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Abstract: We investigate the possibility that a neutral non-regular lepton, of mass 1784 MeV, and a 

charged non-regular lepton, of mass 35 MeV exists in six-dimensional space-time. This proposition 

provides a global rotational symmetry between ordinary third family of leptons and proposed non-

regular leptons. The electric charge swap between ordinary leptons produces heavy neutral non-regular 

leptons of mass 1784 MeV, which may form cold dark matter. The existence of these proposed leptons 

can be tested once the Large Hadron Collider (LHC) becomes operative at the 10 TeV energy-scale. 

This proposition may have far reaching applications in astrophysics and cosmology. 
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1. Introduction 

The nature of dark matter, proposed in 1933 to explain why galaxies in some clusters move 

faster than their predicted speed if they contained only baryonic matter [1], remains one of the 

open questions of modern physics. Several models of dark matter have been suggested, such 

as Light Supersymmetric Particles ([2-7]); heavy fourth generation neutrinos ([8], [9]); Q-

Balls ([10], [11]); mirror particles ([12-16]); and axion particles, introduced in an attempt to 

solve the Charge-Parity (CP) violation problem in particle physics ([17], [18]).  

Recently, the Brane world idea has been used to furnish new solutions to old problems in 

particle physics and cosmology([19-33]). Scenaria in which all fields are allowed to propagate 

in the bulk are called Universal Extra Dimensions (UED) models ([34], [35]). UED models 
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provide a viable dark matter candidate, namely the Lightest Kaluza Klein particle (LKP) 

([36], [37]).   

Gauge-Higgs unification models, based on grand unified gauge theories defined on six-

dimensional space-time, have interesting properties. In these models, the extra-dimensional 

space has the topological structure of a two-sphere orbifold  2
/  2 [68-70]. 

Furthermore, (thin) braneworlds with conical singularities in six-dimensional Einstein-Gauss-

Bonnet gravity with a bulk cosmological constant have been investigated [71]. For axially 

symmetric bulks, however, this model does not provide isotropic braneworld cosmological 

solutions [71].  

In the present paper, we investigate the possibility that a neutral non-regular lepton, of mass 

1784 MeV, and a charged non-regular lepton, of mass 35 MeV exists in six-dimensional 

space-time. This proposition provides a global rotational symmetry between the ordinary third 

family of lepton and the new non-regular leptons. The electric charge swap between ordinary 

leptons produces heavy neutral non-regular leptons of mass 1784 MeV, which may form cold 

dark matter. The existence of these proposed leptons can be tested once the Large Hadron 

Collider (LHC) becomes operative at the 10 TeV energy-scales.  

2. Solution of 6-dimensional Einstein equations 

Following, Gogberashvilli at al. [38], we consider a 6-dimensional spacetime with signature

( , , , , , )      . Einstein’s equations in this spacetime have the form  

4

1 1
( )

2
AB AB AB ABR g R g T

M
                                  (1)   

where M the 6-dimensional fundamental is scale and  is the cosmological constant. Capital 

indices , 0,1,2,3,4,5A B  . 

To split the 6-dimensional space-time into 4-dimensional and 2-dimensional parts, we use the 

metric ansatz [38]: 

 2 2 2 2 2 2 2( ) ( ) ( sin ),ads g x dx dx d b d 
                        (2)     

where   and b  are constants and ( )  is the warp factor. This warp factor equals one at 

brane location ( 0)   and decreases to zero in the asymptotic region ( )  , at the south 

pole of the extra 2-dimensional sphere. Here the metric of the ordinary 4-dimensional 

( )ag x  has signature ( , , , )    , with , , 0,1,2,3    . The extra compact 2-manifold is 

parameterized by the spherical angles ,   ( 0 ,0 2       ). This 2-surface is attached 

to the brane at point 0  . When   changes from 0 to π, therefore, the geodesic distance into 

the extra dimensions shifts from the north to the south pole of the 2-spheroid. For 1b  in 

equation (2), the extra 2-surface is exactly a 2-sphere with radius  (0.1TeV
-1

).   

The ansatz for the energy-momentum tensor of the bulk matter fields is: 

 

( ),T g E     ( ),ij ijT g P    0.iT          (3) 
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Small Latin indices in equation (3) correspond to the two extra coordinates. The source 

functions E and P depend only on the extra coordinate θ.  For these ansätze, Einstein’s 

equations (1) take the following form: 

 
2 2

2 4
3 3 3 cot 1 [ ( ) ],E

M

   
 

 

  
      

2 2

2 4
6 4 cot [ ( ) ],P

M

  
 



 
   

2 2

2 4
4 6 [ ( ) ].P

M

  


 

 
  

        
(4) 

 

where the prime denotes differentiation  d/dθ.  

 

For the 4-dimensional space-time, we have assumed zero cosmological constant. Einstein’s 

equations take the form: 

 

(4) (4)1
0,

2
R g R             (5) 

 

where (4)
R  and (4)R are 4-dimensional Ricci tensor and scalar curvature, respectively. In [72] 

M. Gogberashvili and D. Singleton found a non-singular solution of (4) for boundary 

conditions (0) 1  , (0) 0.   This solution was given by: 

 
2( ) 1 ( 1)sin ( / 2),a    

        
(6) 

 

where a is the integration constant. The source terms for this solution were given by: 

 

2

3( 1) 3
( ) ,

5 ( ) 10 ( )

a a
E 

   

 
   

 

 
2

4( 1) 3
( ) ,

5 ( ) 5 ( )

a a
P 

   

 
   

 

     (7) 

 

with the radius of the extra 2-spheroid given by 2 410 / .M     

 

For simplicity, in this paper we take 0a 
 
so that the warp factor takes the form: 

 
2 2( ) 1 sin ( / 2) cos ( / 2).     

       
(8) 

 

This warp factor equals one at the brane location (θ= 0) and decreases to zero in the 

asymptotic region θ=π, i.e., at the south pole of the extra 2-dimensional spheroid. The 

expression for the determinant of our ansatz (2) used in this paper is given by: 

 

 

(4) 2 4 ( )sin ,g g                (9) 

 

 

where (4)g  is determinant of 4-dimensional space-time. 

3. Non-regular leptons in six dimensions 

Here we assume that the zero mode corresponds to the non-regular leptons which are copies 

of the third family of leptons. Although uncertain, this assumption is not physically 
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improbable: it is reasonable to expect that, when entering the six-dimensional bulk, third 

family leptons profoundly change their properties and lose, so to say, their individuality - for 

instance, spin and magnetic moment. The present assumption is consistent with the Arkani-

Hamed, Cheng, Dobrescu, and Hall (ACDH) model ([75]). The latter proposes a version of 

“Top Mode Standard Model (TMSM)” in six dimensions, in which the third family of 

fermions and the gauge boson are placed in the six-dimensional bulk, while the first and 

second families are in the four-dimensional brane (3-brane). The ACDH model formulates the 

top condensate fermion-antifermion bound state tt  in a way similar to the role of a Cooper 

Pair in superconductivity, playing the role of Higg boson in the SM ([76], [77]). 

Let us now consider spinors in the 6-dimensional space-time (2), where the warp factor ( )   

has the form (8). The action integral for the 6-dimensional massless fermions in a curved 

background is: 

 

6 .B A
BA

S d x g i h D h c
      
 

       
(10) 

AD  is the covariant derivative and A  is the 6-dimensional flat gamma matrices and we have 

introduced the sechsbein  
A
Ah through the usual definition [38]. 

A B
AB A B AB

g h h   ,         (11) 

where ,A B  are local Lorenz index.       

The six dimensional spinor is given by: 

( ) .Ax





 
  
 
 

          (12) 

This 6-dimensional spinor has eight components and is equivalent to a pair of 4-dimensional 

Dirac spinors , . 
 
The representation of the flat (8 × 8) gamma-matrices are given in [38]:

 

0 0 1 0
, , ,

0 1 0 0

i

i


  







      
          

     
      (13) 

where 1 denotes the 4-dimensional unit matrix and   are ordinary (4×4) gamma-matrices. 

The representation (13) gives the correct space-time signature ( , , , , , ).     
 

The 

generalizing of 5  matrix is:  

5
7

5

0
.

0





 
   

 
          (14) 

The variation of the action (10) yields to the following 6-dimensional massless Dirac equation 

( ) ( ) 0,B B B A
BB B

h D h D h D x  
               (15) 

with the sechsbein for our background metric (2) given by  
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1 1 1
, ,

sin

B B B B
A

h  
  

   

 
  
  .

        (16) 

For the definition of spin connection: 

1 1
( ) ( )

2 2

1
( ) .

2
h

MN NM N N NN M M
M M N N M M N N M

PM QN R
P Q MQR PR

h h h h h h

h h h h

        

   

    (17) 

The non-vanishing components of the spin connection are:  

sin
     ,  

sin

2




 


 


           (18) 

The covariant derivatives of spinors field have the form:  

sin
( ) ( ) ( )

4

( ) ( )

cos
( ) ( ) ( )

2

A A

A A

A A

D x x

D x x

D x x

   

 

   







      

   

      

       (19) 

The Dirac equation take the form [78], [79]:  

1 sin 1 1 cot
( )

4 sin 2

1 1 sin cot 1
( ).

2 sin

A

A

x
x

x
x

    
   



  



 

       

 

      

   
              

    

    
          

     

  (20) 

This system of first-order partial differential equations has the following solutions: 

 

 

0 0

2

0 0

( )
1

( )
2 ( ) ( )

A
a x

x

x





 

    

 
  
  
 

 ,      (21) 

 0 0( ), ( )x x    are the 4-dimensional Dirac spinors.  

Here we note that since the dimensions of  ( )Ax  in six dimensions is 
5/ 2m , the dimensions 

of 0 0( ), ( )     and  0 0( ), ( )x x    should be  m  and 
3/ 2m , respectively. 

We are looking for 4-dimensional leptonic zero modes. To this end, we consider the 

conditions under which equation (21) obeys the 4-dimensional, massless Dirac equations;
 

 

0 0( ) ( ) 0x x   
                 (22) 
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Of course, there are also very massive KK modes of masses n/ε. However, we assume that 1/ε 

≈10TeV. These massive KK modes, therefore, have a much higher mass and are distinct from 

the third family of leptons.  

For the massless case, the 4 spinors 0 0( ), ( )x x   are indistinguishable from the 4-

dimensional point of view, and we can write 0 0( ) ( )x x   .
 Inserting (21) and (22) into 

(20) converts the bulk Dirac equation into: 

 

0

0

( )
cot 0

( )

  


 

   
     

   
         (23) 

 

The solutions of these equations are: 

 

0 0
0 0( ) , ( )

sin sin

A B
   

 
    ,      (25) 

 

where A0 and B0 are integration constants with the dimension of mass. The normalizable 

modes are those for which: 

 

 6 (4) 4
0 0 0 0gd x g d x                (26) 

 

In other words, we want the integral over the extra coordinates,   and   to equal 1. Inserting 

(21), (25) and the determinant (9) into (26), the requirement that the integral over   and   

equals 1 gives: 

 
2 * *

0 0 0 0( ) 1A A B B            (27) 

 

Explicitly, the expressions for the three normalizable 8-spinors (21) that solve the 6-

dimensional Dirac equations (20) are: 

 

0
0 02

0

1
( ) ( )

2 sin ( )

A A
x x

B


  

 
   

 
        (28) 

 

where constants A0 and B0 obey the relations (27).  

 

 

4. Non-regular leptons coupling with Higgs field 
Brane solutions with different gauge fields and fermion localization mechanisms have been 

investigated in the literature ([38-43]). The mass of the zero mode is given via the Higgs 

mechanism ([38-45]), ([58-60]).   

Following A. Neronov, S. Aguilar and D. Singleton [73], we address both outstanding issues 

by introducing a coupling between non-regular leptons and the bulk scalar field 0 ( )Ax  

(with dimensions (mass)
2
) by adding to the action an interaction term of the form: 

 

4
int 0 0 0

1
S d xd d g

F
        .       (29) 

F is the coupling constant between the scalar and spinor fields and has the dimensions of 

mass.  
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For simplicity, we take the massless, real scalar field to be of the form 

 

0 0 0( ) ( )Ax k              (30) 

 

i.e. we take the scalar field as only depending on the bulk coordinates θ,φ and not on the 

brane coordinates x
μ
.  

 

The equation of motion of a massless real scalar field in six dimensions has the form: 

 

0

1
( ) 0AB A

A BD gg D x
g

   
 

        (31) 

 

Using the form of Laplace operator on our 2-sphere: 

 
2 2

2 2 2 2 2

1 4 1
cot ,

sin




     

    
          

     (32) 

 

with  derived by (8), equation (31) can be written as: 

 

0 0

4sin
cot 0.

1 cos






 
      

 
        (33) 

 

In order to make meaningful estimates of the masses of non-regular leptons we use 

approximate solutions. Close to the origin (θ→ 0), when sin θ → 0 and φ → 1, equation (33) 

can be approximated as: 

 

0 0cot 0,               (34) 

 

with the following solution 

 

 0 0( ) 1 ln[tan( / 2)] .D            (35) 

 

We determine the constants D0 by requiring that the scalar field is normalized over the extra 

coordinates; i.e. using (9), we require: 

 

2 4 4
0

0

2 sin ( ) ( ) 1,d


               (36)  

 

From (36) we derive D0=10TeV.  

 

Substituting (30) and (21) into (29), we find: 

 

0 4 (4)
int 0,0 0 0( ) ( ),S U d x g x x              

 
22

0 * *0
0,0 0 0 0 0 0 0 0 0 0

0 0

sin ( )[ ( ) ( ) ( ) ( )].
2

k
U d d A A B B

F

 
           


        (37) 
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Below, we use the new definition 0 0 /f k F  for the ratios of the 4-dimensional constant 

values of Higgs field derived from (30). The mass term is, then, as follows: 

 
0
0,0 0 0 35U f D MeV   ,        (38) 

 

where 6
0 10f  and 0 10D TeV .

 

The neutral non-regular leptons remain massless, since they are not mixed to the states 

localized on the brane. Violation of the lepton number Ls , can be achieved by introducing 

operators of six-dimension in the number of fields, 2
0( ) /

sLl M
,
where 0l  is the non-regular 

lepton doublet, λij are the dimensionless couplings and 
sLM  is the violation energy scale. 

Such operators may be generated through gravity effects [74]. Violation of the lepton number 

Ls  generates neutral non-regular lepton masses: 

2
0( ) /

sij ij LM l M 
          (39)

 

For λij ≈ 1 and 10
sL cM M TeV  , we find mij  ≈ 1784 MeV . 

5. The set-up of the electric charge swap (ECS) symmetry  

Non-regular leptons have the same mass as ordinary third family leptons. Hypothetical non-

regular leptons are, a) a zero-charged version of the tau, 0 (1784MeV) and, b) a positive 

charged version of the tau neutrino, 
 (35MeV). Therefore, non-regular leptons may be 

obtained by the swap of electric charges between tau and tau neutrino particles. We call these 

proposed non-regular leptons, electric charged swap (ECS) leptons. 

Although ECS leptons have the same mass as the ordinary third family leptons, they are 

distinguished from the latter by their different lepton numbers ( 1sL   for ordinary leptons 

and 1sL   for ordinary antileptons, respectively), and by their electric charges (positive or 

neutral for ordinary leptons, and negative or neutral for ordinary antileptons, respectively). 

We hypothesize that ECS leptons are produced by third family leptons when these enter the 

six-dimensional bulk: in these conditions, the properties of third family leptons change 

profoundly as these leptons lose, so to say, their individuality and swapping their electric 

charge. 

Το formulate the swap of electric charge between ordinary leptons, we have to look for 

symmetry that characterizes swap process in the framework of  2-extra dimensions with 

compactification scale 10 TeV. 

We consider the 2-sphere 
2S  as a quotient space 2 (2) / (1)LS SU U  . We express this 2-

extra dimensional sphere 
2S in terms of the new symmetry between the original lepton and 

the new, ECS lepton doublets.  

This is achieved in the following steps:  
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First, we observe that both the ordinary lepton doublet 0( ) ( , )Ll x   and the ECS lepton 

doublet 0
0( ) ( , ) Ll x     can form the fundamental representation of (2)LSU [39]. This 

fundamental representation is given by: 

[ , ]j k jkl lI I i I
          (40) 

Τhe generators are denoted as: 
 

 
1

2
i iI       .                                                                    (41)

 

where  

1 2 3

1 0 0 1 0
, ,

0 1 0 0 1

i

i
  

     
       

             
(42)

 

are the isospin versions of Pauli matrices.  

The action of the latter act on the new leptons states is represented by: 

0 1 0
,

0 1
L      
    
   

.                                                                                                             (43)
 

To link the two distinct sectors, ordinary and ECS leptons, we assume that neither ordinary L  

nor ECS sL lepton numbers are conserved, while the overall lepton number must be 

conserved.  

0overall sL L L                          (44) 

sL L , ( ) ( ) 1sL L                         (45) 

sL L , 
0( ) ( ) 1sL L                        (46) 

 

The quantum numbers of the new ECS leptons of mass 1784 MeV and 35MeV  respectively, 

are given in (Table 1). 
 

Table.1. Quantum numbers (mass M, weak isospin I, charge Q, hypercharge YS, Lepton number LS) of 

the ECS leptons 0
L ,

v


.
 

New lepton M I I-z Q YS           LS 

v


 
35MeV 

 

½   ½ 1 1           -1 

0
L  

1784MeV ½  -½  0 1           -1 
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The next step is to define the group transformation that can account for the swap of electric 

charges between the tau and tau neutrino particles. The ECS transformation must be derived 

from a transformation from  

1) (2) / (1)L YSU U  , in which the fundamental representation of (2)LSU is 0( ) ( , )Ll x  

and (1)YU  is the symmetric group generated by hypercharge 1Y    to,  

2) (2) / (1)
SL YSU U , in which the fundamental representation of (2)LSU is 0

0( ) ( , ) Ll x      

and (1)
SYU  is the symmetric group generated by swap hypercharge 1SY  .  

The quotient space SU (2)/U (1) is diffeomorphic to the unit 2-sphere S
2
. Consequently, the 

swap of the electric charges between the tau and neutrino of tau particles must be an 

automorphism of the 2-sphere to itself. 
 
  

 

Here, since the two extra dimensions are endowed with the Fubini-Study
[1]

 metric [46], [47], 

not all Möbius transformations (e.g. dilations and translations) are isometries. 
 
Therefore, the 

automorphism from the 2 (2) / (1)S SU U  to itself, which brings the electric charge swap 

between the tau and neutrino of tau particles, is given by the isometries that form a proper 

subgroup of the group of projective linear transformations 2 ( arg )
ˆ( ) Ch ePGL C  , namely 

2( arg ).Ch ePSU
 
Subgroup PSU2(Charge) is isomorphic to the rotation group ( )(3) ECSSO  [46], 

[47], which is the isometric group of the unit sphere in three-dimensional real space 3R . The 

automophism of the Riemann sphere Ĉ is given by:  

( )
( ) 2( arg )

ˆ( ) (3) ,ECS
ECS Ch eRot C PSU SO                   

(47)

Ĉ C 
 

where Ĉ is the extended complex plane, 2( arg )Ch ePSU is the proper subgroup of the projective 

linear transformations, and swap symmetry, ( )(3) ECSSO  is the group of rotations in three-

dimensional vector space 3R .   

The universal cover of ( )(3) ECSSO  is the special unitary group ( )
(2)

ECS
SU  .  This group is 

also differomorphic to the unit 3-sphere S
3
. 

We regard ordinary and ECS leptons as different electric charge states of the same particle –

analogous, that is, to the proton-neutron isotopic pair. Finally, in terms of rotational symmetry 

between the original lepton and the proposed ECS leptons, the 2-extra dimensional sphere 2S

is given by: 

( )2
( )  (2) / (1)

s

ECS
Y YS SU U                                                                                 (48) 

 

 

[1]
The round metric of the 2-extra dimensional sphere can be expressed in stereographic coordinates as 

 
2 2
1 2

2 2(1 )

dy dy
g






  ,
 where  

2 2
1 2y y  

.
The metric g  is Fubini-Study metric of the 2-sphere [46], [47].
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Where ( )
(2)

ECS
SU  is the special unitary group, and ( )(1)

sY YU  is the symmetric group 

generated by hypercharge ( )SY Y . 

6.W, Ζ-boson properties in the presence of the ECS symmetry 

There will also be very massive KK modes of masses  n/ε.  However, we will assume later 

that 1/ε≈10TeV. Thus these massive KK modes have a much higher mass and are distinct 

from the third family leptons . We assume that the standard Model (SM) remains valid up to a 

cut-off of the order of the LHC center-of-mass energy, 10TeV. The SM with a cut-off of this 

order of energy would be 10% fine tuned, and so we should expect to see new physics at the 

LHC. The search for new physics involves measuring deviation from the SM. Here, this 

deviation is small and a precise measurement may be needed. For this reason we envisage an 

ECS physics program with LHC running at 14 TeV center -of- mass energy, and integrated 

luminosity of 10fb
-1

 per year. 

At the collision scale of energy below the compactification scale ( 10 )sM TeV , ordinary 

third family leptons can decay to second and first family leptons. Therefore, the overall lepton 

number given by equation (44) is not conserved ( sL L ≠0), sL  ≠ L ), 
while the ordinary 

lepton number L  and ECS lepton number sL can be conserved.  

Here, first and second family leptons of swap electric charge do not exist by assumption. The 

ECS lepton number swapL is conserved because of non-mixing between ordinary leptons and 

ECS leptons at energy scales below the compactification scale ( 10 )cM TeV . Therefore, ECS 

leptons can be stuck to the scale of energy close to compactification scale ( 10 )cM TeV , 

while ordinary third family leptons are present at collision-scale energy ( 10 )sM TeV .   

The contribution of ECS leptons at collision-scale energy sM  ≤ 10 TeV is given by the 

mixing between the compactification and the current collision scale of energies. This mixing 

is proportional to

4

1 s

c

M

M

 
  
 

. The Fermi constant ( 6 210FG GeV  ) is modified as: 

4

s
F F F

c

M
G G G

M

 
    

 
.            (49) 

The above equation yields to changes of Fermi constant:  

4

| | s
F F F F

c

M
G G G G

M

 
     

 
.                                (50) 

Since the ECS leptons can be stuck to the scale of energy close to compactification scale

( 10 )cM TeV , while ordinary third family leptons are present at collision-scale

( 10 )sM TeV .  We consider that the ordinary leptons coupling to (W, Z) gauge bosons by 

FG , and the ECS leptons coupling to (W, Z) gauge bosons by the changes of FG .  

Beginning with the relation: 

2 2 2( / 2) /8 cosF Z WG g M 
,        (51) 
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where (experimentally) ρ≈1, we obtain a change of 2g  :   

2

cos
82 2

F F
w

Z

G G g

M

 
                      (52) 

Substituting equations (50) and (51) to equation (52) we obtain  

4 2 2

cos cos
8 82

sF
w w

c Z Z

MG g g

M M M


  

 
  
 

                 (53) 

Here, because of the small deviation from SM (  
≤ -0.03) at energy-scale close to

( 10 )cM TeV , equation (53) becomes:  

4 2 2

cos cos
8 8

s
w w

c Z Z

M g g

M M M


 

 
 

 
 ,                 (54) 

where 

4

2 2 s

c

M
g g

M


 
  

 
 .                   (55) 

The contribution of ECS leptons to the (W, Z) decays at collision scale of energy 

(0.1TeV≤Ms≤10TeV) is given by 

40( )

( )

s sF

F cSM

W MG

G MW





 

 

 

 

   
   

   
, 

40 2

0 2

( )

( )

s s

cSM

Z ll Mg

MZ ll g

   
   

   
 ,  (56) 

where  

3

( ) ,
6 2

F W
SM

G M
W  



      ,   
2

0 2 2( )
48

Z
SM V A Z

g
Z ll c c M


    ,

   (57)  

the SM decay rates of the W    , 0Z ll , respectively [39]. 

By equations (56) we conclude that the contribution of ECS leptons is suppressed at collision-

scale of energy, below the compactification scale (Ms<10TeV), and that the ECS lepton does 

not break the Z pole observables at LEP.2 (Ms≈0.1TeV-1TeV) [50], [51]. However, we find 

that the contribution of ECS at current collision energy scales (e.g.Ms≈7TeV
 
at the LHC [52, 

48-49] and LEP.2 measurements at electroweak scale of energy is very small. 

The predicted neutral ECS lepton (1784 MeV) is lighter than / 2ZM contributed to the 

invisible Z width  

 
0

0

3/ 2
24

2
1 2

2

s
Z Z

C Z

mM
m M

M M

 



    
             

 ,    (58) 



13 
 

where 167MeV  is the Z invisible decay into one neutrino species [51].  We find that the 

contribution of the neutral ECS lepton Z ≈3.1eV, at LEP.2 collision energy scale is 

required to be ( 0 ). This is a dark matter particle. 

 

Since ECS lepton number sL  is conserved, ECS leptons can be created or annihilated in pairs 

through (Z, γ). Here we study the process ( )e e       and 0 0( )e e     at collision 

energy scale (0.1TeV≤Ms≤10TeV). The cross section of the process 0 0( )e e    is given 

by: 

0 0( ) 4
2

F
ann s

G
e e     

     .      (59) 

Substituting equation (50) to equation (59) we derive: 

40 0

0 0

( )

( )

ann s s

cann SM

e e M

Me e

  

  

 

 

   
  

    
 ,      (60) 

where 0 0( ) 4
2

F
ann SM

G
e e          is the SM neutrino cross section of the process. 

The cross section of the process ( )e e       is given by: 

( ) ( )s s QEDe e R e e


   
     

           ,     (61) 

where  

2
3

2

1

8

F Z

Z

G M
R

e


 
    

 is the ( 
 ) cross section ratio.  

Substituting equation (50) to equation (61) we get: 

8

s

c

R M

R M









 
  
 

 ,         (62) 

where  

2
3

2

1

8

F Z

Z

G M
R

e

 
    

 , 

the SM muon cross section ration of the process ( )e e     
.
 

By equation (62) we conclude that the contribution of ECS leptons at the current LHC 

collision energy scale (Ms≈7TeV) [52] and LEP.2 measurements of cross-section for electron-

positron annihilation [50], [51] is too small to be detected. The E821 experiment at the 

Brookhaven National Laboratory (BNL) studied the precession of muon and anti-muon in a 
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constant external magnetic field as they circulated in a confining storage ring [50], [51]. For 

two extra dimensions of radius (1/10TeV), the additional contribution of the proposed ECS 

lepton ( 35MeV ) to anomalous magnetic moments is: 

2

11

2
(1) 10add

C

m
a O

M




   ,       (63) 

which is too small to be detected by this experiment ([51-57]).  

For this reason, neither the current LHC [52, 48-49] collision scale of energy, nor the LEP2 

measurements of the cross-section for electron-positron annihilation [50], [51] and of 

anomalous magnetic moments of the electron and muon [50], [51] can prove the existence of 

the proposed ECS lepton (35 MeV). The energy scale we propose here is larger than the 

electroweak energy scale. These propositions, and the predicted level of the standard model 

(SM) loop corrections, can only be tested at a higher energy linear collider with high 

integrated luminosity >>> 50 fb
−1

, such as the LHC. 

5. Discussion 

The proposition of electric charge swap predicts the occurrence of a lepton ( 0 ) with mass 

1784 MeV. It follows that the predicted lepton ( 0 ) is a stable particle that contributes to the 

dark matter of the Universe. As long as T≥ Mc/10,
 
where (Mc≈10TeV) is the compactification 

energy scale, ECS - 0 leptons could be produced in the early Universe through reactions of 

the 0 0( )e e     type, and annihilated through the backreaction 0 0( )e e    . Once 

temperature drops below /10cM ,
 the abundance of ESC - 0 leptons also begins to drop. The 

freeze-out temperature for these leptons is TF=Mc/10=1TeV. The relic density of ECS - 0

leptons is determined by their annihilation cross-section, which impels that [2] : 

0

37 2
2

0 0

10
0.1

( )ann s

cm
h

e e   



 
  

  
 .      (64) 

The interactions of the ( 0 ) lepton freeze out at a temperature such that ( 0 0 / Fx m T
 


≈1.7×10
-3

 ) is much smaller than 1. Therefore, the ( 0 ) leptons cannot have significant relic 

abundance today.  

 

 

[2]  At the freeze out temperature of ( 1 )FT TeV :
 

 
40 0 36 2( ) / ( ) 10ann s F c ann SMe e T M e e cm                where  

4 4/ 10 ,F cT M 

32 2( ) 10ann SMe e cm        .
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However, beyond the knowledge that 2 0.1DM h  ,
we do not have enough information on 

the nature of Cold Dark Matter (CDM). More evidence from collider experiments is 

indispensable for the diagnosis if the CDM particle identity, namely their mass, spin and other 

internal quantum number(s) [61].  

Recently, (PAMELA) reported a sharp increase of positron fraction / ( )e e e   in the 

cosmic radiation for the energy range 10 GeV to 100 GeV [62], [63] and no excess in 

/p p   from the theoretical calculations. And also very recently, (Fermi- LAT) [64] and 

(HESS) [65] data showed clear excess of ( )e e  spectra in the multi-hundred GeV range 

above the conventional model [66], although they do not confirm the previous (ATIC) [67] 

peak. The phenomenology of ECS dark matter at PAMEL/FERMI is still under investigation. 

 

6. Conclusions 

The (W
±
, Z) decay to ECS lepton (1784 MeV) and charged ECS lepton (35 MeV) proposed 

here is strictly a phenomenon of the 10TeV energy-scale. Its proposition is formulated by 

reference to a 2-extra dimensional sphere with a global isometric group, the electric charge-

swapping group, (3)ECSSO . Instead of introducing ad hoc new particles, our proposition 

introduces new particles from ordinary ones, using an alternative interpretation of the 

distribution of lepton electric charge. We suggest that the additional contribution to SM 

comes from the proposed new leptons. The existence of these ECS leptons is testable once the 

LHC becomes operative. The neutral ECS lepton (1784 MeV) is a possible cold dark matter 

candidate.  

Furthermore, we find that the contribution of the proposed ECS leptons on scale of energies 

below the compactification scale is suppressed. Therefore, the proposed new leptons are not 

detectable by current collider experiment. 
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