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Abstract

In this paper we propose a new conjecture about prime numbers called
Conjecture C, and we prove that if this conjecture is true, then Legendre’s
conjecture, Brocard’s conjecture, and Andrica’s conjecture are all true.
Moreover, we also prove that if Conjecture C is true, then there is at least
one prime number in the interval [n, n+ 2 b

√
nc − 1] for every positive

integer n.

1 Introduction.

We start this paper by making the following conjecture:

Conjecture 1. If n is any positive integer and we take n consecutive integers
located between n2 and (n + 1)

2
, then among those n integers there is at least

one prime number. In other words, if a1, a2, a3, a4, . . . , an are n consecutive
integers such that n2 < a1 < a2 < a3 < a4 < ... < an < (n + 1)2, then at
least one of those n integers is a prime number. This conjecture will be called
Conjecture C.

Remark 1. In this paper, whenever we say that a number b is between a number
a and a number c, it means that a < b < c, which means that b is never equal
to a or c. Moreover, the number n that we use in this document is always a
positive integer.

Let us see some cases in which Conjecture 1 is true:

• If we consider n = 1, we have 12 < 2 < 3 < (1 + 1)2, and we can see that
the numbers 2 and 3 are both prime numbers.

• If we consider n = 2, we have 22 < 5 < 6 < 7 < 8 < (2 + 1)2. If we take
any sequence of 2 consecutive integers greater than 22 and smaller than
(2 + 1)2, then at least one of those 2 integers is a prime number. This is
true because each of the sequences {5, 6}, {6, 7}, and {7, 8} contains at
least one prime number.

• If we consider the case where n = 3, we have 32 < 10 < 11 < 12 <
13 < 14 < 15 < (3 + 1)2. It is easy to verify that each of the sequences
{10, 11, 12}, {11, 12, 13}, {12, 13, 14}, and {13, 14, 15} contains at least one
prime number.
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We can easily prove that Conjecture 1 is also true for n = 4, n = 5, n = 6,
and larger values of n.

2 Legendre’s conjecture.

Legendre’s conjecture [4] states that for every positive integer n there exists at
least one prime number p such that n2 < p < (n + 1)2.

It is easy to verify that the amount of integers located between n2 and
(n + 1)

2
is equal to 2n.

Proof.

(n + 1)
2 − n2 = 2n + 1

n2 + 2n + 1− n2 = 2n + 1

2n + 1 = 2n + 1

We need to exclude the number (n + 1)
2

because we are taking into

consideration the integers that are greater than n2 and smaller than (n + 1)
2
.

2n + 1− 1 = 2n

According to this result, between n2 and (n + 1)
2

there are two groups of n
consecutive integers each which do not have any integer in common. Example
for n = 3:

32 10 11 12︸ ︷︷ ︸
Group A

(n consecutive integers)

13 14 15︸ ︷︷ ︸
Group B

(n consecutive integers)︸ ︷︷ ︸
2n consecutive integers

(3 + 1)2

Group A and Group B do not have any integer in common. Now, according
to Conjecture 1, Group A contains at least one prime number and Group B also
contains at least one prime number, which implies that between 32 and (3 + 1)

2

there are at least two prime numbers. This is true because the numbers 11 and
13 are both prime.

All this means that if Conjecture 1 is true, then there are at least two prime
numbers between n2 and (n + 1)

2
for every positive integer n. As a result, if

Conjecture 1 is true, then Legendre’s conjecture is also true.

3 Brocard’s conjecture.

Brocard’s conjecture [3] states that if pn and pn+1 are consecutive prime

numbers greater than 2, then between (pn)
2

and (pn+1)
2

there are at least
four prime numbers.

Since 2 < pn < pn+1, we have pn+1 − pn ≥ 2. This means that there is at
least one positive integer a such that pn < a < pn+1. As a result, there exists
at least one positive integer a such that (pn)

2
< a2 < (pn+1)

2
.
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Conjecture 1 states that between (pn)
2

and a2 there are at least two prime

numbers and that between a2 and (pn+1)
2

there are also at least two prime
numbers. In other words, if Conjecture 1 is true, then there are at least four
prime numbers between (pn)

2
and (pn+1)

2
. As a consequence, if Conjecture

1 is true, then Brocard’s conjecture is also true.

4 Andrica’s conjecture.

Andrica’s conjecture [1, 2] states that
√
pn+1 −

√
pn < 1 for every pair of

consecutive prime numbers pn and pn+1 (of course, pn < pn+1).
Obviously, every prime number is located between two consecutive perfect

squares. Now, let us suppose that p is any prime number and q is the prime
number immediately following p. If we take into account that p is obviously
located between n2 and (n + 1)

2
for some n, two things may happen:

Case 1. The number p is located among the first n consecutive integers that are
located between n2 and (n + 1)

2
. These n integers form what we call ‘Group A,’

and the following n integers form what we call ‘Group B.’

Let us look at the following graphic.

n2 < • • ... • •︸ ︷︷ ︸
Group A

(n consecutive integers)

• • ... • •︸ ︷︷ ︸
Group B

(n consecutive integers)︸ ︷︷ ︸
2n consecutive integers

< (n + 1)2

If p is located in Group A and Conjecture 1 is true, then q is either located in

Group A or in Group B. In both cases we have
√
q−√p < 1, since

√
(n + 1)

2−
√
n2 = 1 and the numbers

√
q and

√
p are closer to each other than

√
(n + 1)

2

in relation to
√
n2.

Case 2. The prime number p is located in Group B.

If p is located in Group B and Conjecture 1 is true, it may happen that q is
also located in Group B. In this case, it is very easy to verify that

√
q−√p < 1,

as explained before.
Otherwise, if q is not located in Group B, then q is located

in ‘Group C.’ In this case, the largest value q can have is
q = (n + 1)2 + n + 1 = n2 + 2n + 1 + n + 1 = n2 + 3n + 2, while the smallest
value p can have is p = n2 + n + 1 (in order to make the process easier, we are
not taking into account the fact that in this case the numbers p and q have
different parity, so they can not be both prime at the same time).

This means that the largest possible difference between
√
q and

√
p is
√
q −
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√
p =
√
n2 + 3n + 2−

√
n2 + n + 1.

n2 < ...

maximum distance between p and q

4 • ... • •︸ ︷︷ ︸
Group B

(n consecutive integers)

< (n + 1)2 < • • ... • • �︸ ︷︷ ︸
Group C

(n+1 consecutive integers)

4 = n2 + n + 1 = p
� = n2 + 3n + 2 = q

It is easy to prove that
√
n2 + 3n + 2−

√
n2 + n + 1 < 1.

Proof. √
n2 + 3n + 2−

√
n2 + n + 1 < 1√
n2 + 3n + 2 < 1 +

√
n2 + n + 1

n2 + 3n + 2 <
(

1 +
√
n2 + n + 1

)2
n2 + 3n + 2 < 1 + 2

√
n2 + n + 1 + n2 + n + 1

n2 + 3n + 2− n2 − n− 1 < 1 + 2
√
n2 + n + 1

2n + 1 < 1 + 2
√
n2 + n + 1

2n < 2
√
n2 + n + 1

n <
2
√
n2 + n + 1

2

n <
√

n2 + n + 1

n2 < n2 + n + 1,

which is true for every positive integer n.

Remark 2. In general, to prove that an inequality is correct, we can solve that
inequality step by step. If we get a result which is obviously correct, then we
can start with that correct result, ‘work backwards from there’ and prove that
the initial statement is true.

We can see that even when the difference between q and p is the largest
possible difference, we have

√
q − √p < 1. If the difference between q and p

were smaller, then of course it would also happen that
√
q −√p < 1.

According to Cases 1. and 2., if Conjecture 1 is true, then
Andrica’s conjecture is also true.

To conclude, if Conjecture 1 is true, then Legendre’s conjecture,
Brocard’s conjecture, and Andrica’s conjecture are all true.

5 Possible new interval.
It is easy to verify that if Conjecture 1 is true, then in the interval[
n2 + n + 1, n2 + 3n + 2

]
there are at least two prime numbers for every positive

integer n.
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The number n2 + n + 1 is always an odd integer.

Proof.

• If n is even, then n2 is also even. Then we have

(even integer + even integer) + 1 = even integer + odd integer =

= odd integer.

• If n is odd, then n2 is also odd. Then we have

(odd integer + odd integer) + 1 = even integer + odd integer =

= odd integer.

Since the number n2 + n+ 1 is always an odd integer, then it may be prime
or not.

Now, the number n2+3n+2 can never be prime, since this number is always
an even integer greater than 2.

Proof.

• If n = 1 (smallest value n can have), then n2 + 3n + 2 = 1 + 3 + 2 = 6.

• If n is even, then n2 and 3n are both even integers. The number 2 is also
an even integer, and we know that

even integer + even integer + even integer = even integer.

• If n is odd, then n2 and 3n are both odd integers, and we know that

(odd integer + odd integer) + even integer =

= even integer + even integer = even integer.

From all this we deduce that if Conjecture 1 is true, then the maximum
distance between two consecutive prime numbers is the one from the number
n2 +n+ 1 to the number n2 + 3n+ 2−1 = n2 + 3n+ 1, which means that in the
interval [n2 +n+ 1, n2 + 3n+ 1] there are at least two prime numbers. In other
words, in the interval [n2 + n + 1, n2 + 3n] there is at least one prime number.

The difference between the numbers n2 + n + 1 and n2 + 3n
is n2 + 3n− (n2 + n + 1) = n2 + 3n− n2 − n− 1 = 2n− 1. In addition
to this,

⌊√
n2 + n + 1

⌋
= n. This means that in the interval[

n2 + n + 1, n2 + n + 1 + 2
⌊√

n2 + n + 1
⌋
− 1
]

there is at least one prime
number. In other words, if a = n2 + n + 1, then the interval [a, a + 2 b

√
ac − 1]

contains at least one prime number.
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Remark 3. The symbol bc represents the floor function. The floor function of
a given number is the largest integer that is not greater than that number. For
example, b3.5c = 3.

Now, if Conjecture 1 is true, then the following statements are all true:

Statement 1. If a is a perfect square, then in the interval [a, a + b
√
ac] there

is at least one prime number.

Statement 2. If a is an integer such that n2 < a ≤ n2 +n+1 < (n + 1)2, then
in the interval [a, a + b

√
ac − 1] there is at least one prime number.

Statement 3. If a is an integer such that n2 < n2 +n+2 ≤ a < (n + 1)2, then
in the interval [a, a + 2 b

√
ac − 1] there is at least one prime number.

We know that a + 2 b
√
ac − 1 ≥ a + b

√
ac.

Proof.

a + 2
⌊√

a
⌋
− 1 ≥ a +

⌊√
a
⌋

2
⌊√

a
⌋
− 1 ≥

⌊√
a
⌋

2
⌊√

a
⌋
≥
⌊√

a
⌋

+ 1⌊√
a
⌋

+
⌊√

a
⌋
≥
⌊√

a
⌋

+ 1⌊√
a
⌋
≥ 1,

which is true for every positive integer a.

And we also know that a + 2 b
√
ac − 1 > a + b

√
ac − 1.

Proof.

a + 2
⌊√

a
⌋
− 1 > a +

⌊√
a
⌋
− 1

2
⌊√

a
⌋
>
⌊√

a
⌋

,

which is obviously true for every positive integer a.

All this means that the interval [a, a + 2 b
√
ac − 1] can be applied to the

number a in Statement 1., to the number a in Statement 2., and to the number
a in Statement 3.

Therefore, if n is any positive integer and Conjecture 1 is true,
then in the interval

[
n, n + 2

⌊√
n
⌋
− 1

]
there is at least one prime

number (in order to provide more standardized notation, we are now
replacing letter a with letter n). According to this, we can also say that
if Conjecture 1 is true, then there is always a prime number in the interval
[n, n + 2

√
n− 1] for every positive integer n.

Now. . . how can we prove (or disprove) Conjecture 1?
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