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E. Gluskin, “On the affine nonlinearity ...” NDES 2012 [my first lecture there]

ABSTRACT (SUMMARY) for the viXra posting ...

According to the definition of the linear operator, as accepted in system
theory, an affine dependence is a nonlinear one. This implies the nonlinearity
of Thevenin's 1-port, while the battery itself is a strongly nonlinear element that
in the 1-port's "passive mode" (when the 1-port is fed by a "stronger" circuit)
can be replaced by a hardlimiter. For the theory, not the actual creation of the
equivalent 1-port, but the selection of one of the ports of a (linear) many-port for
interpreting the circuit as a 1-port, is important.

A practical example of the affine nonlinearity is given also in terms of
waveforms of time functions. Emphasizing the importance of the affine
nonlinearity, it is argued that even when straightening the curved characteristic
of the solar cell, we retain the main part of the nonlinearity. Finally, the
"fractal-potential”" and "f-connection-analysis" of 1- ports, which are missed
in classical theory, are mentioned.

5 And now, the original slides start:
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No “confrontation” is expected here regarding the
definition, originating from analytical geometry, of the
affine dependence.

The question is whether we have affine linearity, or
affine nonlineatrity.

Though the latter possibility is somewhat “painful”,
because it readily means that “Thevenin (Norton,
Helmholtz) equivalent”is a nonlinear circuit, the answer
may depend only on which position we are staying:
that of system theory, or that of the geometry, and
one wishing to stay on the positions of system theory
should accept this news.
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Planimetry introduces affine
dependence as the straight line:

y=ax+ b, (1)
a, b -- constants

which is also seen as linear
dependence:

) X

/ 0

Linear dependence in planimetry.
4

For x > 0, the particular case of

a=0, ie. y=b

> VCC

(y saturated)

XD >0 = y(1) =V,

The saturated (nonlinear) amplifier
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In system theory (or functional analysis, or theory of operators) the
following definition of linearity is used:

n n
)’(Z kpxp): Z kpy(xp)a (2)
p=1 p=1
nzl, v{{kp}a{xp}}-

For n=1 thisis the linear scaling

y(kx) = ky(x).

As well, we have

y(x—x)=y(x)—y(x),

l.e. any linear map satisfies 0->0.
Hence, affine map that does not satisfy 00, is a nonlinear map. That

is, in_system theory affine dependence is “affine nonlinearity” (“ANN").
/
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Substituting y=ax+ b
into A A
V(X kpxp)= Y kpy(xy)
we obtain p=l p=l
n
b= k,b
Thus, if m=1
>k, =1,
p=I

(%)

-- as if {k } are some probabilities, -- then (1) satisfies (2), and we have a

“filtration” of the nonlinear effect.

Though, as the point of principle, no constraints on {kp} are permitted for
linearity of a system, let us give also a circuit realization for this specific case,

observing how a structure can realize the “probability condition” (*):



E. Gluskin, “On the affine nonlinearity ...”, A circuit realization of the specific case NDES 2012

Z,,, Is infinite
—p»| ax+b > n n
L —
E, Y2 kpxp)= 2 kpy(xp)
@ R1 p:l p:l
E, E
0 " " .
-i- — R b Here, "x,"—>E,:
. - \ . o
—_R; | pz_lE pRp Kirchhoff's laws
E = _ :
equivalent to: o n 1 provide (*).
> R,
E, il
s— ax+b K,
g oy % L R,
| —a _ _ .
| X+ ) 2 Z_:l kap o kp n _1
L . - P= > R,,
s— ax+b K, m=1
S k=1
2 =1. —
! p=1 & =~ Thisis (*).
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Returning to the affine characteristic y=ax + b by
itself, we rewrite it in EE notions:

v=FRi+ E

This is the port-characteristic of many circuits of which
the simplest one is the Thevenin’s equivalent:

a
(R (Rm}——n ’
il + v=—Ri+E
/
= E Y -
(En) Notice the direction of i(f)-
-
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or. Notice the direction of i(1).
-

i +
- V. V=Ri+E
Th
-
b

This case of / entering the circuit (and sign[/(f)] = const) is equivalent

to the following obviously nonlinear circuit: /
a

Rth |——=

-— + This is the partial (not for any
i signl[i]), passive mode
/t” equivalence that is important
v=E v for creation of nonlinear
z Th
resistors v(i), see Slide 11.
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E1
ANN
E, The chosen The same
output output
!
E 4-port 1-port
3
(a) (b)
‘(@)’ is a linear 4-port if we (b) is the (nonlinear) Thevenin
accept (recognize) all of the equivalent of (a), after (a) is recognized
ports. If we recognize only one as a 1-port.
port, i.e. start to see this whole However, actual realization of the
circuit as a 1-port, then the equivalent version is NOT necessary
circuit becomes ANN, in the for the point: when a linear N-port (N
sense of (1). >1) ‘(a)’ is approached as a 1-port, it
0 becomes a nonlinear (ANN) circuit.
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That such reduction of the number of the defined ports is
the reason for nonlinearity, is considered also in

E. Gluskin, “An extended frame ...” CASS Newsletter, Dec. 2011;
and with more stress on the axiomatic side in:

E. Gluskin, “An Application of Physical Units (Dimensional) Analysis to
the Consideration of Nonlinearity in Electrical Switched Circuits’,
Circuits Syst. Signal Process vol. 31, 737-752 (Apr. 2012).

where also LTV systems are compared with NL systems. g

Carefully define your system!

Where are the proposed
sources, inside or outside?

If the inputs are defined so
that the system appears to be
active, as in case (b) (more
generally, at least one of the
ports is rejected as input), -- it
is NL.

N

E, \
E, The chosen The same
output output

e 4-port 1-port

(a) (b)
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The very significant (and unique when compared to other numerous
common textbooks on basic circuit theory) attention to the nonlinear
resistive 1-ports in Desoer&Kuh (and in the known book by Professor L.O.
Chua) should have, historically, the ANN of a 1-port as some background.

Indeed, it is reasonable to start the topic of creation of the nonlinear
resistive characteristics v(j), from the simple ANN characteristic:

i
Our -
1-port: 4 »* A
v "stronger”
V(1 _ circuit
() =

12 A 1-port is used for creation of a nonlinear resistor
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A dynamic version

(&) = y(0) £ () + (Tx)(1)
ZIR ZSR

Is it the case (a) of:

[y(0),x()]" — y()

l.e. the linear one
(superposition),

or the case (b) of:

x(t) = y(t)
(with nonzero ZIR spoiling super-
position) i.e. the NL one?

13

An outlook on the initial conditions:

Since y(0) is given by us, it is also an input

y(0) The

D same
(dynamic) > > >

x(1)

—> y(0)

(a) (b)

Notice that in the domain of the Laplace
variable, the interpretation of the initial
values of state variables as “inputs” is
even a standard one.

However, the ZIR + ZSR solution’s structure
exists also for LTV circuits.
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Let us consider the solar cell
characteristic:

ri(v)

i = VIR,

|

|
A power-supply unit

Note that “E, ;" can be physical

inputs (here sun radiation), —

not necessarily batteries.

14

Writing

i(v)=i(0)+(i(v) —i(0))
=i(0)+ f(v),
(where f(0)=0),
one can see the “affine kernel”
i((0) as the main nonlinear term,

defining the power supply to the
load.

E, \
E, The chosen The same
output output

E 4-port 1-port

(a) (b)
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Consider now x = y given in the terms of time functions as

Ly(t) = Lx(t)+y (1) (1)

with some linear operators and v known. Obviously, it is the same ANN as (1).

Example for (1a)

Consider:

Lﬂ + Asign[i(?)]+ lji(t) dt = v(it)=UE&®)| O
dt C

where ¢& is a T-periodic (usually, sine) given function or “wave-form”, normed
in some way.

Equation (3) plays an important role in a nonlinear theory of fluorescent lamp
circuits — very important power consumers [see, e.g., [6] E. Gluskin, “On the
theory of an integral equation”, Advances in Applied Mathematics, 15(3), 1994
(305-335), and also: IEEE Trans. CAS, Pt.1, May 1999]. !/

L ]

As well, a mechanical version of (3) is known in the theory of systems with
“Coulomb friction”. (Then, energy consumption is not the main topic.)
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The 50-60 Hz L-C-fluorescent lamp circuit:.

V(i) C L 4+ v - |

. >
PR R ES

- + UE(t) (Usinwt)
. . “Varlak”.
The KVL gives U’ is changed using |aboratory

di . . .. 1. . (3a)
LEJF A31gn[z(t)]+Ejz(t)dt = U sin ot

where L, A, C and U are positive constants.
Eqg.(3a) and the circuit are nonlinear, obviously,

and x=AJU

is the parameter of the nonlinearity.
1
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For x= A/U properly limited, i(f) is ([6]) a zerocrossing function:

and then, Asignli(t)]s a rectangular wave. /\ :
>

Using also that (similarly to the input function): \
L
i(t+T/2) =—i(t), \/

we have Asign[i(f)] as the simple square wave

Asignli(t)] = ﬂ 5 sinna)(t—tl(x)).
T 1,3,5,... n

This equality has the form of
F{t)=AS({t—1,(x)});  t, =t,(modT),

with the zerocrossings of i(f) as parameters, and £ known. Thus, (3)
becomes

(3b)

di 1.
Ld—;+F(t,{tk})+Ejl(t)dt = UE(®D).
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If

@, 20

1
JLC
where o is the basic frequency of the periodic input, then (see [6]) ¢, are
constant, i.e. unmoved with the permitted change of U.

That is,
L (x)=1.(0) [x=A/U], -
thus
cH{t—t, (0D =c({r—1,(0)}),
and
F=Af = Asign[i(t)]~ A
T, :
is known before i(1) is determined. SidgeiSWhO’e fight-hang
In this case, after rewriting (3) as ComP’etely known

di 1 ..
Lz;+6jz(t)dt = Ug()—AC({r—1,(0)})

one can mistakenly conclude that this is a linear equation (system).
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However, since the lamp (or the mechanical Coulomb-friction unit)
remains in the actual circuit, the nonlinearity must remain, and in fact

d 1. _ B B
E+EIl(t)dt = Ucg(t) - Ac({t -1, (0)})
is an ANN equation:

(Ti)(t)+ F(,{t,(0)}) = U&EQ),

L

T is the linear
operator of the
| -C sub-circuit

or

Ly() = Lyx()+y ().

Of course, the nonlinearity also has to be well seen via power features
of the circuit, and indeed for @ /@ , as forany other @ /w ,we
do not have (see the references) for the average power p _ U2 :
which would be necessary for any linear circuit in the periodic steady

state.
19
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You see that ANN can take the duties of a singular nonlinearity!

Let us return, however, to the algebraic characteristic,
introducing now a quantitative measure for ANN.

Then, we shall a bit complete the classical theory of 1-ports
to which the concept of ANN belong.

Observe that we deal with the algebraic 1-ports, -- not necessarily
resistive, possibly also magnetic and ferroelectric.

(Consider, e.g., the “magnetic circuits” with “reluctances”).

20
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Returning to the simple case of v=FRi+ E , let us define, for some
quantitative estimations, the measure of affine nonlinearity as

ANN€ = i
Ri,

using some standard i, .

Thus defined, ANNeé can be changed, for instance, by means of

parallel connections of Thevenin’s 1-ports:

21
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For Fig. (b) here:

HT R? RTh
+ + +
TET T2 _ TE
(a)
we have
ANN€ = Eo
with Rolo
; (E / R )
2 Thik ! RThk
= k=1 and R,
0 n
X 1/ Rrpg

1

22
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Taking, for simplicity, all ‘E’and all ‘R’in Fig.(a) similar, we have in (b):
E,=E, and R,=R/n

which gives

E, E
— =Nn— ~n.
R, Ri,

ANN€ =

23
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While on the analytical side we obtain, as n — o0 ,

(ANN¢ ~n) > o, Q Q N Q Q
it A i Ao
on the structural side we have + -

TE I, _ T Th
ROZR/VZ—)O, (a) (b)
i.e. circuit (b) becomes pure voltage hardlimiter of
EO = E A new far_reaCh\:\g

_________________________________________________________ / po"nt S\aﬂs here:

To this simple transfer to the hardlimiter we find a nontrivial analogy
In elements with (generally very important, see below) power-law i(v)

characteristic oo, e,
[ ~ Va . (4) is a single element.

and just as it is/was with the solar-cell characteristic in Slide 13, ANN

can be connected with (4), i.e. an affine kernel like E is observed in (4).
24
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Indeed, rewriting the power-law conductivity characteristic
i ~v”
as the dimensionally more reasonable:
5 7o 194
i/i,=wwlv,)”,
with some given i, and v,, we have for the respective v(i), the limit
viv, =(li)'% > 1,

o —> 0
that is,

V= v,

as itis for ANNwhen R ~n™' 5 0.

25
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Compare the two transfers to hard-limiters:

AV v v
E./\ v,
N i
L
0 0 I
v=(R/n)i+E viv, =(ili )
(n — o) (o — )

Remark: For () < < oo, both transfers are non-uniform.
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Using that for |elna<<1| |g® ~1+¢lna,

\

viv, =(ili,) '

we obtain for

V=yv,+ —ln(z/zo) a>>1n(i/i,),
/ <
l.e. the affine kernel Vv, is separated in the power-law characteristic.
Thus, for the mutual limitation on & and J, a circuit model

of the power-law element (consuming energy, i.e. with i/ directed inside)

can involve voltage hardlimiter or battery.
Thus, it appears that the kernel feature of ANN can be instructive also

fgr this nonlinearity.
7
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Dealing with ANN circuits, we deal with the very basic concept

of 1-port, and now we are in position to observe two remarkable
features of 1-ports (not mentioned in the classical theory of algebraic
circuits) the second of which is associated with a new circuit connection.

1. Observe that since each circuit branch is a 1-
port, each 1-port is a specific potential fractal. a |[[~v

\

+

There is the possibility of repeating the whole
structure in each branch, or in some of the
branches. This recursive repetition works
very well with the power-law elements, / ~ v,
because then the input conductivity, is of the
same type (~ Vv;,,%), just as it is for o =1
(linear resistors) or only linear capacitors or
Indictors.
Advice: make computer simulations of such

recursive procedure, and study z;,, = F'(v;,,). b

28
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The specific features of the 1-ports with | ~ p% suggest working with the
more flexible for applications

i(v) = D% + Dyv™

To make some conclusion of this model, let us introduce a new circuit
connection, named “f-connection”, which relates to circuits of the same
topology and is a generalization of the usual parallel connection (in general, of
not necessarily 1-ports).

f,-circuit f_cnt.gircuit
y \ =\
A AR
- N
A
S
|
v AN N
f -circuit f "-circuit \ \

29 Usual parallel connection f-connection
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The obtaining of a circuit with the prescribed topology,
composed of elements i(v) = D + Dyv®

Here, each f-connected
circuit has similar
elements in its branches.

30



E. Gluskin, “ANN ... -connection and the input current of the “a-circuits” “Npes 2012

For the two basic (individual) initial states — | {vy0or Vyor V)
we have at the node in focus:—m—m  — T ——

|
|
v i=Dp%; > :
. a Vin | 4
Vz: l:DZV 2; F£V|_n): a, vV ,/
~ ! %
Remark: Values of D, and D, do not : o, S

influence the initial voltage distributions, just - L aaas
scale the input currents, i.e. F~ D.

After f-connection, we have hypothesis

r o
V1<V<V2;

e
n
Dlval +D2Va2 ~ Dlvlal +D2v2a2 / C
That is,

Ff —conct (Vinp) ~ B (Vinp) + £ (vi”p )

“approximate analytical superposition™.
31




Numerical Example

Error in the Fent penct
analytical superposition - > -
(observe the two vertical circuits) F,, (

f-connection

Left side: a =1 :
Right side: o =3
(v,=1, D,=Dy=1).
The circuit F F cnet Percent change
a=1: 1.4 1.466 +4.7%
o= 3. 1.14 1.044 -8.4%

f-connection  2.511
Usual parallel connection gave 2.54 —— 1.15% error versus 2.511,

l.€. F1,3 :Ff—connected §Fl+F2‘
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Some works on the circuits composed of the elements with
the power-law characteristic ;j ~ y*

"One-ports composed of power-law resistors", IEEE Trans. on
Circuits and Systems |II: Express Briefs 51(9), 2004 (464-467).

“On the symmetry features of some electrical circuits”, Int'l. J. of
Circuit Theory and Applications — 34, 2006 (637-644).

“f - connection: a new circuit concept’, IEEE 25th Convention
of Electrical and Electronics Engineers in Israel (“IEEEI 2008”), 2008,
3-5 Dec., pp: 056 — 060.

"An estimation of the input conductivity characteristic of some resistive
(percolation) structures composed of elements having a two-term
polynomial characteristic”, Physica A, 381, 2007 (431-443).

“An approximation for the input conductivity function of the
nonlinear resistive grid”, Int’l. J. of Circuit Theory and Applications,
29, 2001 (517-526).

See also my ArXiv works devoted to “a-circuits” and “approximate
analytical superposition”.




34

E. Gluskin “On the affine nonlinearity (ANN) in circuit theory” NDES 2012

END of the lecture



