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Abstract 

Based on the notion of strong gravitation, acting at the level of elementary 
particles, and on the equality of the magnetic moment of the proton and the limiting 
magnetic moment of the rotating non-uniformly charged ball, the radius of the proton 
is found, which conforms to the experimental data. At the same time the dependence is 
derived of distribution of the mass and charge density inside the proton. The ratio of 
the density in the center of the proton to the average density is found, which equals 
1.57. 
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1 Introduction 
Since the discovery of the proton in 1917 the question arose how to 

determine the radius of this elementary particle. There are many theoretical 
models to estimate the radius of the proton. Most of these models is associated 
with the concept of the electromagnetic form factors as the amendment by 
which the scattering amplitude of particles by proton is different from the 
scattering amplitude by a point particle. The calculation of the form factors is 
complex and requires taking into account many factors, including the radial 
density distribution of charge and magnetic moment, the dynamics of quarks, 
partons and virtual particles. There may be a variety of approaches – scattering 
theory, chiral perturbation theory, lattice QCD, etc., description of which can 
be found in [1], [2]. Form factors are determined from scattering experiments, 
depend on the energy of the interacting particles, and allow us to find the root 
mean square of the charge distribution and magnetic moment as a measure of 
particle’s size. Information on the radius of the proton can be extracted from 
the analysis of the Lamb shift in hydrogen and in a coupled system of a proton 
and a negative muon [3]. 

 
2 Other estimates of proton radius  

Consider some simple methods for determining the radius of the proton. 
One of them is based on the fact that in the particles, when they are excited, 
standing electromagnetic waves emerge. The maximum energy of these 
standing waves does not exceed the rest energy in order to avoid the decay of 
particles. From this it can be derived that the de Broglie waves are 
electromagnetic oscillations, detectable in the laboratory frame in the 
interaction of moving particles. To describe these oscillations it is necessary to 
apply the Lorentz transformations to the standing waves inside the particles and 
to find their form in the laboratory reference frame [4], [5].  

In the simplest case the spherical standing waves are modeled by two 
waves, one of which runs from the center to the surface of the particle and the 
other at the same time is moving backwards. We can assume that in the 
direction of a specified axis, for example OX , there are two counter-
propagating waves of the following form: 

 
)sin( 101 ϕω +′′−′′= xKtUU ,             )sin( 202 ϕω +′′+′′= xKtUU , 
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here 1ϕ , 2ϕ  are the initial phases of the oscillations with 0t x′ ′= = , 0U  is 

the amplitude of the periodic function, ω′  and K ′  denote the angular 
frequency and wave number and the primes over the variables mean that they 
are considered in the rest frame of the particle. 

 
As U  any periodic function can be used, which satisfies the wave equation. 

For example, it can be the strength or the field potential of the wave. The 
phases of the waves in (1) must be shifted to π  for emerging of the standing 
wave. If 1ϕ π= , 2 0ϕ = , then in the center of the particle with 0x′ =  there will 
be always a node as the absence of visible oscillations, and (1) becomes as 
follows: 

 
( ) ( )txKUU ′′′′= ωcossin2 0 .                                   (2) 

 
As a result of oscillations (2) velocities of charges of the particle substance 

and the field potentials can periodically change inside the particle. This leads 
inevitably to periodic oscillations of the field potentials also outside the particle 
in the surrounding space. 

Now we shall assume that the particle moves together with its standing 
wave along the axis OX  in the laboratory reference frame at the velocity u . 
How are the field oscillations modified inside and outside the particle with 
respect to its movement? We should express in (2) the primed coordinates and 
the time inside the moving particle through the coordinates and the time in the 
laboratory reference frame using the Lorentz transformations ( c  refers to the 
speed of light): 
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From (3) we see that as a result of displacement of the standing wave with 

the particle for the external motionless observer in the laboratory frame the 
wavelength and the frequency will change. More precisely, on the observed 
wave additional antinodes appear, with a wavelength between them, differing 

from the wavelength 2
K
πλ′ =
′
 in the reference frame of the particle. We shall 

stop the wave (3) for a moment with 0t =  and shall find the wavelengths as 
the spatial separation between the points of the wave in the same phase. When 

0x =  the sine in (3) will be zero, while when 1x λ=  the phase of the sine will 
change from 0 to 2π . Hence we obtain: 
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Similarly for the wavelength of the cosine in (3) we find: 
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We shall now estimate the temporal separation between the points of the 

wave in one phase with 0x = , considering this separation as the corresponding 
period of the wave: 

 

( )π2sin
1

sin
22

1 −=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

′
−

cu
TuK ,                 

uK
cu

T
′

−
=

22

1
12π

.           (6) 

 



5 
 

( )πω 2cos
1

cos
22

2 =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

′

cu
T ,                      22

2 1 cuTT −′= .          (7) 

 
From (4) − (7) we obtain the following expressions for the velocities: 
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As we see from (8) the oscillations of the wave (3) associated with the 

cosine, are propagating at the phase velocity of de Broglie bυ . Besides, the 
oscillations of the wave (3) associated with sine, move in space at the same 
velocity u  as the particle itself. The wavelength 2λ  in (5) can be transformed 
so as to bring it to the standard form for the de Broglie wavelength. We shall 
associate the angular frequency of the oscillations inside the particle, similarly 
to the electromagnetic wave, with the energy of oscillations: W ω′ ′= , where 

2
h
π

=  is Dirac constant, h  is Planck constant. This gives the following: 
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Similarly from (4) we have: 
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In the limiting case when the oscillation energy is compared with the rest 

energy of the particle, 2W mc ω′ ′= = , from (9) it follows: 
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where m  is the mass of particle, ℘ is relativistic momentum of the particle. 
 
The formula (11) defines de Broglie wavelength with the help of particle 

momentum. We shall note that de Broglie wrote (11) on condition that the 

energy of the particle 
2

2 21
mcW

u c
=

−
 is equal to the energy of the wave 

accompanying the particle. According to the obtained expression (9), the 
wavelength 2λ  must be present in the particle also at low excitation energy 

.W ′  In this case as the excitation energy decreases, the wavelength should 
increase. 

As a rule in the experiments only 2b f
hλ λ= =

℘
 is found from (11), and not 

the wavelength 2λ  from (9). This can occur because among the number of 
interacting particles at the same time there are particles with different 
excitation energies W ′  and different 2λ , so that the wave phenomena are 
blurred. The same is true for the waves with wavelength 1λ  in (10). Only for 
the most actively interacting particles, the excitation energies W ′  of which are 
close to the rest energy of the particles, the limiting value of the wavelength is 
reached equal to the de Broglie wavelength. Thus this wavelength is revealed 
in the experiment. When 2W mc ω′ ′= =  we can also predict for the particles 

the wave phenomena with the critical wavelength 
2 2

1
1

f
h u c

mc
λ −

= . In 

particular, c
h

mc
λ =  is the Compton wavelength, discovered in the Compton 

effect. According to our point of view, emerging of de Broglie wave should be 
treated as a purely relativistic effect, which arises as a consequence of the 
Lorentz transformation of the standing wave, moving with the particle. 

As a result, we have to assume that the wave-particle duality is realized in 
full only in those particular particles, the excitation energies of which reach 
their rest energies. In this case the difference of particles and field quanta, if 
they are treated from the point of view of their wave properties, becomes 
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minimal. At low excitation energies the particles can not emit their energy 
greatly, and the amplitudes of the oscillations of the field potentials near the 
particles are small. Then the particles would interact with each other not in the 
wave way, but rather in the usual way, and the wave phenomena become 
invisible. 

If we assume that the length of the standing wave is equal to 2Rλ′ =  , 
where R  is the radius of the proton, then from the equality of the wave energy 
and the rest energy of the proton we obtain: 

 

2
c c

R
ν

λ
′ = =

′
,             2

2p
hcM c h
R

ν ′= = ,              166.6 10
2 p

hR
M c

−= = ⋅  m, 

 
here ν ′  is the oscillation frequency, pM  is the mass of the proton. 
 
Another way to estimate the radius of the proton assumes that the difference 

between the rest energy of the neutron and the proton is due to the electrical 
energy of the proton charge. In this case, it should be: 

 
2

2

0

( )
4n p

keM M c
Rπ ε

− = ,                                        (12) 

 
where nM  is the mass of the neutron, e  is the elementary charge, 0ε  is the 

vacuum permittivity. 
 
In (12) for the case of the uniform distribution of the charge in the volume 

of the proton 0.6k = , as a result the estimation of the proton radius gives the 
value of 166.68 10R −= ⋅  m. 

In [6] and [7], the radius of the proton was found from the condition that the 
limiting angular momentum of the strong gravitation field inside the proton is 
equal in magnitude to the spin of the proton. This leads to the following 
formula: 
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In (13) the strong gravitational constant Γ  is used. According to [4], this 

constant is determined from the equation of electric force and the force from 
the strong gravitation field, acting in the hydrogen atom on the electron with 
the mass eM , which is located in the ground state on the Bohr radius BR : 

 
2

2 2
04

p e

B B

ΓM Me
R Rπ ε

= ,        
2

29

0

1.514 10
4 p e

eΓ
M Mπ ε

= = ⋅  m3·kg–1·s–2,        (14) 

 
In addition to the attractive forces from gravitation and the charges of the 

nucleus and the electron, in the hydrogen atom the electron substance in the 
form of the rotating disc is influenced by the repulsive forces acting away from 
the nucleus. One of these forces is the electric force of repulsion of the charged 
substance of the electron cloud from itself. In the rotating non-inertial reference 
frame in which an arbitrary part of the electron substance is at rest, there is also 
the force of inertia in the form of the centrifugal force, which depends on the 
velocity of rotation of this substance around the nucleus. In the first 
approximation, these forces are equal in magnitude, which leads to (14). 

We shall remind that the idea of strong gravitation was introduced into 
science in the works of Abdus Salam and his colleagues [8], [9] as the 
alternative explanation of the strong interaction of the particles. Assuming that 
hadrons can be represented as Kerr-Newman black holes, they estimated the 
strong gravitational constant as 276.7 10⋅  m3·kg–1·s–2. 

With the help of the strong gravitation constant (14) we can express the fine 
structure constant: 

 
1

137.035999
p eΓM M
c

α = = . 

 
Another estimate of the radius of the proton follows from the equality of the 

rest energy and the absolute value of the total energy, which, taking into 
account the virial theorem, is approximately equal to the half of the absolute 
value of the strong gravitation energy associated with the proton [4]: 
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If we take 0.6k =  for the case of the uniform mass distribution, then from 

(15) it follows that 168.4 10R −= ⋅  m. 
All of the above estimates are based on the classical approach to the proton 

as to the material object of small size in the form of the ball with the radius R . 
It is assumed that the strong gravitation acts at the level of elementary particles 
in the same way as ordinary gravitation at the level of planets and stars. 

In the Standard model of elementary particles and in quantum 
chromodynamics it is assumed that the nucleons and other hadrons consist of 
quarks, and baryons have three quarks, while mesons have two quarks. Instead 
of the strong gravitation, the action of gluon fields is assumed to hold the 
quarks in hadrons. Quarks are considered to be charged elementary particles, 
therefore as the radius of the proton the charge and magnetic root mean square 
radii are considered. These radii are determined by the electric and magnetic 
interactions of the proton and can differ from each other. 

The estimate of the proton charge radius can be made with the help of the 
experiments on the scattering of charged particles on the proton target [10]. In 
such experiments the total cross sections of interaction of the particles σ  are 
found. For the case of the protons scattering on nucleons with energies more 
than 10 GeV we can assume that 2Rσ π= , and 303.8 10σ −= ⋅  m2. Hence we 
obtain 167.8 10R −= ⋅  m. 

 
3 The self-consistent model 

Our aim will be to find a more exact value of the radius of the proton by 
using classical methods. In the calculations we shall use only the tabular data 
on the mass, charge and magnetic moment of the proton. The proton will be 
considered from the standpoint of the theory of infinite nesting of matter [11], 
in which the analogue of the proton at the level of stars is a magnetar or a 
charged neutron star with a very large magnetic and gravitational field. 
Similarly to the magnetar, the substance of the proton must be magnetized and 
held by a strong gravitation field. 
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To take into account the non-uniformity of the substance density inside the 
proton we shall use the simple formula in which the substance density changes 
linearly increasing to the center: 

 
(1 )c Arρ ρ= − ,                                               (16) 

 

where cρ  is the central density, r  is the current radius, 
R

A 10 <<  is the 

coefficient which should be determined. 
 
Formula (16) should be considered as a first approximation to the actual 

distribution of the density of matter inside the proton. Approximate linear 
dependence of the density of matter in neutron stars has been shown in [12], 
and we assume that this is also true for the proton as an analogue of the neutron 
stars.  

To estimate the values A  and the radius R  we shall consider the integral 
for the proton mass in the spherical coordinates: 

 
3

2 4 3(1 ) sin 1
3 4

c
p c

R ARM Ar r dr d d π ρρ θ θ ϕ ⎛ ⎞= − = −⎜ ⎟
⎝ ⎠∫ .              (17) 

 
For accurate calculation of state of neutron stars, and thus protons as their 

analogues we should consider the curvature of spacetime in a strong 
gravitational field, as well as the contribution of the energy of the gravitational 
field to the total mass-energy. We shall assume that in (16), in dependency of 
matter density on the radius all relativistic effects are taken into account, and 
the mass of the proton (17) is the gravitational mass from the point of view of a 
distant observer. 

In (17) there are three unknown quantities, to obtain which two more 
equations are required. We shall assume the virial theorem to be valid and 
equate the rest energy of the proton to the half of the absolute value of the 
energy of the static field of strong gravitation: 

 
2 2

0 0

1 1
2 16pM c dV G dV

Γ
ε

π

∞ ∞

= − =∫ ∫ ,                               (18) 
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where 
2

8
G
Γ

ε
π

= −  is the energy density of the strong gravitation field 

according to [4], G  is the gravitational acceleration or strength of gravitational 
field. 

 
In (18), the integration of the energy density of the field should be done 

both inside and outside of the proton. The value G  inside the proton can be 
conveniently found by integrating the equation for the strong gravitation field 

ρπ Γ4−=⋅∇  G , which is part of the equations of the Lorentz-invariant theory 
of gravitation [13]. After integrating over the spherical volume with the radius 

Rr ≤ , and then using the Gauss theorem, that is making transition to 
integrating over the area of the indicated sphere inside this proton, in view of 
(17) we obtain: 

 
24 4i i idV dS r G Γ dVπ π ρ∇ ⋅ = ⋅ = = −∫ ∫ ∫G G n , 

 

⎟
⎠
⎞

⎜
⎝
⎛ −−=

4
31

3
4 rAΓ c rGi

ρπ .                                     (19) 

 
Outside the proton the gravitational acceleration is equal to: 
 

3r
MΓ p r

Go −= .                                               (20) 

 
Substituting (19) and (20) in (18), we obtain the relation: 
 

R
MΓRARARΓcM p

cp 41123645
14

222
5222 +⎟⎟

⎠

⎞
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⎛
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In (21) we can eliminate the value cρ  using (17), which give the 

dependence of A  on R  in the form of the quadratic equation: 
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The analysis of this equation shows that it has the following solution: 
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on condition that when 
2 130.3 0.371

35p

Rc
ΓM

< < ≈ , then accordingly 

0 1AR< < . 
 
We shall now turn to the magnetic moment of the proton. As in [4], we 

assume that the magnetic moment of the proton is equal to the magnetic 
moment, which is formed due to the maximum rapid rotation of the charged 
substance of the proton. In spherical coordinates, the magnetic moment can be 
approximately calculated as the sum of the elementary magnetic moments of 
the separate rings with their radius θsinr , which have the magnetic moment 
due to the current di  flowing in them from the rotation of the charge: 

 
2 2 2 2

5
2 2 2

sin sin

4 5sin (1 ) sin 1 .
15 6

m m

L qc
qc

dqP dP r di r
dt

Rd ARr Ar r dr d
dt

π θ π θ

π ω ρϕπ θ ρ θ θ

= = = =

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

∫ ∫ ∫

∫
     (23) 

 

The angular velocity L
d
dt
ϕω =  of the maximum rotation of the proton can 

be found from the condition of limiting rotation, with the equality of the 

centripetal force and the gravitation force at the equator: R
R
MГ

L
p 2

2 ω= . Further 
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we believe that for the charge density and the substance density the equation 

pc

qc

M
e=

ρ
ρ

 holds, and we use (17). This gives the following: 

 
( )

( )RA
RARMГe

P p
m 3430

564
−

−
= .                                  (24) 

 
4 Conclusions 
The relation (24) together with (22) allow us to find the radius of the proton 

168.73 10R −= ⋅  m, as well as the value 0.48A
R

= . From (17) we obtain then the 

central substance density 179.4 10cρ = ⋅  kg/m3, which exceeds the average 
density of the proton 1.57 times. The maximum angular velocity of rotation of 
the proton in view of (23) is equal to 236.17 10Lω = ⋅  rad/s. At the same time, if 
the spin of the proton in the approximation of the uniform density of substance 
would be equal to the standard value for the spin of the fermion 

20.4
2pL M R ω= = , then the angular velocity of rotation 231.03 10ω = ⋅  rad/s 

would correspond to this spin. 
For comparison with the experimental data we shall point to the results of 

calculations of electron scattering from [14], where the charge radius 
168.7 10ER −= ⋅  m is obtained taking into account only the scattering on 

protons, 168.71 10ER −= ⋅  m – taking into account the data on the pion 
scattering, and 168.8 10ER −= ⋅  m – taking into account the data on the neutron 
scattering. In [3] the charge radius 168.4184 10ER −= ⋅  m was found in the study 
of the coupled system of the proton and the negative muon. The study of the 
scattering cross section of polarized photons by protons [15] gives the charge 
radius 168.75 10ER −= ⋅  m and the magnetic radius 168.67 10MR −= ⋅  m. The 
charge radius 168.77 10ER −= ⋅  m and the magnetic radius 167.77 10MR −= ⋅  m 
of the proton are listed on the site of Particle data group [16]. In the database 
CODATA [17] the proton charge radius is equal to 168.775 10ER −= ⋅  m. 
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The value 168.73 10R −= ⋅  m obtained in the framework of the self-consistent 
model is close to the experimental values of the radius of the proton, which 
confirms the possibility of applying the idea of strong gravitation to describe 
the strong interaction of elementary particles. 
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