pair of strings a

similarity function calculates the

similarity score between Sa and Sb,

which must be between 0 and 1. Since

the similarity function is orthogonal to

the iterative duplicate detection, any

kind of similarity calculation method can

be employed. Domain knowledge or user

preference can also be incorporated into

the similarity function. In particular, the

similarity function can be learned if

training data is available.

Results

The concept of this paper is

implemented and different results are

shown below

Performance Analysis

The proposed paper is implemented in

Java technology on a Pentium-III PC

with 20 GB hard-disk and 256 MB RAM

with apache web server. The propose

paper’s concepts shows efficient results

and has been efficiently tested on

different Messages.

Conclusion

Duplicate detection is an important step

in data integration and most state-of-the-

art methods are based on offline learning

techniques, which require training data.

In the Web database scenario, where

records to match are greatly query-

dependent, a pretrained approach is not

applicable as the set of records in each

query’s results is a biased subset of the

full data set. To overcome this problem,

we presented an unsupervised, online

approach, UDD, for detecting duplicates

over the query results of multiple Web

databases. Two classifiers, WCSS and

SVM, are used cooperatively in the

convergence step of record matching to

identify the duplicate pairs from all

potential duplicate pairs iteratively.

References

[1] W.W. Cohen and J. Richman,

“Learning to Match and Cluster Large

High-Dimensional Datasets for Data

Integration,” Proc. ACM SIGKDD, pp.

475-480, 2002.

[2] R. Ananthakrishna, S. Chaudhuri,

and V. Ganti, “Eliminating Fuzzy

Duplicates in Data Warehouses,” Proc.

28th Int’l Conf. Very Large Data Bases,

pp. 586-597, 2002.

[3] S. Chaudhuri, K. Ganjam, V. Ganti,

and R. Motwani, “Robust and Efficient

Fuzzy Match for Online Data Cleaning,”

Proc. ACM SIGMOD, pp. 313-324,

2003.

[4] L. Gravano, P.G. Ipeirotis, H.V.

Jagadish, N. Koudas, S. Muthukrishnan,

and D. Srivastava, “Approximate String

Joins in a Database (Almost) for Free,”

Proc. 27th Int’l Conf. Very Large Data

Bases, pp. 491-500, 2001.

[5] X. Dong, A. Halevy, and J.

Madhavan, “Reference Reconciliation in

Complex Information Spaces,” Proc.

ACM SIGMOD, pp. 85-96, 2005.

[6] W.W. Cohen, H. Kautz, and D.

McAllester, “Hardening Soft

Information Sources,” Proc. ACM

SIGKDD, pp. 255-259, 2000.

[7] P. Christen, T. Churches, and M.

Hegland, “Febrl—A Parallel Open

Source Data Linkage System,”

Advances in Knowledge Discovery and

Data Mining, pp. 638-647, Springer,

2004.

[8] P. Christen and K. Goiser, “Quality

and Complexity Measures for Data

Linkage and Deduplication,” Quality

Measures in Data Mining, F. Guillet and

H. Hamilton, eds., vol. 43, pp. 127-151,

Springer, 2007.

