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E. Gluskin, “On the affine nonlinearity …” NDES 2012 [my first lecture there] 

According to the definition of the linear operator, as accepted in system 

theory, an affine dependence is a nonlinear one.  This implies the nonlinearity

of Thevenin's 1-port, while the battery itself is a strongly nonlinear element that 

in the 1-port's "passive mode" (when the 1-port is fed by a "stronger" circuit) 

can be replaced by a hardlimiter.  For the theory, not the actual creation of the 

equivalent 1-port, but the selection of one of the ports of a (linear) many-port for 

interpreting the circuit as a 1-port, is important.  

A practical example of the affine nonlinearity is given also in terms of 

waveforms of time functions.  Emphasizing the importance of the affine 

nonlinearity, it is argued that even when straightening the curved characteristic 

of the solar cell, we retain the main part of the nonlinearity. Finally, the 

"fractal-potential" and "f-connection-analysis" of 1- ports, which are missed

in classical theory, are mentioned. 

ABSTRACT (SUMMARY) for the viXra posting …

And now, the original slides start:
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E. Gluskin, “On the affine nonlinearity …”, The question is … NDES 2012

No “confrontation” is expected here regarding the 

definitiondefinition, originating from analytical geometry, of the 

affine dependenceaffine dependence.

The question is whether we have affine linearityaffine linearity, or 

affine nonlinearityaffine nonlinearity.

Though the latter possibility is somewhat “painful”, 
because it readily means that “TheveninThevenin (Norton, 
Helmholtz) equivalentequivalent”” is a nonlinear circuitnonlinear circuit,, the answer 
may depend only on which positionposition we are staying:
that of system theorysystem theory, or that of the geometry, and that of the geometry, and 

one wishing to stay on the positions of system theory one wishing to stay on the positions of system theory 
should accept this news.
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E. Gluskin, “affine nonlinearity …”,  The affine dependenceThe affine dependence , …..           NDES 2012
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For x > 0, the particular case of

y = ax + b;           (1)
a, b -- constants

The saturated (nonlinear) amplifier 

is a direct analogy to the following circuit:

Planimetry introduces affine 

dependence as the straight line:

which is also seen as linear 

dependence:

Linear dependence in planimetry.

0, . .a ie y b= ≡

( ) 0 ( ) ccx t y t V> ⇒ ≡
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E. Gluskin, “On the affine …”, Linearity in System TheoryLinearity in System Theory NDES 2012

In system theory (or functional analysis, or theory of operators) the 

following definition of linearity definition of linearity is usedis used:

(2)

For              this is the linear scaling

As well, we have 

i.e. any linear mapany linear map satisfies 0����0.

Hence, affine map that does notnot satisfy 0����0, is a nonlinear map.  That 

is, in system theory affine dependence is “affine nonlinearity” (“ANNANN””).
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E. Gluskin, “On the affine nonlinearity …”,   A remarkA remark NDES 2012

Substituting
[ (1) ]

into

[ (2) ]

we obtain

Thus, if

(*)

-- as if {kp} are some probabilities, -- then (1) satisfies (2), and we have a 

“filtration” of the nonlinear effect.

Though, as the point of principle, no constraints on            are permitted for

linearity of a system, let us give also a circuit realization for this specific case, 

observing how a structure can realize the “probability condition” (*):
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E. Gluskin, “On the affine nonlinearity …”, A circuit realization of the specific case NDES 2012
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equivalent to:

Kirchhoff’s laws

provide (*).
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E. Gluskin, “On the affine nonlinearity …”, OneOne--port,port, equivalent to equivalent to (1)(1) NDES 2012

Returning to the affine characteristic  y = ax + b by

itself, we rewrite it in EE notions:

This is the port-characteristic of many circuits of which 

the simplest one is the Thevenin’s equivalent:

v Ri E= +∓

+

b

R

i
E

a

+

v
(ETh)

 (RTh)

v Ri E= − +

Notice the direction of i(t).
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E. Gluskin, “On the affine …”, Our 1-port fed by an active circuit NDES 2012

+

b
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+
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ETh

RTh

v Ri E= +

+

b

i

a

+

v

R Th

v
z
= E

Th

or:

This case of i entering the circuit (and sign[i(t)] = const) is equivalent
to the following obviously nonlinear circuit:

Notice the direction of i(t).

This is the partial (not for any 

sign[i]), passive mode

equivalence that is important 

for creation of nonlinear 

resistors v(i), see Slide 11.
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E. Gluskin, “On the affine nonlinearity …”, A more general view on ANN NDES 2012

(a)

E
1

E
2

E
3

The chosen

output

(b)

E
Th

The same
output

4-port 1-port

‘(a)’ is a linear 4-port if we 
accept (recognize) all of the 
ports.  If we recognize only oneone
port, i.e. start to see this whole 
circuit as a 1-port, then the 
circuit becomes ANN, in the 
sense of (1).

(b) is the (nonlinear) Thevenin
equivalent of (a), after (a) is recognized 
as a 1-port.
However, actual realization of the 

equivalent version is NOT necessary 
for the point: when a linear N-port (N
>1) ‘(a)’ is approached as a 1-port, it 
becomes a nonlinear (ANN) circuit. 

!

ANN



11

E. Gluskin, On the affine nonlinearity …”, The axiomatic aspect NDES 2012

That such reduction of the number of the defined ports is 

the reason for nonlinearity, is considered also in

E. E. GluskinGluskin, , ““An extended frameAn extended frame …”…” CASS Newsletter, Dec. 2011CASS Newsletter, Dec. 2011;

and with more stress on the axiomatic side in:

E. E. GluskinGluskin, , ““An Application of Physical Units (Dimensional) Analysis to An Application of Physical Units (Dimensional) Analysis to 

the Consideration of Nonlinearity in Electrical Switched Circuthe Consideration of Nonlinearity in Electrical Switched Circuitsits””,,

Circuits Circuits SystSyst. Signal Process vol. 31, 737. Signal Process vol. 31, 737––752 (Apr. 2012).752 (Apr. 2012).

where also also LTVLTV systemssystems are compared with NL systems.

(a)

E
1

E
2

E
3

The chosen

output

(b)

E
Th

The same

output

4-port 1-port

Carefully define your system!
Where are the proposed 

sources, inside or outside? 
If the inputs are defined so 

that the system appears to be 
active, as in case (b) (more 
generally, at least one of the 
ports is rejected as input), -- it
is NL. 

!
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E. Gluskin. On the pedagogical side NDES 2012

The very significant (and uniqueunique when compared to other numerous

common textbooks on basic circuit theory) attention to the nonlinear

resistive 1-ports in Desoer&Kuh (and in the known book by Professor L.O. 

Chua) should have, historically, the ANN of a 1-port as some background.  

Indeed, it is reasonable to start the topic of creation of the nonlinear 

resistive characteristics v(i), from the simple ANN characteristic:

Our
1-port: A

"stronger"
circuit

i

v(i)
v
+

−−−−

port is used for creation of a nonlinear resistor-A 1
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E. Gluskin, On the affine nonlinearity …”, A look at ZIR +ZSR NDES 2012

(b)

y(0)

x(t)

y(t)LTI
(dynamic)

(a)

y(0)

y(t)x(t)

The
same

system

A dynamic version

ˆ( ) (0) ( ) ( )( )y t y f t Tx t

ZIR ZSR

= +

Is it the case (a) of:

( ) ( )x t y t→

[ (0), ( )] ( )T
y x t y t→

i.e. the linear one
(superposition), 

or the case (b) of: 

(with nonzero ZIR spoiling super-

position) i.e. the NL one?

Notice that in the domain of the Laplace
variable, the interpretation of the initial 
values of state variables as “inputs” is 
even a standard one.

Since y(0) is given by us, it is also an input

An outlook on the initial conditions:

However, the ZIR + ZSR solution’s structure

exists also for LTV circuits.  
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E. Gluskin, “On the affine nonlin …”, Watch the Watch the ANNANN components!components! NDES 2012

Let us consider the solar cell 

characteristic:

A power-supply unit

( ) (0) ( ( ) (0))

(0) ( ),

( (0) 0) ,

i v i i v i

i f v

where f

= + −

= +

=

v

i(v)

i = v/R
L

0

Writing

one can see the “affine kernel”
i(0) as the mainmain nonlinearnonlinear term, 
defining the power supply to the 
load. 

!

(a)

E
1

E
2

E
3

The chosen

output

(b)

ETh

The same

output

4-port 1-port

Note that “E1-3” can be physical

inputs (here sun radiation),

not necessarily batteries. 
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Consider now  x � y given in the terms of time functions as

(1a)

with some linear operators and ψ known.  Obviously, it is the same ANN as (1).

Example for (1a)

Consider:

(3)

where  ξ is a T-periodic (usually, sine) given function or “wave-form”, normed
in some way.

Equation (3) plays an important role in a nonlinear theory of fluorescent lamp

circuits – very important power consumers [see, e.g., [6] E. Gluskin, “On the
theory of an integral equation”, Advances in Applied Mathematics, 15(3), 1994

(305-335), and also: IEEE Trans. CAS, Pt.1, May 1999].

As well, a mechanical version of (3) is known in the theory of systems with 

“Coulomb friction”.  (Then, energy consumption is not the main topic.)

1 2
ˆ ˆ( ) ( ) ( )L y t L x t tψ= +

1
sign[ ( )] ( ) ( ) ( )

di
L A i t i t dt v t U t

dt C
ξ∫+ + = =

E. Gluskin. ANN in terms of a steady-state NDES 2012

!
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E. Gluskin, With equation (3): the way to an ANN starts NDES 2012

The 50-60 Hz L-C-fluorescent lamp circuit::

The KVL gives

(3a)

where L, A, C and U are positive constants.

Eq.(3a) and the circuit are nonlinear, obviously,Eq.(3a) and the circuit are nonlinear, obviously,

andand

is the parameter of the nonlinearity. is the parameter of the nonlinearity. 

1
sign[ ( )] ( ) sin

di
L A i t i t dt U t

dt C
ω+ + =∫

i

v(i)

lamp

Uξ(t)+ -

+ -vC L

(Usinωt)

i

The resistive
The resistive

(light(light--emitting)
emitting)

term is physically

term is physically

most important;

most important;

LC is the lamp
LC is the lamp’’ss

““ballast
ballast””..

!

“U” is changed using laboratory “varjak”.

/x A U=
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E. Gluskin, On the affine nonlinearity …”,   The long way to ANN … NDES 2012

For                      properly limited, i(t) is ([6]) a zerocrossing function:

and then,                        is a rectangular wave.

Using also that (similarly to the input function):

we have  A sign[i(t)]  as the simple square wave

This equality has the form of

with the zerocrossings of i(t) as parameters, and ζ known.  Thus, (3) 

becomes

(3b)  

1

1,3,5,...

4 sin ( ( ))
[ ( )] .

A n t t x
Asign i t

n

ω
π

∑
−

=

1
( ,{ }) ( ) ( ) .k

di
L F t t i t dt U t

dt C
ξ∫+ + =

( ,{ }) ({ ( )}); (mod ),k k k kF t t A t t x t t Tζ= − =

/x A U=

( / 2) ( ) ,i t T i t+ = −

[ ( )]Asign i t
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E. Gluskin, On the affine ”, The “constancy” of the zerocrossings NDES 2012

1
2o

LC
ω ω≡ =

If 

where ω is the basic frequency of the periodic input, then (see [6])   are 
constant, i.e. unmovedunmoved with the permitted change of U.

That is,

thus

and

is known before i(t) is determined. 
In this case, after rewriting (3) as

one can mistakenly conclude that this is a linear equation (system).

( ) (0) [ / ] ,k kt x t x A U≡ =

kt

({ ( )}) ({ (0)}),k kt t x t tζ ζ− ≡ −

[ ( )] ~F A Asign i t Aζ= =

1
( ) ( ) ({ (0)})k

di
L i t dt U t A t t

dt C
ξ ζ∫+ = − −

The whole right-handside is completely known

This means that when U ischanged, tk are not shifted
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E. Gluskin, On the affine nonlinearity …”, This is the ANN NDES 2012

However, since the lamp (or the mechanical Coulomb-friction unit) 

remains in the actual circuit, the nonlinearity must remain, and in fact

is an ANN equation: 

or

Of course, the nonlinearity also has to be well seen via power featurespower features

of the circuit, and indeed for                , as for any other , we

do notnot have (see the references) for the average power                ,

which would be necessary for any linear circuit in the periodic steady 

state. 

1
( ) ( ) ({ (0)})k

di
L i t dt U t A t t

dt C
ξ ζ∫+ = − −

ˆ( )( ) ( ,{ (0)}) ( ),kTi t F t t U tξ+ =

1 2
ˆ ˆ( ) ( ) ( ) .L y t L x t tψ= +

is the linear 

operator of the 

L-C sub-circuit

T̂

2~P U

/oω ω/oω ω
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E. Gluskin, On the affine nonlinearity …”, Back to the algebraic ANN NDES 2012

You see that ANN can take the duties of a singular nonlinearity!

------------------------------------------------------------------------------------------

Let us return, however, to the algebraic characteristic, 
introducing now a quantitative measure for ANN.

Then, we shall a bit complete the classical theory of 1-ports
to which the concept of ANN belong.  

Observe that we deal with the algebraic 1-ports, -- not necessarily 
resistive, possibly also magnetic and ferroelectric.

(Consider, e.g., the “magnetic circuits” with “reluctances”). 
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v Ri E= +∓

oi

+

RTh
1

ETh
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+

RTh

2

ETh
2

+

RTh

n

ETh

n

(a) (b)

+

R
0

E
0

e

o

E
ANN

Ri
≡

E. Gluskin, ““On the affine …” The quantitative ANN NDES 2012

Returning to the simple case of                     ,  let us define, for some 
quantitative estimations, the measure of affine nonlinearity asmeasure of affine nonlinearity as

using some standard      .

Thus defined, ANNe can be changed, for instance, by means of 
parallel connections of Thevenin’s 1-ports:
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+

R
0

E
0

E. Gluskin, ““On the affine …” Parallel connection of the 1-ports  NDES 2012

we havewe have

with with 

andand

e o

o o

E
ANN

R i
=

1

1

( / )

1 /

n

T h k T h k
k

n

T h k
k

E R

o
R

E

∑
=

∑
=

=
1

1

1/
n

Th ko
k

R R∑
=

−
=  
 
 

For Fig. (Fig. (bb)) here: 
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E. Gluskin, “ANN Circuits and "What is Life?" The parallel connection (cont) NDES 2012

Taking, for simplicity, all ‘E’ and all ‘R’ in Fig.(a) similar, we have in (b):

which gives

+

RTh
1

ETh

1

+

RTh

2

ETh

2

+

RTh

n

ETh

n

(a) (b)

+

R
0

E
0

, /o oE E and R R n= =

~ .e o

o o o

E E
ANN n n

R i Ri
= =

!
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E. Gluskin, “ANN ... “ When , … NDES 2012

While on the analytical side we obtain, as                 ,

on the structural side we have

i.e. circuit (b) becomes pure voltage hardlimiter of 

__________________________________

---------------------------------------------------------

To this simple transfer to the hardlimiter we find a nontrivial analogy

in elements with (generally very important, see below) power-law i(v) 

characteristic

(4)

and just as it is/was with the solar-cell characteristic in Slide 13, ANN 

can be connected with (4), i.e. an affine kernel like E is observed in (4).

( ~ ) ,e
ANN n → ∞

n →∞

/ 0 ,oR R n= →

.oE E=

n →∞

+

RTh
1

ETh

1

+

RTh

2

ETh
2

+

RTh

n

ETh

n

(a) (b)

+

R
0

E
0

~ ,i v
α Note, here, this

is a single element.

A new far-reaching

point starts here!
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E. Gluskin, The “affine kernel in  i ~ vαααα NDES 2012

Indeed, rewriting the power-law conductivity characteristic     

as the dimensionally more reasonable:

with some given io and vo, we have for the respective v(i), the limit

that is,

as it is for ANN when .

~i v
α

/ ( / ) ,o oi i v v
α=

1 // ( / ) 1 ,o ov v i i
α

α→∞
= →

ov v→

1~ 0oR n
− →
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E. Gluskin, “ANN ... “ The similarity and distinction …” NDES 2012

Compare the two transfers to hard-limiters:

1// ( / )

( )

o ov v i i
α

α

=

→∞

E v
o

i
o

1

2

2

1

"α
 inf

""n 
inf

"

i

v v

i

0 0

( / )

( )

v R n i E

n

= +

→∞

Remark:  For                    , both transfers are non-uniform.0 i< < ∞
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E. Gluskin, “ANN ... “ The affine kernel NDES 2012

Using that for

we obtain for

,

i.e. the affine kernel is separated in the power-law characteristic. 

Thus, for the mutual limitation on α and i, a circuit model

of the power-law element (consuming energy, i.e. with i directed inside) 

can involve voltage hardlimiter or battery. 

Thus, it appears that the kernel feature of ANN can be instructive also 

for this nonlinearity. 

1 ln ,a a
ε ε≈ +

ln( / ) , ln( / ) ,o
o o o

v
v v i i i iα

α
= + >>

ov

ln 1aε <<

1// ( / )o ov v i i
α=
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E. G. A step towards circuit complexity (pardon!):  The power-law 

characteristic and fractal 1-ports “NDES 2012

Dealing with ANN circuits, we deal with the very basic concept 
of 1-port, and now we are in position to observe two remarkable 
features of 1-ports (not mentioned in the classical theory of algebraic 
circuits) the second of which is associated with a new circuit connection.

1. Observe that since each circuit branch is a 1-
port, each 1each 1--port is a specific potential port is a specific potential fractalfractal.  
There is the possibility of repeating the whole 
structure in each branch, or in some of the 
branches. This recursive repetition works 
very well with the power-law elements, i ~ vα, 
because then the input conductivity, is of the 

same type (~ vinp
α), just as it is for α =1 

(linear resistors) or only linear capacitors or 
indictors.

   Advice: make computer simulations of such 
recursive procedure, and study  .

~i v
α

a

b

+

-
( )inp inpi F v=
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E. Gluskin, “ANN ...           “The     “f-connection” “NDES 2012

~i v
α

1 2

1 2( )i v D v D v
α α= +

f
m

-circuit

f
n
-circuit

F m
(v in

)

F
n (v

in )v
in

+

-

G(v
in

)

a

a

b

b

The specific features of the 1-ports with               suggest working with the 

more flexible for applications 

To make some conclusion of this model, let us introduce a new circuit 

connection, named “f-connection”, which relates to circuits of the same 

topology and is a generalization of the usual parallel connection (in general, of 

not necessarily 1-ports).  

f
m

cnt-circuit

f
n

cnt-circuit

F m
cn

t (v in
)

F
n cnt(v

in )
v

in

+

-

F(vin)

a

a

b

b

Usual parallel connection f-connection
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E. Gluskin, “ANN ...“f-connection” and a use of the power-law characteristic “NDES 2012

The obtaining of a circuit with the prescribed topology, 

composed of elements :

a

b

+

-

a

b

+

-
i

n
v

+

-

a

b

f (1)

F(v
in
)

f (2)

2

2i D v
α=1

1i D v
α=

1 2

1 2( )i v D v D v
α α= +

α1

α2

VF(v
in
)

v
in

+

Here, each f-connected

circuit has similar

elements in its branches.



31

E. Gluskin, “ANN ... f-connection and the input current of the “α-circuits” “NDES 2012

1 2 1 2

1 2

1 2 1 1 2 2

;v v v

D v D v D v D v
α α α α

< <

+ ≈ +

1

2

1 1

2 2

: ;

: ;

v i D v

v i D v

α

α

=

= α1

α2

VF(v
in
)

v
in

+

For the two basic (individual) initial states

we have at the node in focus:

Remark:  Values of D1 and D2 do not 

influence the initial voltage distributions, just 

scale the input currents, i.e.  F ~ D. 

After f-connection, we have 

That is, 

“approximate analytical superposition”.

1 2( ) ( ) ( )f conct inp inp inpF v F v F v− ≈ +

The right-hand

side relates to

the usual parallel

connection

{v1, or  v2, or  v}

hypothesis

Possible applications:

1.  Percolation theory

(power degrees). 

2. Spatial filtering

(homogeneous

structures). ?
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E.Gluskin, Numerical Example E. Gluskin NDES 12

Error in the
analytical superposition
(observe the two vertical circuits)

f-connection:

Left side: αααα =1
Right side: αααα =3

(vin = 1,  D1 = D3 = 1).

Results:Results:

in
v

F
1

cnct F
3

cnct

F
1,3

The circuit  F F cnct Percent change

αααα =1:            1.4 1.466 +4.7%
αααα = 3:           1.14 1.044 -8.4%

f-connection    2.511

Usual parallel connection gave 2.54 1.15%% error versus 2.511,

i.e. 

MatLab

simulation:

~1,3 1 2f connectedF F F F−= < +
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E. Gluskin, “ANN ... Some references on the power-law characteristic NDES 

2012

Some works on the circuits composed of the elements with 

the power-law characteristic : 

"One-ports composed of power-law resistors", IEEE Trans. on 

Circuits and Systems II: Express Briefs 51(9), 2004 (464-467).

“On the symmetry features of some electrical circuits”, Int'l. J. of 

Circuit Theory and Applications – 34, 2006 (637-644).

“f - connection: a new circuit concept”, IEEE 25th Convention 

of Electrical and Electronics Engineers in Israel (“IEEEI 2008”), 2008, 

3-5 Dec., pp: 056 – 060.

"An estimation of the input conductivity characteristic of some resistive 

(percolation) structures composed of elements having a two-term 

polynomial characteristic“, Physica A, 381, 2007 (431-443).

“An approximation for the input conductivity function of the 

nonlinear resistive grid”, Int’l. J. of Circuit Theory and Applications, 

29, 2001 (517-526).

See also my ArXiv works devoted to “α-circuits” and “approximate 
analytical superposition”.

~i vα
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E. Gluskin “On the affine nonlinearity (ANN) in circuit theory” NDES 2012

END END of the lectureof the lecture


