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Abstract: We demonstrate that Yang-Mills Magnetic Monopoles natucalhfine their gauge fields, naturally contain
three colored fermions in a color singlet, and that mesons alsolor singlets are the only particles they are allowed to

emit or absorb. This makes them worthy of serious consideragibaryons.

Introduction and Summary

The thesis of this paper is simple: magnetic monopole densitich come into existence in non-Abelian
Yang-Mills gauge theory are synonymous with baryon densiBesyons are Yang-Mills magnetic monopoles! We
examine three pillars of support for this: a) Yang-Millagnetic monopoles naturally confine their gauge fieldgitsec
1); b) they naturally contain exactly three fermions whichideatify with colored quarks in a color-neutral singlet
(sections 2 and 3); and c) the only particles crossing théacguor observed as decay products are mesons also in color-
neutral singlets (section 4). Section 5 makes brief cdimgjuremarks about chiral properties of these proposed

monopole baryons, for further development which may providehtianes for experimental validation.

1. Gauge Field Confinement

First, we demonstrate how Yang-Mills magnetic monopolesrally confine their gauge fields. We use the
language of differential forms, and assume the reader FHagesu familiarity so no tutorial explanations are ragai.

In an Abelian (commuting field) gauge theory such as QEDfjaltestrength tensdf is specified in relation to

the vector potential gauge field (e.g., photdrgccording toF = dA. The magnetic monopole source denBitg then

specified classically (for high-actioﬁ(¢) = J. d4x£(¢) >> /i where the Euler Lagrange equation may be applied) by

the field equationP = dF = ddA=0. This makes use of the geometric law that the extdedvative of an exterior
derivative is zerodd = 0. In integral form, this becomeHJ‘P = j”dF = .”IddG: ﬁ F = ﬁdA: 0. All of the

foregoing “zeros” are what tell us that there are ngmetic monopoles in an Abelian gauge theory such as QBi3. T
absence of magnetic monopole charges at all attaingpégimental energies is well borne out in the 140 or so years
since James Clerk Maxwell published his 1878Breatise on Electricity and Magnetism

In a non-Abelian (non-commuting field) Yang-Mills gauge theomghsas QCD, the fundamental difference is

that the field strength tensBris now specified in relation to the vector potential gaugd f@l(e.g., gluon in QCD)

according toF =dG—-iG?. In this relationshipG? = [G“,G“deﬂdx, expresses the hon-commuting nature of the

gauge fields and the non-linearity of Yang-Mills gaugetiie Therefore, althoughldG= 0 as always because of the
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exterior geometry, the classical (high-action) magnatinopole density becomd? = dF = d(dG— iGz) =—-idG?,

which is non-zero. In integral form, using Gauss’/ Ssokaw, this becomes:

J1Tp=]ffar =[] ddc-ie*)=-i[juc’ = ffF = fac-iffe’ = -iffe .

and from the last two terms in the above, we may alsgeldre companion equation:

ﬁde:o. (1.2)

Of course, (1.2), albeit with the different field nansejuist the relationshi@dA: 0 which tells us that there are no
magnetic monopoles in Abelian gauge theory. But in lighi.df)( which provides us with a non-zero magnetic
monopoIeJ'J‘J'P = —iﬁ(.;2 # 0, what can we learn from (1.2), which is the Yang-Mislogue to the Abelian “no

magnetic monopole” relationshﬁ dA=0"7

If we perform a local transformatioR - F'=F —dG on the field strengtk, which in expanded form is
written asF* _, F#'= F* -9YG*, then we find from (1.1) as a direct and immediate reguhie Abelian “no

monopole” relationshi;ﬁde =0 in (1.2), that:

[[fP=§fF -~ fF=f(F-dc)=ffF. (1.3)

This means that the flow of the field strenqﬁp = —iﬁGz across a two dimensional surface is invariant under the

local gauge-like transformatioR * — F*''= F* —9G* . We know in QED that invariance under the similar

transformationA# — A“'= A¥ + 9*/\ means the gauge paramegeis not a physical observable. We know in
gravitational theory that invariance undgt’ - g*’'= g’ +9'"“A” likewise means the gauge vect)f is not a

physical observable. In this case, the invarianojéf@f under the transformatior* _. F#'=F# -9l"G# tells us the

gauge fieldG# is not an observable over the surface through which theﬁard: —ij{}@(;2 is flowing. ButG* is

simply the gauge field, which in QED, is the gluon fie®b, simply put: the Yang-Mills gauge fiel@, including

gluons in SU(3), are not observables across any closed surfaceisding a magnetic monopole dendity Whatever

goes on inside the volume representeqﬁyp, the gauge fields remain confined.

Taking this a step further, we see that the origins ofguigye field confinement rest in the 140-year old

mystery as to why there are no magnetic monopoles in Abgtiage theory. In differential forms, the statenaénhis

is ddG=0. Inintegral form, this becom#dG =0, equation (1.2). Yetitis precisely this same “zerdich

rendersﬁF - ﬁF’ =ﬁF invariant underF # — F#'= F* —9G*! in (1.3). So the physical observation that

there are no magnetic monopoles in Abelian gauge theaslatas into a symmetry condition in non-Abelian gauge



theory that gauge boson flow is not an observable over thecsusf a magnetic charge. Again: In Abelian gauge theory
there are no magnetic monopoles. In non-Abelian theoryabisience of Abelian magnetic monopoles translates into
there being no flow of gauge bosons (e.g., gluons) aargsslosed surface surrounding a Yang-Mills magnetic

monopole. Consequentlihe absence of gluon flux, hence color, across surfacesusuding non-Abelian chromo-

magnetic monopoles is fundamentally equivalent to thermiesof magnetic monopoles in Abelian gauge theAnd,

because this is turn originatesdiul = 0, we see thahis confinement is geometrically mandated, imposed dyesime

The very same “zero” which in Abelian gauge theory shgsthere are no magnetic monopoles, in non-Abelian gauge
theory says that there is no observable flux of Yandshihuge fields across a closed surface surrounding aMaisg
magnetic monopole. We do not find a free gluon in Yang-Mgélsge theory any more than we find an Abelian

magnetic monopole in electrodynamics, for identical gedmegasons.

2. Natural Three-Fermion System: Part |
While color confinement is necessary prerequisite famgéMills magnetic monopoles to be considered as
baryon “candidates,” it is not sufficient. At minimum, we tralso show that these monopoles are capable of naturally
containing three fermions in suitable color eigenstdtesause we know that baryons contain three colored quarks.
For this purpose, we employ the classical field equatiddé’ € 0% —iG#):
3" =9, F” =9,D¥G" =9 ,D*G" -9,D"G* =(g"9,D° -9D" )G, (2.1)
P* =0°F* +0*F" +90"F%* (2.2)
together with the Yang-Mills field strength tensor:
F* =9“G" -9'G* -i|G*,G*|=D*G" -D"G* = DG (2.3)

where the group generatoTsi are related by the group structufé'é'k'l'i = —ilTj,TkJ, and wherer# =T'F* and
G* =T'G* are NxN matrices for any given SU(N). Above, (2.2) éh8) respectively are just expanded restatements

of the classical field relationshig@ = dF and F =dG—-iG? which we used in (1.1).

As soon as one substitutes the non-Abelian (2.3) intodHls equation (2.2), while the terms based on
0#“G" —9"G* continue to zero out by identity in the usual way (@lgh= 0 which as shown in section 1 confines the
gauge fields), one nonetheless arrives at a residualerorzagnetic charge:

p# =-i(0°|c*,G" |+a*|G",G|+0"|G",G*))

=-ifo°c*.6"]+[e,0°6" |+ 04" .6°]+[6" 0467 ]+ o6 6|+ [67 v 6] @4

This is a longhand version @ = —idG? = -2idG used in (1.1). Let's now study thR?" closely.

To begin, we make use of the commutator relationghg¥ = i[k”,Gﬂ] to replace the varioug’G* in (2.4).

Expanding,G*k°G" —G*k?G" appears throughout, so these terms drop out. Re-consolidagids; yi
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P =—(le*,c" | k*|+[c".c7| k*|+|a7,c#| k") (2.5)

Now, we seek an inverse relatiqnv =l,J°to replace eacls” above with aJ#, which can then be used to
introduce fermion wavefunctions vid* =1Zy”¢/ . Again usingg?G* = i[k",G“J, inverselw is specified in terms of a
U ~ o symmetrized configuration space opergtfo .D —9#D" in (2.1), with a hand-added Proca mass, by:

b i, ke 6 )k sk 67 = o =

ov

We also use @ ~ v symmetrized| = Ag,, + Bk, k, +%Ci[k{ G.,)J to calculatel ,,. In doing so, we keep in

o
mind that theg° is an NxN matrix for the Yang-Mills gauge group @), so anytimeG“ appears in a denominator we
must actually form arang-Mills matrix inverse So that expressions we develop have a similaok™ to familiar

expressions from QED, we will use a “quoted denatari notation1/'M"=M * to designate a Yang-Mills matrix

inverse. ThusG"'1 =1/"G?", etc. This inverse is calculated to be:

k K, +%i[k{,,GV}J_

_gUV +nm2_kak _i ka G Jn
|m/ = “ 2 —al | (27)
"k7k, -m? +i[k,G, |"
and can only be formed if we simultaneously imptbgecovariant gauge condition, in configurationcgpa
(0,9, -1,,G, Jo*o° -10“G?)=0. 2.8)

Note that the often-employei{k”,(;gj =9°G, =0 is not a gauge condition here; this is replace@5).
Now, inverse (2.7) has many interesting propestieeh we shall not take the time to explore heBpecial

cases of interest includgk,,G,]=a,G, — 0; M=0; bothd,G, — 0 andm=0; and on shelk“k, —m? =0 for

m#0 or k”ka =0 for m=0. We will also note that when working towards anum path integral formulation,
i[k”,GaJ =0°G, in (2.7) is replace by a gauge-invariant pertudoaty = (a”Ga +Gaaa)+GaGa' But our interest at the
moment is in the low-perturbation |imii[lkv,Gg]=ang - 0. Thus, using (2.7) in inverse relati@) =1_,J7 with

ifk,.G,] =0, all the quoted denominators become ordinary dématers, and we obtain:

S @9

We have reduced this using the fact that in monrmergpace, current conservatiar/]J ﬂ(x) =0 becomes

K,J ﬂ(k) =0 (see [1] after 1.5(4)). The above is just like #xpressions we encounter for inverses with asPrass in

QED. It says, not unexpectedly, that in the lowtymdation limit, QCD looks like QED.

The point of developing this inverse, is to be ablase (2.9) in (2.5) and then deploy fermion viametions

via J# = zZy"zp . Because (2.5) contains six different appearaoté€s, , there are six independent substitutions of
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(2.9) into (2.5), and what we must presume to be six independma Masses. To track this, we will use the first six

letters of the Greek alphabet,S3,y,0,€,{ to carry out the internal index summations and to laeheh of these six

Proca masses. This substitution yields:

pa =_H g™y, 9”3, }kH{ ¢, gy }kH{ g7, 9“9 }kl (2.10)
a 2! 2| 20 2| < 21 2 |
Kk, =m,," Kk, —m, Kk, —m,* k’k;—m, Kk, —m,," kk, —m,,

Here, we see six massive vector boson propagators eacledauifif a current vectod , . We raise the

indexes on all the currents and absorb gf&. We useJ# =T’ A= 1,23.N? -1 to explicitly introduce the SU(N)

generators. We factor out the resulting commuta{tﬁirﬂ'jj. And finally, we employJi” =l,ZT, Y and the like to
introduce fermion wavefunctions. With this, and moving aitents into the same numerator, (2.10) becomes:
[[ 1 YTy, yvt//] k"]
a _ 2 B _ 2 !
Kk, Mgy kK —my,
1 YTy Yt vy Pt (2.11)
kyky

pow =fri T1] +
! 2 5 2
| -m,," KKk —mg,

. { 1 YTy, y”w] .
£ 2 2 !
k°k, —m,, kek, -my,

The above now shows fermion wavefunctions, and is Hrérgg point for the next stage of development.

3. Natural Three-Fermion System: Part |1

Now, we make the following sequence of substitutiong/foy T, y'(///(kﬂkﬂ - m(ﬂ)z) and the other two

like terms in (2.11) above:

drywayy gty yuryy N gty [No| o (g +m rrw
KKy =My kk; — My’ E+m Kk, -my,’ Ep * My P~ My’ . (31)
_ ‘Nunz‘ YTy TV Y _ ‘N(ﬁ)z‘
Epy * Mg " Py ~Mp" By My

Let us now explain each step in the sequence. In the fipstvgéeuse the Dirac spinolm_J =4[/47/ and sum over spin

" -1
‘/’IV”TJV"/IX(F’(& - mkﬁ))
states. Often, the spin sum is WrittenESpinSua = p+m (see [2], section 5.5). But there is an implied covariant

normalization‘NZ‘ = E +m in this expression. To be explicit, this should reallyiéten ([2], problem solution 5.9):

> et = [NZ|(p + m)/(E +m), (3.2)

So in the second step, we apply (3.2) in (3.1).



Next, we take thaffirmative stegwhich as we will shortly discuss requires some acdogrior degrees of

freedom that will render the gauge bosons massless) offidegtine rest mass in the resultapt+ M with the labeled
massMm, ;) in the denominator, so we now $€t= M, 5 . This M4, of course, started out in (2.10) as a gauge boson
mass in a gauge boson propagator denominator, but by thisetepwt into a fermion rest mass. And we
simultaneously promotk’g - pﬁ into the momentum four-vectopﬁ for this fermion with mass. And, we label

E=E, . andN = N s - Finally, we use the well-known relationship:

(8)

Py *My _ 1 )
/3(/3) ) T — (D(ﬂ) _ m(ﬂ)) 1 (3.3)
P™Pg =M, Py — M)

but employ an inverse in recognition of the fact that whanewe&U(N) matrix (including thez“ uG = p+m) needs

to go into a “denominator,” we must form its inverdehus, applying (3.1) to (2.11) yields:

2 I v
1 ‘N(/?) ‘ YTy TV W "
kK, =M, ” Ep Mgy " Pisy ~Mp)"
] No’| T/ T.y° ] 3.4
pow =fri T1] + 1 : \ @ \ wy JH{{ K (3.4)
K"k, -m,," Bz My " P ~M
- g
. 1 ‘N(Z) ‘ YTy T vty i
kok, =My, ® By ¥ My " Py ~Mgy"

But there is one final piece of the puzzle that is requedake this all work properly. We must balance the

degrees of freedom used to turn (2.11) into (3.4), andrticpkar, to turn boson rest masses into fermion ressesasin

(2.10), we started with six vector bosons with presumed I?rmsesn(a) T Mgy My Mgy, Mgy, Mgy A massive

vector boson has three degrees of freedom, so the six bag@%0d) brought 3x6=18 degrees of freedom iRfY .
But then we took three of those boson masses and turned theferimiton masses. Massive fermions, however, have
four degrees of freedom, not three. So to promote a masséem mass into a fermion mass, we must transfer one

degree of freedom over from the boson to the fermion. &®thosons must drop down to two degrees of freedom
apiece and thus become massless, i.e., that we musehdvese to zerdjn(a) , m(y) , m(g) = 0. Now, the 18 degrees
of freedom that initially belonged three apiece to sassive vector bosons have been redistributed: 12 of these now
belong to the 3 fermions, and only 6 belong to the 3 remairdagris. This should seem very familiar, as thises th

same way in which massless gauge bosons first becomeenbgswallowing a degree of freedom from a scaladfiel

via the Goldstone mechanism. Here, fermions swallow adegfrfreedom from bosons.



Looking closely at (3.4), we now also see a path to choosingalizations foN which simultaneously are

covariant, retain the original mass dimensionality 8ffor uG, and greatly simplify (3.4). Specifically, we naloose

the covariant, mass dimension-preserving normalizations:

2| _ ay, - 2| _ YL - 2| _ £
‘N(B) ‘ = (E(ﬂ) + mw))k Ka ‘Nw) ‘ = (Ew) + m(‘,))k K: ‘N(z) ‘ = (E(() + m(())k K, - (3-5)
Using these together Witm(a) My, Mgy = 0 in (3.4) yields the vastly simplified:

frT] [wTy“Tyz// }
, Py ~ Mg

wTyTy"w ] {wTy"T Y } 36)

P My Py ~ Mgy

Proceeding apace, the commuti{ﬂdr,TjJ operates to commute the verti({a$y”)(ijV), and in particular,
the operation it performs i[sl'i ,TJ]@('ﬂy”)(ij/)(// :@[y”, V’]y/. This is the same commutati{:@“,G"] of free
indexesy,v with which everything started back in (2.5), and even fuitaek, in the underlying field density
F¥ =0“G" —-9"G* - i[G“,G"J of (2.3) which is the heart of Yang-Mills theory. Sofjhow becomes:

o :_H vl o } {‘ﬂ[yl’“]‘ﬂ ku}{‘/’[yl’]‘ﬂ K D (37)

Py ~ M) Py — My Py — My

All that now remains in (3.7) is the final commutator witbmentum terms such &€ . Going back to
9°GH = i[k'f,eﬂj which tells us that commuting a spacetime field wkfh is just a clever way to take its derivatives, we
can similarly writeg?M # = i[k", M ""] for a second rank tensor field “Y(x?) . So, if we also make use of the

second rank Dirac covariart2ig*” = [y",y“J, and also relabeB - R, 0 - G,{ — B with similar labeling of the

associated wavefunctions, (3.7) now becomes:

Pa,uv - aa (//Ra-ﬂv wR + ,u wGUVU wG‘ + v f)‘[/B LT,u (/IB (38)
" Pr T Mg’ “Ps P — Mg’
Now let's explain what we have done. We deduce leadi(8 &) that a Yang-Mills magnetic monopole

density naturally contains three fermion wavefunctighsand related propagators. But for any SU(N), thgssare N-

component column vectors. So because there areghreee introduce the SU(8)gauge group of QCD with group
generatorsT' = A';i = 1.8 normalized totr ()li )2 =1, and associate each of the thggewith a quark in an eigenstate

of color. Thusy, =[R)=(L 0 o)T:‘/18:;;,13:o>,¢65‘(;>5(o 1 o)T:‘AS:-TjE;,P:g and

Uy s‘ >s (0 0 1 ‘,\8 = -?;,\3 = -%>. This simultaneously forces exclusion so that no twokguiarthis

system have the exact same quantum numbers. If onagbecdiates each color eigenstate with the spacetimeimde

the relatedd’ operator in (3.8), i.,e¢g ~ R, 1 ~G andv ~ B, and keeps in mind thd®”" is antisymmetric in all
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indexes, then we may express this antisymmetry with evpdgducts asr L 1 Cv ~RLC G LC B . So the natural
antisymmetry of the magnetic monopdR™” (compare the top line of (2.4)) leads straight to the redui

antisymmetric color singlet wavefunction configuratiE{G, B]+ G[ B R]+ IﬂR, G] for a baryon (see [2] equation

[2.70]). And, because of what we did to get to the fermiasses in (3.4), we are required to keep the Sde)ge
bosons massless, just as is also required in QCD.alAdwe (3.8), which also confines its gauge fields as deedlm

section 1, we therefore interpret as a baryon.
Finally, by contrasting (3.8) with (2.4), we see ttheg field commutatotG”, G"J at the heart of Yang-Mills

theory in the field strengtlF# = 9#G" -0"G* - i[G”,G”J of (2.4), has now turned into three Dirac tensors

ercl- "”;”””’f’: ore]- "[’;UW”"[;G ore)- "”; Uﬂnis- 3.9)
R G B

4. Mesons

Another hallmark of hadron interaction are messpsjow let’s look for those. A meson is a pagticl

antiparticle (conjugate) pair, so let's start wiitle well-known Dirac conjugation relationshigs. = C(,ZT ,
W.=-y'C* y'C= C(— % )T ,andCy#C = (— yﬂ)T. One may deduce from these, that:

o v _ - ves,, T— - 2 L7 U v \T T v
vey'ywe = cyrycy=—yre ey o= by N Fy STy v @)
Specifically, ¢/ . y* V't =~y y*i simultaneously commutes indexes and reverses sign.

So using-2ig” = [y” ,y”J plus the well-known identity* y* = g** —ig*” derived from combining the
fundamental Dirac relationships* = izly/‘,yVJ and g# = %{y”,y"}, we may decompose one of the numerator terms
for the antisymmetric Dirac tensors in (3.8) o®j3nto:

Yot Y=Lyt W-swy v =Syt wE S ey'y we
=il wrpoy ) so oy racy.)

Becausewo*” ¢ is a tensor an@ca”” . is a conjugate tensor, the additive combinatiav” +@Ca‘“’ Y. may

4.2)

be understood astansor mesarthat is, as a meson particle for which, ergz.?J“lIJ = ng’P2 with J7¢ = 2" in which

the parallel intrinsic spins totaling =1 are parallel to the orbital excitatidn=1. Alternatively, this may be

1 = n®F, also with J*° = 2"" in which theS =1 is antiparallel to the stretched orbital excitatlo= 3.

Further,t?/t/l is a scalar angy. .. is a conjugate scalar, so the additive combinagan+y . (. may be understood
as ascalar mesonfor which nzs'ﬂlJ = n3PO with JP¢ =0*". So, by virtue of (4.2) and (3.9), we see that th

8



commutators [G",GVJ actually contains a tensor meson plus a scalar meSea![8], [4] for a full exposition of

experimentally-observed mesons and their spin classificatie scalars, vectors, tensors, etc. and axial variants.)
In fact, contrasting Witrmp = ﬁF = —iﬁ(-;2 from (1.1) and noting thal = P?* dx, dx,dx,, let us multiply

both sides of (3.8) by the anticommuting volume elendxbtdxﬂd)g, , take the triple integral, then apply Gauss’ /

Stokes law to the right hand side and rename indexes. W/igstise

o
[[]P =[], = g{w e B0t B mB]dxd& {F=-iffc’. @3

We showed in (1.3) that invariancej‘j.f F under a gauge-like transformati¢it” — F*'= F* —9l"GH

means that there are no gauge bosGrisallowed to flow across a closed surface surroundingrey¥dills magnetic

monopole, which means for SUE3)ts gluons are confined. So far, so good. But thatusliwhat cannot flow. The

above (4.3) tells us whatin and doeflow. What is allowed to flow across any boundary,spi@ 2 tensor@a’“’ /R
which via (4.2) may be decomposed into tensor mesons and seslans. Moreover, the Gaussian integration has

removed thed’ operators, and what remains by inspection in (4.3) isvéhvefunction color configuration

RR+ GG + BB, which is precisely the symmetric singlet color comatiion required for a meson!
So, (4.3) would seem to say that only colorless tensbsealar mesons flow across a closed surface

surrounding a magnetic monopole densityHowever, contrasting (4.3) with (4.2), we find that$helars drop out,

g @4{/ P )dx#dxV =0, becauseg”” is a symmetric tensor Whil%dxﬂ, d)g,} =0 are anticommuting so that
> g””dxﬂ Odx, =0, where we show the wedge product to make this point.cleathe geometry itself acts as a filter
(just as it does to confine gluons!) and shuts down twe &f scalar mesons such ad;SO across the boundary, and
forces their confinement as well. All that may crass spin 2 tensor mesons sucffﬁE’2 or n3F2 both with 2% (or
any otherJ =2 mesons that may be constructed entirely out of quarks and etejpagarks, e.gqq(_qa with parallel

spin aIignmentsnSS2 with 27"). Of course, after they have exited the closed surfaese tensor mesons may

thereafter decay into other tensor or vector or scalaxial meson by-products, and so be observed, as theytee

studying baryons and especially nucleons. But what (4.3)isdkat to actually cross a closed surface surrounding a
Yang-Mills magnetic monopole densi®y whatever is inside thﬂjp volume must first be excited into a color-neutral
spin 2 tensor (or axial tensor as we shall discuss mtaily) in order to cross through the surface ﬁaF = —ij.:j;G2

, after which the spin 2 meson may decay into other obsergsdma of other spingSpin 2 meson” is the “passport”
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in and out of a magnetic monopole baryon; all other passagebgiften. There is no coupling to the geometry in (4.3)

that allows a spin 1 meson to pass, spin 1 gluons are moitieel to pass for the same reason that there are no ritagnet

monopoles in Abelian gauge theory, and spin 0 mesons trediloy g“dx, Cdx, =0.

5. Conclusion: Hadronic Chiral Asymmetry and Experimental Validation

We conclude with a brief comment about axial mesons, vérelalso widely observed in hadron physics, most

notably, thel =1, 71 pseudoscalar mesons with'S, and 0™*. All such axial objects involvg? =iy 2>
operating on a wavefunction to produgg = )y, , where a “vector” (V) wavefunctiol,, is defined as a
wavefunction for which the related current denslty = ., y“ip,, transforms as a Lorentz four-vector in spacetime.

Based on combining the relationshyp =iy °%"y*)* with duality based on the work of Reinich [5] later

elaborated by Wheeler [6] which uses the Levi-Civita forsnalsee [7] at pages 87-89), it turns out that theaentole

system of “chiral duality” that is an integral, alb@pparently) heretofore undeveloped feature of the Rigebra. For

example, given the duality relationstipA*” =1 £/ A, one may writey® =iy%"°)” in the alternative form

g’ =i* g*" y°. Then, one may formy, ", =i*, 0™y, by sandwiching between V wavefunctions.
Further, it is also well known because the second rank dagiérator-* = -1 , that one can form continuous (global)
rotations usings® = cosd+ *sind. For example:

‘EVU”V‘//V - 0059172,0‘”1//\, +i sinHzEva“"z//A_ (5.1)
(/IVO'”V(/IA - sinvaa“”wv + COS@‘/IVU”V’//A

Similar transformations may be developed for firstivdt and even zeroth / fourth rank duality, with the rethadt
tensors mix with axial tensors, vectors with axial vectans] scalars with pseudoscalars. And, wher i y°y"y%)/? is
applied to (3.8) as part of a Gordon decomposition (reallpmposition) of a vector current, it turns out thatylearand
meson physics is endemically, organically non-chiral civlié consistent with what is experimentally observelde T

duality angle@ comes to be associated with the strength of the runtmoiggscouplingd ¢, which in turn bears well-

studied relationships, [8], [9] to the experimental momerthamsferQ.

So, by fully developing the chiral duality of Dirac’s etjaa and applying this to (3.8), it may well become
possible to experimentally confirm the thesis that Barygwesyang-Mills magnetic monopoles: simply probe nucleons
at varying energies, study the chiral characteristiche debris that emerges from those probes, and a@rtblose

chiral properties to the probe energies that were applied.
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