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1. Introduction 
 

 In mobile radio channels the propagation of transmitted signal is characterized by 
various effects including fading and shadowing. In different physical scenario 
different distributions exist that describe the statistics of the mobile radio channels. 
For example Rayleigh, Rice, Nakagami-m, Weibull and Hoyt are the well known 
distributions for short term signal fluctuations. However, in some specific occasion, 
none of the above distributions is able to characterize the narrowband fading 

measurement. Even the Nakagami-m distribution does not seem to yield a good fitting 
to experimental data [1]. 
 
            A new fading model has been introduced in [2] the two-wave with diffuse 
power (TWDP) which provide more flexibility to the fading model. TWDP fading 
model consist of two specular multipath components in the presence of diffusely 

propagating waves. This fading model can better represent the real-world frequency-
selective fading data obtained from wireless sensor networks [3]. TWDP fading can 
also represent Rayleigh, Rician, one-wave fading model as special cases [2]. The 
TWDP fading is observed in a variety of propagation scenarios and may occur for 
typical narrow-band receiver operation, directional antennas and wide-band signals 
increase the likelihood of TWDP small-scale fading [2]. Although in practice TWDP 
fading model can better represent real-world fading scenario and useful to understand 

performance of wireless system, but so far only a few works have been published [5]–
[8] in this fading model. In [5], bit error rate performance expressions for an uncoded 
binary phase-shift keying (BPSK) system is derived using alternate expression of 
Gaussian Q function [4] and for maximal ratio combining (MRC) system, 
performance of BPSK is presented in [7]. Average bit error rate (ABER) performance 
of Gray coded QAM signaling in TWDP environment is presented in [6] using the 

cumulative distribution function of TWDP fading and that for MRC system is derived 
in [8]. 
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           Capacity analysis of over fading channels can provide useful information for 
design and implementation of wireless communication systems and to improve 
spectrum efficiency and service quality. Works have been published on the channel 

capacity over various fading channels [9]- [17] and provide useful analytical support 
to the system design engineers. But, for TWDP fading capacity analysis is not 
available in the literature. This generates a motive to analysis the capacity for different 
adaptive transmission techniques over TWDP fading channels.       

 
         The rest of this paper is organized as follows. In Section 2, the channel has been 

elaborated. Different capacity formulas available in literature are discussed in Section 
3. In Section 4, capacity of adaptive systems have been obtained over TWDP fading 
channels and in Section 5, we present numerical results. Finally, the paper is 
concluded in Section 6.  
 
  

2. Channels 

 
 The channel has been assumed to be slow, frequency nonselective, with TWDP 
fading statistics. The complex low pass equivalent of the received signal over one 
symbol duration Ts can be expressed as, 
 

                                                    ( ) ( ) ( )jr t re s t n t                                             (1) 

                                                                                                                                    
          Where, s(t) is the transmitted signal with energy Eb and n(t) is the complex 
Gaussian noise having zero mean and two sided power spectral density 2N0. Random 

variable (RV)  represents the phase and r is the TWDP distributed fading envelope 

having approximate PDF given by [2] 
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and =Δcos π(i 1) / 2 1L    , I0(・) is the modified Bessel function of the first 

kind and zeroth order, K is the ratio of total specular power to diffused power, 

 indicates the relative strength of the two specular component, L is the order of the 

approximate TWDP PDF and L ≥ (1/2)K  should be used so that (2) does not deviate 

significantly from the exact PDF. PDF of -envelop and -SNR ( )f  can be related as 

[4],
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2.1  PDF of Signal-to-Noise Ratio

  

From (2), by performing square transformation of random variable,  2

2

r
f r can be 

expressed as, 
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where,   is the average SNR. From (4), PDF of SNR can be obtain by performing 

transformation of RV (corresponding to multiplying by a factor

0

bE

N
) as, 
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3. Capacity Formulas 
 

Channel capacity has been analyzed for various situations in literature of which power 
and rate adaptive techniques are frequently used. Analytical expressions for capacities 
based on different transmission techniques have been presented in [9] and [17]. In the 

analysis we use these formulas to obtain expressions of adaptive transmission 
technique over TWDP fading channels. For convenience, we reproduce these formulas 
below. 
 
3.1 Optimal Power and Rate Adaptation at the Transmitter 

 

For a system with a constraint on the average transmitting power, using optimal power 
and rate adaptation (OPRA) technique at the transmitter the channel capacity (bits/s) is 
given by [9], 
 

                                                                                                                                                           
(6) 

 

         Where, B is the channel bandwidth, ( )f   is the PDF of the output SNR and g0 

is the optimal cutoff SNR, below which no transmission is allowed, has to satisfy the 
condition, 
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3.2 Constant Transmitting Power 

 
 When the transmitting power of the system is constant and optimal rate adaptation 
(ORA) technique is used at the transmitter, the channel capacity (bits/s) can be given 

by [9], 
 

                                                                                                                                                           
(8) 

 
3.3 Channel Inversion with Fixed Rate 

         
 When the transmitter adapts its power to maintain constant received SNR so that 
inversion of the channel fading effects is possible, the system is said to be adopting 
channel inversion with fixed rate (CIFR) technique. The channel capacity (bits/s) for 
this case is given by [9], 
 

                                                                                                                                                           
(9) 

                                                               
Where, 
                                               
 
 

 
 

3.4 Truncated Channel Inversion with Fixed Rate 

        
         This is a modified version of CIFR. When the channel goes into deep fades, to 
maintain constant receiver SNR a large amount of power is required at transmitter. So, 

to overcome this problem truncated channel inversion with fixed rate (TIFR) method 
is employed. In this case, the channel inversion is done when the receiver SNR is 

above a threshold value 0 . The capacity formula for TIFR can be given by [17], 

 
                                                                                                                                    (10) 
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4.1  Optimal power and rate adaptation at the transmitter 

 
Putting (5) into (6), expressing the modified Bessel function in infinite series [18]  
form and arranging the integral, the capacity for OPRA scheme can be given as, 
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the expression of COPRA can be given as, 
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         As stated in (6) 0 should satisfy (7). For K = 0, which corresponds to the 

Rayleigh fading channel, it is easy to verify that (12) can be simplified to the results in 
[16, (16)]. Putting (5) into (7)the condition for OPRA scheme can be simplified to, 
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4.2  Constant transmitting power 

 
Putting (5) into (8) and writing the confluent hypergeometric function in infinite series 
[18], the capacity for constant transmitting power techniques can be obtained as, 

 
 
 
   
 

                                                                                                                                                      

(14) 
 
 

Where, 1

0

( ) ln(1 )
n t

n
t dtt eI





 

 
 . For integer n, In(μ) can be given as, 

 1

0

,
( ) ( 1)!

n

kn
k

n k
n eI

 








  
    

[16]. For Rayleigh fading case (K = 0) (14) can be simplified to, 
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Outage probability, as per definition, can be given as [4], 
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where (.,.)g  is the incomplete gamma function. Thus, a final expression for the 

capacity of this scheme can be obtained by putting (17) and (19) into (10). For 
Rayleigh fading (K = 0) case, Ctifr can be shown as, 
 
 

                                                                                                                                                         
(20) 

 
 
  which is matching with [16, (48)]. 
 

 
 

     Fig 1: Capacity of OPRA Scheme 
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 Fig 2: Capacity of ORA Scheme 
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     Fig 3: Capacity for CIFR Scheme 
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      Fig 4: Capacity for TIFR Scheme 
 

5. Numerical Results and Discussion 
 
The obtained expressions for capacity over TWDP fading channel with different 

power and rate adaptation techniques have been numerically evaluated for different 
parameters of interest and plotted for the purpose of illustration. Capacity (per unit 
bandwidth) vs. average SNR ( ) (in dB) of OPRA a scheme have been plotted in 

Fig.1.For OPRA scheme the value of 0 have been derived numerically from (13). 

Capacity of ORA scheme has been given in Fig. 2. Maximum capacity is observed in 
OPRA scheme as it is the optimal scheme. CIFR and TIFR schemes have been plotted 
in Figs. 3 and 4, respectively. For TIFR scheme the threshold value is considered as 
1dB. Capacity of TIFR scheme has been more than CIFR scheme, as TIFR is a better 
scheme. From the observations it is clear that the capacity per unit bandwidth decrease 

with increase in the value of .Here it is studied for different K values. As expected 

decrease in parameter improve the fading condition, which is also reflected in the 
capacity plot. 

 

6. Conclusion 
  
In this paper, we analyze the capacity of a communication system over slow varying 
TWDP fading channels, for different known power and rate adaptation transmission 
techniques. Numerically evaluated results have been plotted for different parameter of 
interest and compared with the available special case results. 
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