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Abstract. The relativistic precession of Mercury  -43.1 seconds of arc per century-,  is the result of a 

secular addition of 5.02 x10
-7
 rad. at the end of every orbit around the Sun. The question that arises in this 

paper, is to analyse the  angular precession at each single point of the elliptic orbit and determine its 

magnitude and oscillation around the mean value, comparing key theoretical proposals. Underline also that, 

this astronomical determination has not been yet achieved, so it is considered that  MESSENGER 

spacecraft, now orbiting the planet, should provide an opportunity to perform it.  That event will clarify 

highlight issues, now that we are close to reach the centenary of the formulation and first success of 

General Relativity. 
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1.-The theoretical G. R. angular precession. 

   

   In nearly all G.R. textbooks and articles, the trajectory of a target around a massive object (M) , 

is defined starting from the Schwarzschild solution, in a  geometry and a  space-time with spherical 

symmetry. The G.R. equation of motion with  u=1/r  is [1],[2]:   
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 We can write the relativistic orbit as a slight perturbation of the newtonian ellipse as : 
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 h = angular momentum per unit of mass;  e = eccentricity; φ = true anomaly;  p = semi-latus;  

α(φ )  is a  very small  function that produces the G.R. orbit differences, from the newtonian-kepler ellipse: 

an orbit precession. 

   On that basis, a first approximation and particular solution of this differential equation, neglecting 

second order terms, assuming a geodesic orbit and PPN formalism, is presented in the classic relativity 

textbook "Gravitation" by W. Misner [3] :
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were δ φ 0 /2π = constant angular precession = K.   

   As result of it, angular instantaneous precession in each point of the trajectory -δ(φ)-, is constant,  so 

that the gradual addition along the orbit -∆(φ)- , has a linear accumulation till its final value  ∆(2π): a one 

complete orbital precession  (Fig-1).    
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                                                  Fig-1. Angular(δ) and Orbital (∆) precession. 

 

   Final one complete orbit precession is :    [ ∆(φ) = K x φ ] 
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   This  particular solution with a  constant angular precession was, in my opinion, the  first result 

obtained by Einstein in 1915.[4] : 

    “... That  contribution  from  the  radius  vector  and  described  angle  between the perihelion 

and the aphelion is obtained from the elliptical integral: 
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where α1 and α2 (…reciprocal values of the maximal and minimal distance from the Sun…) are the 

corresponding  first  roots of the equation  : 
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          Coefficients of equation (3), were determined by Schwarzschild  and other authors : 
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where  E =  Energy per unit. 

The coefficients for equation (3), must be also consistent with the complete orbit precession of Mercury :  
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   Equation (2) represented by  function f(x), has the following graphic expression : 
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                                                    Fig-2a:  f(x): General graphic. Mercury ( blue) 

 

 

                   
                                        

                                                  Fig-2b: Graphic focused on Mercury. α1, α2. 

 

   We can remark that f(x), has virtually the same values both in the aphelion as in the perihelion 

and also through the rest of the orbit. This means that this solution, involves a constant angular precession   

-δ(φ)- along the whole orbit and also a linear accumulation of the orbital precession -∆(φ)-, with a  K  

proportion relative to the true anomaly  φ . ( Fig-1). 
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2.- G.R. angular instantaneous precession. Periodic oscillations . 

 

   General Relativity  admits also small  periodic oscillations that are insignificant contributions and 

their only effect is to change slightly the position of the perihelion and the interpretation of  rmin  and  e.[5]  

The most extended and accepted formulation  of G.R. orbit  fluctuations about the average orbital 

precession, based also in the Schwarzschild solution  is :  [1],[2],[8],[9] 
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   We will analyse the magnitude of the periodic oscillations that produces function j(φ)  related 

with the mean value of a constant angular precession that involves the last term e φ sinφ.  It must be 

underlined  that the cumulative effect produce by [K e φ ],   has also a periodic origin and implication; it 

really represents the magnitude of  [sin(K e φ) ] that makes α(φ ) consistent in equation (1) and, as a result 

of it, the effect of the perturbation  is shaped definitely as an angle, a real angular precession.  

 

                                
 

                                       Fig-3 : Angular precession oscillations : j(φ) 
 

   As we can conclude, the function j(φ)  involves very small variations. Its amplitude is about 

3/100 of the mean constant value. 

 

   Professor M.Berry [5], presents another α(φ ) function with larger amplitude of oscillations, 

keeping however the same final orbital precession :  
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                                       Fig-4 : Angular precession oscillations; jB(φ) 
 
 

 Standing out from Fig-4, there are significant oscillations, but with the same final orbital precession as in 

equation (1). The range of oscillations is equivalent to the magnitude of the theoretical constant precession. 

The eccentricity of the orbit has clear effects on the angular precession, increasing the amplitude as the 

eccentricity decreases.  
 
3.-  G.R.  perturbing  gravitational potential / force.  

 

   Trying to analyse the oscillations of the angular precession, we can also study the effects of a 

perturbing potential or force upon the newtonian field. This procedure should allow even more 

accurate results than those obtained  solving the second order differential equation of motion.  

  

  The effective G.R. potential is displayed in  equation (4),  where the last term, is the perturbation 

potential added to the classic newtonian one. [1],[6],[10], [12] 
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We will now analyse some approaches and methods that explore the orbital precession produced by  

any potential or  perturbation force. 

 

a) Published in 1982, B. Davies [11] presented a solution to the  orbital precession, based on 

the Laplace-Runge-Lenz vector, located in the same  plane as the orbit and pointing in the direction of 

the perihelion. Its angular velocity, measures the precession if there is any external disturbance. 

 The magnitude of the total force would be equal to the usual newtonian, added with  a function -g(r)- 

as  a perturbing factor. 
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   The solution to the orbital precession is then :  
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Considering G.R. perturbing force and also an elliptic orbit: 
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Then, the  angular precession is: 
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  Davies also remarks that the factor  cosφ,  brings  a positive sign to the precession  in the part of the 

orbit when the planet is closer to the focus than the average distance; the rest is negative. Therefore, 

that statement supports that one half of the relativistic precession, is in the opposite direction to the 

advance of the  planet in its orbit. 

 

 

b)    Published in  2005, M.G. Stewart [12] also starts his approach from the Laplace-Runge-

Lenz vector, but providing the following alternative formulation : 
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The result is just the same to the previous one. 

 
c)       Publish in 2007, G. Adkins [10], studies the precession by solving the equation of motion, 

adding a perturbing potential V(u) in the following expression:  
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   By the change of variables  u = (1+e z) ⁄ p,   he obtains the following formulation of the 

orbital  precession:  
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Inserting G.R. perturbing potential and changing   z = cosφ  : 
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Identical result to the one obtained previously, but from different arguments. 

 

d)    Published in 2008, O. I. Chashchina[13]  proposed the calculation of the orbital precession based 

on the Hamilton vector with this definition:  
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 V(r) is  the perturbing potential : 

                                         
42

2

rc

hGM3

dr

)r(dV −= ; and then,  

                                        ( ) .raddKd )(coscose1
e

1

pc

GM3
D

2

2
φφ φδφφ ∫∫ =+=∆

ππ 22

00

 

  Again it is exactly  the same result, however starting from a  different hypothesis. 

 

e)  We will  check these results but  now with another test, based on a new approach. This is the  

Landau & Lifshitz formulation [7], which defines the precession  produced by a  perturbing potential. This 

formula is valid as a theorem, suitable for any small perturbation whatever could be its physical origin and  

returning the exact value. Integration is performed over an unperturbed orbit [14]: 
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where M= m h = angular momentum,  δU= perturbing potential energy = m V(r)   

then, the angular precession is : 

                                                 






∂
∂= φφδ d)r(V

hh
)( r1

L

2  

derivates referred to h are: 

                                                e
e1

h
1

h
e;

h
p

2
h
p 2−−=∂

∂=∂
∂

 
[10]; 

and then :               
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   The solution is different, however similar to the previous ones, with identical value of the final 

orbital precession ( Fig-5) : 

� The maximum values are somewhat lower at 0 and 2π but higher at π. 

� The angular precession is null at ϕ = 1.77 rad.  and  ϕ = 4.50 rad  while previously was null at  π/2  

y 3π/2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Fig-5. Theoretic approaches  to Angular(δ) and Orbital (∆) precession. 
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   The results obtained, shows that the oscillation is such that between π/2  and  3π/2,  the 

orbital precession turns back, opposite to Mercury’s own progress in its orbit. At these points 

(maximum and minimum) there is an equivalent lead/lag of  1,9 sec.arc./century related with  the 

magnitude of the orbital precession at the final/ initial point of the orbit. ( Fig-5) 

   Another issue is the clear influence that has the eccentricity  in the magnitude of  oscillations. The 

lower is the eccentricity, the greater the fluctuation of the angular precession because they are inversely 

proportional. ( Fig-6) 

   In case of Mars (e = 0.093) , there would be a lead/lag of  1.3 sec.arc./century equivalent itself to 

the magnitude of the relativistic  precession at the final/ initial point of the orbit. The Earth (e = 0.017) 

should have  a lead/lag of  37.1 sec.arc./century, ( Fig-7 )  nearly ten times the relativistic precession and  

Venus (e = 0.0068)  should have 203.4 sec.arc./century, 24 times the final precession. 

    If  this theoretical formulation is correct, these results should have significant observational data 

records, in the registered orbital precession of these planets,  

 

 

  

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     

                                 Fig-6. Eccentricity,  Angular(δ) and Orbital (∆) precession. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

        

                            Fig-7. Eccentricity and  Orbital (∆) precession. Earth.Venus  
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4.-  Mercury’s orbit as  an open free-fall path. 

 

    The currently precession of Mercury, is far larger to the one with only a relativistic origin. 

This is due to the effect produced by the rest of the planets, causing also precessions that must be 

added.  

   The largest precession is produced by Venus (277 ar.sec./cent.) followed by Jupiter (154 

ar.sec./cent), the Earth-Moon system (91 ar.sec./cent) and the rest of the planets for a total of 532 

ar.sec./cent. Relativistic Precession is 43 ar.sec./cent, therefore we can conclude that the real 

precession  detected in astronomical observations is equivalent to 575 ar.sec./cent. 

 
  To study the oscillations of the angular precession related to the final magnitude in each 

orbit, it would be necessary to have for at least one year, data from the position of Mercury with the 

best possible accuracy. These data should be reduced with the other perturbations of the planets, as 

well as considering the effect of the equinoxes´s precession. In this way, we could examine Mercury’s 

orbit as an open free-fall path, isolated from  other  planets gravitational interference. It is certainly a 

difficult and complex duty but clearly available with the current development of our technology and 

also not expensive. 

 

   MESSENGER spacecraft, now orbiting the planet, should provide an excellent opportunity 

to perform it, giving precise radiometric data on the day to day real position of Mercury. 

 

    To assess the influence of each planet in the orbit of Mercury, is not enough to replace it by the 

approximation due to a uniform ring of matter. We need to perform a software calculation based on  

elliptical and inclined orbits, positioning each planet in every moment.  

 

 

 

 

5.-  Conclusions and open comments. 

 

a)   It is positively difficult to consider a constant and lineal kinematics action for this angular 

precession. It should be appropriate as a first solution and approximation to the real motion and trajectory. 

Except angular momentum and total energy, no other feature is constant: perturbing potential, central force, 

acceleration, velocities, curvatures, radius, etc. 

 

b) Angular precession oscillates about a mean value. The magnitude depends on the theoretical 

approach we use. In all the proposals, angular precession has a non-zero effect in the perihelion neither 

the aphelion, nodes where radial velocity is null. 

 

c)  The orbital precession produced by the perturbing potential, involves oscillations with a 

negative advance and turns back, opposite to Mercury’s own progress in its orbit. Any elliptic orbit 

with eccentricity < 0.22  would have the same behaviour. However, the final one orbit precession does 

not change in any case. 

 

d)  Eccentricity should have great influence in the magnitude of oscillations of the angular 

precession.  

 

e)  The astronomical determination of the angular and orbital precession at each single point of the 

orbit, has not been yet achieved, so it is considered that MESSENGER spacecraft, now orbiting the planet, 

should provide an opportunity to perform it.  That event will clarify some issues, now that we are close to 

reach the centenary of the formulation and first success of General Relativity. 
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