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The effect of apparent 'slowing' of time due to motion and gravity can be explained in terms much sim-

pler than those of Special Relativity (SR) and General relativity (GR).  Instead of involving the speed of light, 

gravity, or counter-intuitive premises, postulates or principles, this effect can be derived by using simple de-

ductions based on information science.  The formulas developed here reduce to SR and GR in limiting cases.   

 

 1.  Introduction 

In relativity theories, a perception of ‘slowing’ is called ‘time 

dilation’, implying that time itself slows down.  But here, the 

perception of slowing will not be called ‘time dilation’, because 

we consider time itself to be invariant.  Instead, we suppose it is 

some internal mechanism of all physical processes that slows 

down, making all physical processes slower.  We will call this 

effect ‘performance-hit‘, to differentiate it from the traditional 

notion of time dilation per se. 

We could say that an ordinary computer runs slower due to 

increased information load, which is easy to understand as a 

'performance-hit'.  We could then generalize that if information 

usage is at the core of reality itself, the performance-hit is a con-

sequence of it.  So the time itself cannot dilate, and only the 

throughput of information usage changes, causing the rate of 

physical processes to vary.  If we are able to produce the same 

results as relativity without the notions of time dilation and 

space-time, we ought to start with a simpler setup, which is that 

of a flat 3D Euclidean space and not a 4-D Minkowski space. 

This approach does not require any other postulates or prin-

ciples to begin with.  This is a rather big difference to Einstein’s 

relativity theories, SRT and GRT.  But we can nevertheless derive 

(as limiting cases) not only Einstein's formulas for time dilation, 

but also his postulate about the speed of light. 

In addition, we will deduce the concept of mass and show a 

simple derivation of the Heisenberg’s Uncertainty Principle and 

Newton's Law of Gravitation starting only from the same axio-

matic principles of information science.  This allows us to claim a 

broader framework for this idea as it unites concepts that were 

so far only known as disjoined postulates and principles. 

In limiting cases, the formulas developed reduce exactly to 

the results of SRT and GRT.  Experimentally verifiable results 

such as with particle accelerators or GPS are the same.  Some-

times interpretations of results are different.  For example, the 

underlying cause of performance-hit is the same regardless of 

whether it arises out of relative movement or from the presence 

of other masses. 

We introduce here the axiom of information use: 

Any physical effect occurs only due to 

possession and use of information. 

An aspect of this axiom that is applicable to fundamental physics 

is clearly this: an effect that may be attributable to any actionable 

concepts of physics (be it fields, particles, forces, probabilities, 

etc.), can come only because there is information to affect it.  We 

call it 'axiom' because it is axiomatic that an action has a reason 

and a reason is based on information possession and use.   

To facilitate development of this idea, we will adopt terms of 

‘information processing’ or ‘computation’ (denoting use of in-

formation), and a ‘computer’ (a fundamental physical setup that 

allows use and possession of information).  Those terms are not 

to be confused with ordinary computers, nor their modes of 

processing information.  However, the same basic laws of infor-

mation science apply to both, just as the axiom of information 

use does.  For this reason, we will start with an analogy to ordi-

nary computers. 

Imagine that a computer is running a clock application that 

shows clicks of time.  Now start typing. In fact type so fast, that 

the processing power a computer uses starts to take it away from 

the clock.  What will you see?  The clock will slow down. 

Now imagine that a computer in your car is calculating your 

speed and your position.  Each task uses some memory.  As you 

type faster at the computer, the text you type is using more and 

more memory.  So, less and less memory is used for speed and 

position calculations.  If you want to use more memory for 

speed, there is less memory for position, and vice versa.  If you 

want your speed calculated to a high degree, the direction in 

which you’re going will be uncertain, and vice versa. 

Keep these simple analogies in mind as you continue read-

ing.  

2.  Information 

We start from the least possible informational model that ab-

stains from any specific representation or method of information 

use.  

A fact is an elementary description of something, a descrip-

tion that cannot be simplified. Information (or ‘data’) is a collec-

tion of facts. All facts have equal significance. 

A computer can store and compute information. A computer 

has fixed information storage and fixed throughput of process-

ing information. A computer is deterministic, i.e. the same input 

always produces the same output. If there is more information 

than storage available, then information is processed to fit (we 

call this processing a 'compression'). A computer must not be 

stateless or otherwise the behavior would never depend on what 

came before. 

A computer has a definitive location and occupies space 

around it where information is stored and computing takes 

place.  The space where the computer stores information has no 
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preference for scale or direction.  Any sphere centered at a com-

puter has all of the computer’s information.  So the information 

at some distance  R  from a computer is: 

 
  
iR = a × i / R 2  (1) 

where 
 
iR  is the average number of facts at distance  R  from the 

computer over some fixed small surface area  a ;  R  is the dis-

tance from the computer;  i  is the information-storage of the 

computer.  For simplicity, we henceforth omit the  a .   

Processing of information means combining facts to produce 

new facts.  In the case of two sets of facts, one with  N  facts and 

the other with  M  facts, the cost of computing a new set of facts 

combining the two is proportional to  N × M . 

2.1  Usage of Information  

Available information at some location is the sum of all in-

formation from all computers at that location. 

A computer uses available information and creates new in-

formation.  Since available information can generally be much 

larger than the computer’s storage, the data has a random subset 

of the available-information (see Figure 1). 

 
Figure 1. 

In order to make the most accurate use of available-

information, new facts are added to storage whenever the avail-

able information changes.  A computer must have a ‘memory’ to 

account for the past.  Without accounting for the past, a com-

puter would be a stateless machine.  In a simplest scenario, com-

puter's storage is divided into ‘previous’ and ‘current’.  We will 

call them ‘states’ or ‘sets’.   

2.2  Distance Effect 

The total available information at a location of a computer is: 

 
 
it = i + ia  (2) 

 
it  is the total available information,  i  is the computer's data, 

and 
 
ia  is the information of all other computers. 

The proportion of available information with and without the 

computer itself ( f ) is:  

 
  
f = ia / it = ia / (i + ia ) = 1 / (1 + i / ia )  (3) 

 
ia  can be written as a sum: 

 
  
ia = i j R j

2

j =1

U

∑  (4) 

where  U  is the number of all other computers; 
 
i j  is the informa-

tion of the other computer  j ; 
 
R j  is the distance to computer  j . 

In general, a quantity  f  is describing the information-

influence of the Universe: 

 

  

f = 1 1 + i i j / R j
2

j =1

U

∑








 (5) 

The information influence tells us how much computing capacity 

is used on other computers (vs. itself).  The information influence 

of a computer  X  on any given computer is, from Eq. (3), 

  

f X = iX / R X
2( ) i + iX / R X

2( )+ i j / R j
2( )j =1, j ≠ X

U

∑










= 1 1 + i / iX




 × R X

2 + i j iX( )× R X
2 R j

2( )j =1, j ≠ X

U

∑








 (6) 

Apparently: 

 
  
0 < f X < 1  (7) 

It is clear from Eq. (6) that 

 
  

f j1

U +1

∑ = 1  (8) 

If a computer is very far away from other computers, its own 

data is all that is available to it. So the available information from 

any computer is: 

 
 
i × f X  (9) 

If  X  is the only significant computer nearby, then from Eq. (6) 

 
  
f X ≈ 1 1 + (i / iX ) × R X

2





 (10) 

If  X  is large and close, then from Eq. (10)  

 
  
f X ≈ 1  (11) 

When  X  is small and far away: 

 
  
f X = 0  (12) 



Month/Month year GALILEAN ELECTRODYNAMICS  3 

The small computers are overwhelmed by the facts from nearby 

large computers (and vice versa). 

The amount of information used from any computer  X  is 

always smaller than or equal to the data storage of  X .  This im-

plies an inherent information loss in computing, even if compu-

tation itself is deterministic. 

2.3  Relative-Motion Effect 

If  C  moves relative to  M , the number of locations visited in 

a given period of time will be proportional to its speed, and so 

will be the amount of additional information.  A nearby com-

puter  Z  at rest relative to  M  will not see this additional infor-

mation. 

The conclusion is that the relative motion has a real effect on 

information processing.  Hence, the change of  C 's data is pro-

portional to speed relative to  M : 

 
  
∆i / i = s × v × fM  (13) 

where  ∆i  is the change in current set at  C  resulting from the 

movement relative to  M ;  i  is the size of  C 's current set;  s  is a 

dimensional constant of proportion;  v  is a relative speed 

achieved where 
 
f M  can be considered constant; 

 
fM  is the in-

formation-influence of  M  at  C .  It is a number between 0 and 1, 

effectively describing a proportion of computational resources 

used for processing information of M by  C .   

The exact equation for  ∆i  would include all the computers in 

the Universe: 

 
  
∆i = s × i × v j × f jj =1

U +1

∑  (14) 

Note that  ∆i  cannot become greater than  i  due to limited in-

formation storage: 

  ∆i ≤ i  (15) 

3.  Information Management 

3.1  Storage of Information 

The aforementioned previous and current sets (that share the 

data storage) are computed together to create the new informa-

tion. The previous set is the current set from the moment ago: 

 
  
iprevious (t ) = icurrent (t − ∆t )  (16) 

Between the two, they can fill a fixed total storage capacity: 

 
  
iprevious + icurrent = constant  (17) 

 ∆i  denotes additional information to fit into storage: 

 
  
(iprevious − ∆i) + (icurrent + ∆i) = constant  (18) 

The expression above shows a conceptual information flow of a 

computer.  The previous set becomes compressed in order for 

current set to enlarge, when available information increases.   

3.2  Processing Requirements 

The cost of computing in the lossless case (when available in-

formation does not change; i.e.   ∆i = 0 , a lossless case) is : 

 
  
H 0 = i × i = i2  (19) 

In case of different amounts of information in previous and cur-

rent sets; i.e.   ∆i ≠ 0 , a case of information loss, the cost is: 

   H = (i − ∆i ) × (i + ∆i) = i2 − (∆i)2  (20) 

Apparently,  

 
  
H < H 0  (21) 

When   ∆i > 0 , there is more information than there is storage.  

In this case, to minimize the loss of information, the previous set 

must be compressed to occupy less storage.  This compression is 

denoted as a lossy transformation  Q . The time spent for this 

compression is not used in computing the change – it only pro-

duces a lossy version of the same information, thus it can be con-

sidered ‘not useful’.  For the reasons outlined in this paragraph, 

the quantities  H  and 
  
H0  will be referred to as ‘useful’.  

 
Figure 2. 

 

The compression  Q  effectively computes information  ∆i  

with itself and so the cost is:  

 
  
H Q = (∆i) × (∆i) = (∆i)2  (22) 

The total cost is: 

 
  
H 1 = H + H Q = (i − ∆i) × (i + ∆i) + (∆i)2 = i2  (23) 

And we have: 

 
  
H 0 = H1  (24) 
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This result means that the total cost is the same both in lossless 

and lossy case.  However in the case of information loss, the 

amount of useful computing is less; see Eq. (20). 

3.3  Processing Throughput 

The computational throughput  T  is the amount of useful in-

formation produced per unit of time.  In the lossless case, 

 
  
T lossless = i / t (i)  (25) 

where   t (i)  is the time needed to process information  i .   

The throughput of computation for a lossy case can be de-

duced by modeling it with the equivalent situation where the 

two information sets are equal and both are lossless: 

 
  
ie × ie = (i − ∆i) × (i + ∆i)  (26) 

The useful throughput of processing information in the lossy 

case would be quantified with: 

 
  
T lossy = ie / t (ie ) =

(i − ∆i) × (i + ∆i)

t (i)
=

i2 − (∆i)2

t (i)
 (27) 

or: 

    
  
T lossy = T lossless × 1 − (∆i)2 / i2    . (28) 

What  T  means is that, for example, if the size of both infor-

mation sets together is  20 , and the size of each set is 10 (so 

 10 + 10 = 20 ), the amount of useful information processed 

would be a square root of  10 × 10 , or  10  per unit of time.  If the 

current set size is  11  and the previous size is  9  (so  11 + 9 = 20 ), 

then the amount of useful information processed would be a 

square root of  11 × 9 , or approximately  9.95  per unit of time.  

When the amount of available information increases, the lower 

throughput of useful information is the direct consequence of the 

limited information storage.  When the amount of available in-

formation decreases, the throughput is higher, with the highest 

throughput achieved when a computer is far enough from other 

computers, in which case its own data is all that’s available to it.  

In further text, the term ‘information’ will have a connotation of 

useful information.   

4.  Local Speed Limit 

4.1  Speed Limit Near Large Computers 

The dimensional constant  s  from Eq. (13) has a meaning be-

yond just being a constant of proportion.  Let us consider what 

happens when speed 
 
vc  is such that additional data in current 

set fills the entire previous set: 

  ∆i = i  (29) 

This means that speed  v  is so high that the processing of infor-

mation slows down to the point where it becomes zero (or near 

zero) because: 

 

  
T lossy =

i2 − (∆i)2

t
=

0

t 2
= 0  (30) 

This speed then locally becomes the highest attainable relative 

speed of a computer resulting from its own computation.   

From Eqs. (13) and (29) we have: 

 
  
s = 1 (vC × f M )  (31) 

In a system of two isolated computers  M  and  C , where  M  is 

much larger then  C : 

 
  
f M ≈ 1  (32) 

We will denote this maximum local speed 
 
vc  simply as  c .  From 

above two equations: 

   s ≈ 1 / c  (33) 

It is clear that the value of  c  depends on the location.  Near large 

computers, the value of  c  is practically a constant, as in Eq. (13). 

However, farther from large computers, the following can be 

true: 

 
  
f M << 1  (34) 

In this case, the value of  c  can be much higher.   

4.2  Speed Limit in the General Case 

An exact value for maximum relative speeds 
 
c j  (relative to 

every other computer) in a given location [from Eqs. (14) and 

(29)] can be found by solving the following equation for every 

computer: 

 
  

c j × f j = 1 / s
j =1

U +1

∑  (35) 

In different locations and for different relative speeds, the maxi-

mum speed  c  can be different, so: 

 
  
c = Bc (r j , v j , i j , ∀j )  (36) 

 
r j  is the distances to all computers; 

 
v j  is the speeds relative to 

all computers; 
 
i j  is the amounts of data for each computer; 

 
Bc  

is the function representing the solution of equation in Eq. (35).   

An expression for speed  c  for a given computer near a large 

isolated  M  is: 

 
  
c = i / (s × fM )  (37) 

As 
 
f M  can vary between 0 and 1, the speed  c  can vary too, de-

pending on the location: 

 
  
1 / s < c < max(Bc )  (38) 
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The exact value for its maximum depends on the locale and 

the moment in time.  If the information influence of other com-

puters is sufficiently small, 
 
Bc  can become arbitrarily big: 

 

  

Lim
f j →0,∀j

max(Bc )



 → ∞  (39) 

Near large computers, speed  c  has its minimum value of   1 / s , 

while away from them it can be much higher, i.e. it is location-

dependent.   

To expand on this, imagine a computer that has attained a 

speed of: 

 
  
c1 = 1 / s  (40) 

in a location where that speed is a limit.  Let that computer now 

move to a location where the limit is: 

 
  
c2 = 10 / s = 10 × c1  (41) 

The computer will still have a speed of 
  
c1  unless there is a rea-

son to accelerate.  Conversely if a computer has attained a speed 

of 
  
10 × c1 , and then moves to a location where the limit is 

  
c1 , its 

relative speed to computers near that location will remain the 

same and be beyond the local speed limit.   

Eqs. (17) and (18) imply that far from large computers, the 

computer  C  can accelerate to maximum speeds greater than 

those attainable near large computers.  In addition, the larger the 

computer  C  is, the higher the speed limit for it will be. 

A noteworthy consequence of Eq. (33) is that if a computer 

tries to obtain its own maximum speed near large computer  C , it 

will always hit the same speed limit  c  relative to  C , regardless 

of what was its initial speed.   

5.  Different Times 

5.1  Application Time 

Let us say there is an application running on a computer 

(representing some physical process).  A computer has its own 

throughput of computation, which is the same always.  An ap-

plication though will work faster or slower, depending on the 

throughput of processing useful information.  Let us formalize 

how much will an application slow down. 

We will call the time measured by an application the ‘appli-

cation time’.  The actual time for which computer will run will be 

the ‘real time’. 

The throughput of computation  T  can vary: 

 

  

T1 (t ) = i2 − (∆i1 )2 t    ,   T2 (t ) = i2 − (∆i2 )2 t    ,

T1 (t ) ≠ T2 (t )   .
 (42) 

Let us now introduce 
  
t1  and 

  
t2  to be application-times meas-

ured by an application at two different moments in time. 

The application throughput measured in terms of applica-

tion-time must be the same: 

 
  
T1 (t1 ) = T2 (t2 )  (43) 

We have 

 
  

i2 − (∆i1 )2 t1 = i2 − (∆i2 )2 t2  (44) 

and 

 
  
t1 = t2 × i2 − (∆i1 )2 i2 − (∆i2 )2  (45) 

From this and Eq. (14) we have

 

  

t1 = t2 ×
1 − s2 × v j1 × f j1j =1

U

∑







2

1 − s2 × v j 2 × f j 2j =1

U

∑







2
 (46) 

This represents the general transformation of application-time, 

where: 
  
t1  is the application-time when computer speeds are 

  
v j1  

relative to all other computers, and each such computer having 

information-influence of 
  
f j1 ; 

  
t2  is the application time with 

relative speeds of 
  
v j 2  and information influences of 

  
f j 2 . 

The conclusion is that application-times of computers differ 

when in motion relative to other computers. 

5.2  Limiting Cases 

Let us consider a situation of a small moving computer  C  

near large isolated computer  M .  The information-influence 
 
fM  

is nearly 1, and the information-influence of all other computers 

is nearly zero. 

Let us have 
  
t1  and 

  
t2  such that the two computers are at rest 

(
  
v1 = 0 ) for a unit of application-time 

  
t1 , and the relative speed 

is 
  
v2  for a unit of application-time 

  
t2 :  

 
  
f M ≈ 1   ,    f j ≈ 0, ∀j , j ≠ M ,   v1 = 0, v2 = v ≠ 0  (47) 

For a small computer, with Eq. (33), Eq. (46) becomes  

  

t1 ≈ t2 × 1 − s2 × 02

1 − s2 × (v + 0)2
=

t2

1 − s2 × (v + 0)
=

t2

1 − v2 / c2
 . (48) 

Application time runs slower for a small computer  C  when 

moving at speed  v  ( c  is  C 's maximum speed attainable locally 

through own computation).  We call this a ‘performance hit’. 

For a large computer  M , we will have: 

 
  
fC ≈ 0, f j ≈ 0, ∀j , j ≠ C , v1 = 0, v2 ≠ 0  (49) 

Eq. (46) becomes for a large computer  M  or a computer suffi-

ciently far away: 

 

  

t1 ≈ t2 × 1 − s2 × 02

1 − s2 × 02
= t2  (50) 
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A small computer will run slower, but a large computer will not 

slow-down much. 

5.3  Synchronization of Application Clocks 

In principle, it's impossible to know exact relative speeds and 

information-influences of all other computers, because those 

depend on the results of computations each computer performs 

and it would take a computing system of a larger capacity than 

the Universe to know them.  However, near large computers, the 

information-influence of all other computers is very small and 

therefore in practical terms knowing the performance-hit of ap-

plications becomes possible.  Assuming that reading of the two 

same application clocks very near one another can be synchro-

nized to begin with, their readings could then in practical terms 

be known if the performance-hits are known to a good degree, 

even when they are separated. 

6.  Mass and Application Time 

6.1  Mass 

The time need to process information is: 

 
  
t (i, ∆i ) = i / T lossy = i T lossless( ) 1 − (∆i)2 / i2  (51) 

This time can be used to describe a computer.  Two computers 

exposed to the same additional available-information will take 

different times to react to it.  If we denote this measure as mass 

 m , it follows: 

 
  
m ∝ t (i, ∆i) = y × i 1 − (∆i)2 / i2  (52) 

 y  is a dimensional constant of proportion that absorbs the con-

stant 
  
T lossless  and produces  measurable quantity  m .  When 

there is no change in available information: 

 
  
m 0 = y × i  (53) 

As in Eq. (48), the measure varies with speed in a simple two-

computer scenario: 

    
  
m 1 ≈ m 0 1 − v2 / c2    . (54) 

Mass is proportional to the time needed to process the available 

information.  

6.2  Changing Distance 

Let us observe a computer  C  at rest at some distance from a 

computer  M .  Any physical volume that  C  occupies can be split 

into smaller volumes, where each such smaller volume contains 

some information from  M .  The more information of  M  is pre-

sent, the more is added to data of  C .  Thus, when distance to  M  

changes, the change in data is proportional to the available-

information of  M .  The longer  C  is present at the same location, 

the more of  M 's information will add to  C 's data: 

 

  
d (∆iC ) = w ×

iM

R 2
× iC × fM × dt  (55) 

where 
  
d (∆iC )  is change in additional data of  C ;  w  is the con-

stant of proportion; 
 
iM  is the data of  M ;  R  is the distance be-

tween  M  and  C ; 
 
f M  is the information influence of  M ; 

 
iC  is 

the data of  C , and 
 
iC × f M  is the portion of  C 's information 

that comes from  M ;  d t  is a small enough time interval. 

If  C  moves slowly from very far away to near  M , it will see 

increasingly more information added to its data.  We will model 

a situation of a practical infinite distance between  M  and  C  

with the speed of zero, meaning there is no change in informa-

tion processing.  When distance between the two declines to R 

we will model this with some speed  v  (for the same effect).  The 

change of speed  dv  will cause change in additional data of  C .  

From Eq. (13), the change in additional information is (informa-

tion influence 
 
fM  is some constant value  f , so we substitute 

 S = s × f ): 

 
  
d (∆iC ) = S × iC × dv  (56) 

After substituting constants (  W = w / S ), from above two equa-

tions: 

   

  

dv = −W ×
iM

R 2
× fM × dt = −W ×

iM

R 2
× dt

1 + (iC / iM ) × R 2
 . (57) 

where  W  is a dimensional constant of proportion; 
 
iM  is  the  

data of  M ; 
 
iC  is  the data of  C ;  R  is the distance between  C  

and  M .  The minus sign is for higher  v  with lower  R . 

Multiplying both sides by  v , and knowing that  dR = v × dt  

we have: 

 

  

v × dv
v

0

∫ = − W ×
iM

R 2R

∞

∫ × 1

1 + (iC / iM ) × R 2
dR  (58) 

and 

  

v2 = 2 × W × iM × 1

R
−

iC
iM

× π
2

− arctan iC / iM × R( )






















 . (59) 

As in Eq. (48), and by substituting   G = W / y  and assuming 

 
iC << iM  and   R >> 0 : 

 
  
v2 = 2 × W × iM / R  (60) 

 
  
t2 ≈ t1 1 − 2 × W × iM / R × c2  (61) 

 
  
t2 ≈ t1 1 − 2 × G × m M 0 / R × c2  (62) 

This is the performance-hit due to its mass 
  
m M 0 . 

7.  Relativity  

The principle of relativity states that laws of physics are the 

same in un-accelerated frames of reference.  Now think about it 

in different terms: a computer produces the same output if the 
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input is the same.  This output would be created slower or faster, 

depending on the performance-hit, but overall will be almost 

identical.  Note however, that the information loss will add dif-

ferences to the output of computations, even under conditions of 

the principle of relativity.  This means that relativity (in any 

known form) must be an approximation only. 

Acceleration changes the speed, which changes the degree of 

information loss.  It means that the output of computing will 

change too.  This is the fundamental reason why accelerated sys-

tems are so apparently different than inertial ones. 

7.1  Speed of Light 

An assumption about constancy of speed of light is unneces-

sary.  As shown, the need for local speed limit can be easily de-

rived.  Also shown is the necessity for this speed to be the same 

regardless of the speed of the emitter. 

7.2  Time Dilation 

The concept of time dilation, as explained in SR/GR theories, 

is suspect.  The performance-hit of computing provides an intui-

tive, postulate-free and mathematically more generic framework 

for the phenomena observed. 

7.3  Mass Increase 

We found that the mass is a simple consequence of computa-

tion reality.  If a computer needs more time to compute the avail-

able information, it has higher mass. 

7.4  Maximum Speed 

We showed that the speed of light comes from the limited 

computational throughput.  The speed of light is the minimum of 

all possible maximum speeds. This minimum is in effect only 

near large masses, or for very small masses.  

8.  Quantum Mechanics 

8.1  Information Loss and QM 

Information loss in computing causes its results to be ap-

proximate, and have an element of randomness.  If computation 

produces a set of independent output results (such as vector of 

movement and the speed), then the probability to predict cor-

rectly all of them is: 

 
  
p = Π

1

V

pi  (63) 

The probability 
 
pi  is the probability to predict one of the inde-

pendent  V  outputs.  It is proportional to the number of facts in 

the lossy set;   ∆i2  that affects any given output result: 

 ( ) /i i i ip u e u= −  (64) 

 
ei  is the part of lossy   ∆i2  that affects a given output result 

 
Vi  

and 
 
ui  is the part of total processing   i

2  used for 
 
Vi .  It must be: 

 
  

ei1

V

∑ = (∆i)2    ,   
  

u j1

V

∑ = i2  (65) 

8.2  A Simple System 

In a simple case of two independent output results being vec-

tor momentum and speed  

    
  
p1 = 1 − e1 / u    ,   

  
p2 = 1 − e2 / u    , 

(66) 

    
  
e1 + e2 = (∆i)2    ,    ∆i < i    ,     u = i2 / 2    . 

From this, the maximum probability of predicting both is: If the 

error in predicted value is inversely proportional to the probabil-

ity of predicting it, then : 

 
  
p1 × p2 ≤ 1 − (∆i)2 / i2





2
 (67) 

With near-maximum information loss (i.e.   ∆i = i − 1 ): 

 
22 2

1 2 min min1 ( 1) /p p i i × ≤ − −
 

 (68) 

 
  
∆V1 × ∆V2 ≥ (imin )2 / 4  (69) 

  
∆V1  and 

  
∆V2  are estimated errors in predicting the two output 

values (vector and speed of movement); 
  
imin  is the minimum 

number of facts any computer needs to produce 
  
V1  and 

  
V2 , so: 

Since the dimensional constant of information had been set to 

exactly 1 and unrelated to any other system of measurement [(in 

Eq. (1)] 

    
  
∆V1 × ∆V2 ≥ constant    . (70) 

This is the simplified derivation of Heisenberg principle of un-

certainty from the computational approach.  This basic idea of 

quantum mechanics is a consequence of lossy computation. 

The random component of a movement of a computer (in 

three-dimensional space) due to information loss allows it to 

‘triangulate’ the vector of other computers; i.e., the direction to 

other computers.  In previous analysis, we focused on scalar na-

ture of information.  It turns out that the very nature of informa-

tion loss provides the means for three-dimensional computing. 

If it is the facts that determine the output of computation, 

then ultimately the output itself has to be quantified in its basic 

form.  Think of it this way: the result of computation, due to lim-

ited storage, is essentially an integer, a quantified value.  As 

such, on the basic level, the result must appear in quanta as well. 

9.  Gravity 

Let us have two computers  A  and  B  and focus on what 

happens if  B  moves back and forth along the line connecting  A  

and  B , so that it stays in place over time (see Figure 3). 

When closer to  A , the information loss of  B  is higher, and 

vice versa.  On average, the loss in computing the direction of 

movement (from 
 
B1  and 

 
B2  back to  B ) will result in positions 

 
B3 /

 
B4  and 

 
′B3 /

 
′B4 , with higher directional loss closer to  A  

(Fig. 4): 
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  ∆L > ∆ ′L  (71) 

The result is that, on average,  B  will move closer to  A  in a 

straight line, even with the best effort of  B  to stay in place.  This 

is not the result of any purposeful computation, only of uncer-

tainty in computing the direction of movement. 

The speed of  B  can be found by equating the information 

loss to that due to some speed  v  (under limiting-case assump-

tions of Sect. 6.2): 

 
  
(∆i)2 / i2 = 2 × G × m A / R × c2 = v2 / c2  (72) 

and 

 
  
v = 2 × G × m A / R  (73) 

 B  will accelerate towards  A  and vice versa.  We have derived 

Newtonian gravity.   

 

 
Figure 3. 

9.1  Principle of Equivalence 

Gravity is shown to result from loss of information process-

ing.  This means gravity does not consume any useful informa-

tion.  The direct consequence is that all computation (minus any 

loss of information) will remain the same.  This is the reason why 

any experiment appears the same whether the laboratory is iner-

tial or in free fall, minus any changing loss of information.  The 

Principle of Equivalence is a consequence of the informational 

nature of gravity. 

9.2  Gravity and Motion 

Because gravitational acceleration is due to the directional 

loss of information, it follows that gravitational acceleration is 

not necessarily tied to mass per se.  Remember that movement 

creates the same information loss, so a localized directional loss 

can be produced that way alone, i.e. a free-fall in empty space 

can be achieved without massive bodies to claim responsibility 

for it. 

10.  Conclusions 

We saw that the postulates and results of special/general 

relativity and other fundamental outcomes can be naturally de-

veloped from a simple and intuitive model of reality.  The Uni-

verse is in essence a distributed computing network, with each 

node of limited computational throughput and information stor-

age.   

It is worth repeating the idea from the Introduction: Without 

information and the means to use it, the physical reality has no 

basis for existence.  This paper shows a few of the most impor-

tant (and until now, conceptually divergent) discoveries of phys-

ics derived from a simple informational approach, without the 

need for postulates and principles.  The important takeaway is 

that these postulates and principle are not elementary at all.  

They are the consequences of the deeper and more profound 

nature of reality, one that rests on simple and intuitive idea of an 

informational reality. 

 

 


