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In this short paper the noncommutative geometry and quantization of branes
and the AdS is discussed. The question in part addresses an open problem left by
this author in [1] on how branes are generated by stringy physics. The breaking
of an open type I string into two strings generates a nascent brane at the new
endpoints with inflationary cosmologies. This was left as a conjecture at the end
of this paper on the role of quantum critical points in the onset of inflationary
cosmology. The noncommutative geometry of the clock and lapse functions for
the AdS-brane are derived as is the number of degrees of freedom which appear.
The role of the AdS spacetime, or in particular its boundary, in cosmology is
discussed in an elementary regularization scheme of the cosmological constant
on the boundary. This is compared to schemes of conformal compactification of
the AdS spacetime and the Heisenberg group.

1 Geometry of QCD theory of D-brane with
AdS coordinates

In the recent article [1] a quantum phase transition model for the onset of
inflation is proposed. The quantum critical behavior is proposed as a change
in the physics of a type I string attached to two D-branes. As the D-branes
separate under Casimir vacuum pressure the string stretches and breaks, with
a new D-brane holding the endpoints of the two strings. The emergence of a D-
brane is a quantum to classical transition. D-branes are classical objects which
emerge in the limit of large N modes or degrees of freedom on the brane. In this
letter the physics of this phase transition is examined in the light of holographic
bounds.

The open string is a near Planck scale version of a meson. The endpoints
are quark-like particles with an analogue of a gluon flux tube connecting them,
which serves as the string. The system is a type of two-quark QCD system. The
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endpoints or quarks exist in a family of Nf quark fields and we represent this
theory as SU(2Nf )r × SU(2Nf )`. The general Lagrangian for a QCD system
such as this [2] is

L = − 1
4πg2

F a
µνF aµν + iψ̄σµ

(
∂ν +

i

2
Aa

µτµ
)
ψ − 1

2
mqψ

T τ2Ωψ + HC

for ψ the two component spinor

ψ =
(

q`

σ2τ2qr

)

and Aa
µ the gluon field strength with chromo-index a = 1, 2, 3. The matrix

Ω is the 2N × 2N skew symmetric matrix

Ω =
(

0 1
−1 0

)

The massless limit with mq = 0 the SU(2Nf ) symmetry is replaced with
U(2Nf ) for Sp(n) = U(2n) ∩ Sp(2n, C).

The Hermitian generator of SU(2Nf ) of dimension 2Nf − 1 are normalized
as Tr(T aT b) = δab/2 exist in two sets. The first set pertain to the symplectic
group Sp(2Nf ) ⊂ SU(2Nf ), denoted as Xa, a = 1, . . . , 2Nf − Nf ,
and the remainder Y a pertain to the quotient group SU(2Nf )/Sp(2Nf ) for
a = 1, . . . , 2Nf + Nf − 1. The quotient group generators “left over” from
the group reduction are the Goldstone bosons in the 2Nf × 2Nf matrix

Z = einaxa/
√

NΩ

The algebraic elements of Sp(2Nf ) group obey

XT Ω + ΩX = 0

and the quotient group obey

YT Ω − ΩY = 0.

An important example is the group SU(4), since SU(4) ∼ SO(4, 2) is the
isometry group of AdS4 ∼ SO(4, 2)/SO(4, 1). The generators Xa and Y a of
Sp(2, 2) ∼ Sp(4) and the quotient subgroup in SU(4) can be written as

Xa =
1

2
√

2

(
σa 0
0 −σaT

)
a=1,...4, Xa =

1
2
√

2

(
0 xa

xa† 0

)
a=5,...10,

Y a =
1

2
√

2

(
σa 0
0 σaT

)

a=1,...3

Y a =
1

2
√

2

(
0 ya

−ya† 0

)

a=4,5
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Xa can be seen from the Sp(4) identity XT Ω + ΩX = 0. σa are the standard
Pauli matrices for a < 4, and for a = 4 this is a unit matrix. The group is
then SU(2)× U(1). For a = 5, . . . , 10 the elements are

x5 = 1, x7 = σ3, x9 = σ1, xa+1 = ixa

The Y a elements are seen from for YT Ω − ΩY = 0 and the elements y4 = σ2,
y5 = iσ2.

Now decompose the matrix Z = U + V with

Ua =
1

2
√

2
e−2

√
2

(
0 eσa/

√
n

0 0

)
, V a =

1
2
√

2
e−2

√
2

(
0 0

−e−σaT /
√

n 0

)

with the result that the multiplication of the two matrices is

UaV b =
1
8
e−2

√
2

(
−eσa/

√
ne−σbT /

√
n 0

0 0

)
, V bUa =

1
8
e−2

√
2

(
0 0
0 −e−σbT /

√
neσa/

√
n

)

The product eσa/
√

ne−σbT /
√

n ' e(σa − σbT )/
√

ne[σa, σbT ]/2n and the commuta-
tor is

UaV b − V bUa =
1
8
e−4

√
2e(σa − σbT )/

√
n

(
−e[σa, σbT ]/2n 0

0 e−[σa, σbT ]/2n

)

The transpose of the Pauli matrix σ2T = −σ2 with the rest remaining the
same means the commutator in the matrix is[σa, σbT ] = 2iεabcσcT and we
have for a = + and b = − that

U+V − − V −U+ =
1
8
e−4

√
2e(σ+ − σ−T )/

√
n

( −eiσz/n 0
0 e−iσz/n

)

or approximately

U+V −e−iσz/n − V −U+eiσz/n =
1
8
e−4

√
2e(σ+ − σ−T )/

√
n

( −1 0
0 1

)

which leads to

U+V −e−iσz/n − V −U+eiσz/n = 0

If we reset 1/n → π/n and evaluate this matrix on the eigenvector |+〉 of σz

we can write this result as U+V − − V −U+e2πi/n = 0. This construction of
noncommutative geometry is a ?-product extension of a symplectic geometry.

2 Clock-shift operators under Lorentz boost and
degrees of freedom

This means the manifold is a “fuzzy” space with noncommutative geometry.
The operators U±, V ± are spinor versions of the clock and shift functions on
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an n = 2 dimensional Hilbert space [3]. The structure is then a reduced version
of the large N version of the noncommutative coordinates of a D-brane. This
theory may be extended into a Witt algebra, or a Virasoro algebra. The Pauli
matrices are elements of SU(2) ∼ SO(3). The Lorentzian form of this theory
is SU(1, 1) ∼ SO(2, 1). The projective 2 + 1 Lorentz group PSL(2, 1) is
isomorphic to the SL(2, R) defined for the operators L1, L−1 and L0 by

[L0, L−1] = L−1, [L0, L1] = −L1, [L1, L−1] = 2L0.

where these operators are expanded in modes as according to the Laurent ex-
pansion

Ln =
∮

dz

2πiz
zn+2T (z), T (z) = −

∞∑
n=∞

Ln

zn+2
.

The SL(2, R) algebra may be embedded into a Virasoro algebra [4]

[Lm, Ln] = (m − n)Lm+n + c(m)δij .

The anomaly term is c(m) = D(m3 − m)/12, for D = 26. The states of the
system are then given by Lm =

∑
n αm−nαm, and if the group is restricted

to SL(2, R) the mode operators which form this algebra sum accordingly. The
L0 portion of the SL(2, R) is the operator L0 =

∑
n α−nαn which is the

Hamiltonian for the bosonic string.
We have extended this construction to a larger Hilbert space, where if

c(n) = 0 for all n this is the Witt algebra for Ln = −zn+1∂/∂z. For
the Witt algebra over a finite field the largest LN value would correspond to
the upper frequency limit on the Hilbert space of N dimensions. the finite Witt
algebra is some imposed by a time resolution in the observation of the D-brane.
The D-brane is composed of cells of minimal uncertainty with [p, x] = ~. The
uncertainty in the momentum is given by a resolution time δt = ε. We may
then remove any energy-momentum greater than 1/ε. On the infinite momen-
tum frame the energy is E = (p2

⊥+ m2)/2P , for P the longitudinal momentum.
This conversely means the longitudinal momentum must be P < m2ε. A D-
brane with N degrees of freedom is then determined by the longitudinal boost
of that brane relative to another brane. A degrees of freedom on the brane
are increased by Lorentz boosting the brane, such as doubling the momentum
means P < 2m2ε, and the number of energy states on the brane has increased.
The boost in the brane increases the resolution time by the dilation of time so a
new set of degrees of freedom appear in the energy region m2ε < P < 2m2ε.
The Witt algebra over a finite field is then extended. The Witt algebra over a
field k[z] of characteristic N > 0, is the Lie algebra of derivations of the ring
k[z]/zN+2 The Witt algebra is spanned by Ln for =1 ≤ n ≤ N . The boost
P → 2P redefines the ring to k[z]/z2N+2, and the increase in the number of
modes or degrees of freedom is a manifestation of the Lorentz boost factor. This
is a form of generating Feynman’s wee-partons [5].

4



A QCD-like string with the field Aa
µ interacting on branes with a QCD-like

chromocharge and open ends as fermion fields ψ, or quarks on these branes, is
broken as the two branes separate. The separating endpoints are connected to
a nascent brane with a few degrees of freedom. This nascent brane is a S3 cor-
responding to a FLRW metric, which expands to its turn around or maximum
expansion point. The violation of the Bekenstein bound at the turn around
point forces this surface to becomes R3. Equivalently the S3 becomes enor-
mously Lorentz boosted relative to the end points and their Dirichlet bound-
ary conditions on the brane and on the infinite momentum frame appears as
a stretched horizon. The metric on this surface is an anti de Sitter spacetime.
The transverse modes of the string become enormously Lorentz boosted relative
to the nascent brane, which is a form of stretched horizon as measured by an
observer near either original endpoints of the string. The transverse modes of
the string increase and the string covers the nascent brane increasing the num-
ber of modes observed on it. The appearance of the stretched horizon covered
by the string means each region of the surface with a Planck unit of area G~/c3

contain a mode in the limit N → ∞. The two operators U and V are then
elements of an enveloping algebra of complementary observables with a minimal
uncertainty ~.

With the construction with Pauli matrices we have the SU(2) commutation
relationship for angular momentum [Li, Lj ] = iε~Lk. Now choose a coordinate
system on the sphere with Lz through the origin. Then Lz '˜ constant and we
may write Lx = px and Ly = py so that [x, y] = i~θ. The same applies for
the momentum space. The conversion to this construction with σ2T then maps
this sphere into the hyperbolic coordinates considered. This gives a meaning to
the noncommutativity of the coordinates of the manifold.

ei∇iei∇j = ei∇i+i∇j+
1
2 Rijkly

iyk

.

The Riemann curvature pertains to the AdS Riemann curvature tensor com-
ponents. In addition the curvature here is in O(~/N) and is then a quantized
effect. The world volume swept out by the D3-brane is defined by the AdS4

curvatures in t, χ, θ, φ coordinates

Rtχtχ = cos2(t), Rtθtθ = cos2(t)sinh2(χ), Rtφtφ = cos2(t)sinh2(χ)sin2(θ)

Rχθχθ = −cos2(t)sinh2(χ) + cos(t)sin(t)sinh2(χ)

Rχφχφ = −cos2(t)sinh2(χ)sin2(θ) + cos2(t)sin2(t)sinh2(χ)sin2(θ)

Rθφθφ = cos2(t)sinh2(χ)sin2(θ) + cos2(t)sin2(t)sinh4(χ)sin2(θ)− cos2(t)sinh2(χ)sin2(θ)cosh2(χ)

The last three of these curvatures are the curvature of the spacetime on the
D3-brane, while the first three above are the curvature of the D3-brane in the
world volume it sweeps through.
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In this setting the U and V operators with a commutation given by UV = e2π/NV U
and the deviation from commutation is determined by this curvature in units
of ~/N . Equivalently we may think of the variables χ → χ/

√
N , where in the

limit N → ∞ the curvatures approach zero. The number of degrees of freedom
in the system is “large N ,” not infinite. Consequently the anti de Sitter space-
time on the D-brane “matures” into a state with curvature present only over
considerable distances on the brane. A realization of clock and shift operators
is a noncommutative geometry on the brane, and large N corresponds to a high
boost of the brane and a classical limit.

3 Is the observable cosmology anti de Sitter, or
the boundary of AdSn?

Hartle, Hawking and Hertog [5] have suggested the observable universe may
indeed by anti de Sitter. With the Wheeler DeWitt equation they derive an
expanding wave function in an AdS spacetime with the energy constraint

(
a′

N

)2

− 1 − a2

`2
= 0,

where the sign change is such that `−2 = −Λ/3 for the AdS. The negative cos-
mological constant makes the relationship between quantum physics and gravity
far easier to understand as the AdS/CFT correspondence and holography. The
quantum wave functional of the Wheeler-DeWitt equation expands with the
scale factor a, which it is argued would correspond to an expanding universe.

The AdS4 metric

ds2 = −dt2 + cos2(t)dχ2 + cos2(t)sinh2(χ)dθ2 + cos2(t)sinh2(χ)sin2(θ)dφ2

for dφ = 0 and cos(t) = cos(at) with a = 0 reduces to a three dimensional
space with the metric ds2 = −dt2 + dχ2 + sinh2(χ)dθ2. We set the T and X
coordinates so that χ = tanh−1(T/X) and T = x sinh(χ), X = x cosh(χ),
for x =

√
X2 − T 2. This gives the Poincaré half-plane on a times slice with

the metric

ds2 =
dx2 + dy2

y2
, y > 0

It is easily shown that Γx
xy =Γy

yy = −1/y, and Γy
xx = 1/y. The nonzero

curvature components in these coordinates are

Rx
xyx = − 1

y2
, Rx

xxx = Ry
xyx = − 1

y2

With the Ricci curvatures R11 =R22 = −1/y2, Ricci scalar curvature R = −2
and Gaussian curvature K = −1. This by way of elementary illustration indi-
cates the curvature is negative throughout the space. The curvature approaches
zero as y → ∞and diverges as y → 0.
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The geodesics of the Poincaré half plane are circles which perpendicularly
intersects at y = 0 metric. The line element is then ds ' dy/y with a small
increment s ' ln(y) . This diverges at zero, where near this point we write
the logarithm for y = 1 − x so ln(1 − x) = −∑

n xn/n. For x = ε − 1,
so that xn ' 1 + nε the Taylor series is

ln(1 − x) ' −
∑

n

1 + nε

n
= −

∑
n

(
1
n

+ ε

)

This constructs the discrete form of the logarithmic divergence as ε → 0. Now
substitute n → ne(n−1)ε with the implied limit ε → 0 so that

s ' ln(y) = −
∑

n

e−(n−1)ε

n
= −

∫ ∑
n

e−(n−1)εdε.

This is a geometric series,

∑
m

e−mε = e−ε(1 + e−ε + e−2ε + . . .) =
e−ε

1 − e−ε

The integral of this is ln(1 − e−ε) − ε or with the logarithm Taylor series
' −2ε. Hence the line element is regular.

We now turn our attention to curvature. The line element in a small neigh-
borhood of size ε, a variation of the line element is

s = s0 + ε
ds

dε
+ ε2

1
2

d2s

dε2
+ . . .

It is clear that the second order term contains curvature information from

d2s

dε2
= ∇i∇jgkl

dxi

dε

dxj

dε
dxkdxl =

1
2
[∇i,∇j ]gkl

dxi

dε

dxj

dε
dxkdxl

where the commutator is the components of a curvature two-form. The essential
information to describe the behavior of curvature near the boundary is the
second derivative of ln(y) or equivalently

d2s

dε2
= − d

dε

∑
n

e−(n−1)ε = − d

dε

e−ε

1 − e−ε

The term differentiated is expanded in a Taylor series for small ε so e−ε = 1 – ε + ε2/2
and this summation, with use of the binomial theorem and eliminating powers
O(ε3) and higher, is

∑
m

e−mε = −1
ε
(1 – ε/2 − ε2/12).

Now take the derivative with elementary calculus rules change the sign as above
and we have
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d2s

dε2
= − 1

ε2
+

1
12

.

As ε → 0 the first term blows up. This UV divergence can be absorbed into
the definition of the momentum and regularized away. The remaining term is
the value of the curvature on the boundary, which is finite and positive.

The physical interpretation is the quantum vacuum energy. The vacuum
energy of quantum fields in spacetime is E = Dω0

∑
nn/2, in a box nor-

malization, and with D the dimension of the harmonic oscillators. The sum
1 + 2 + 3 + . . . + n + . . . is equal to

∑
n

n =
d

dε

e−ε

1 − e−ε

which means the vacuum energy near the boundary is equal to

E = Dω0

(
1

2ε2
− 1

24

)

The regularized vacuum energy requires that D = 24. This is the spatial
dimension of the oscillator, which is in a light cone (light front) frame, and
so the number of spatial dimension is 25 and the spacetime dimension is 26.
The vacuum energy contributes a curvature term that is Λ ∼ ω0, which is
positive. The sign is changed by the negative curvature of the AdS4, which in the
evaluation of the vacuum state on ∂AdS4 changes the sign so Λ ∝ −12ω0

∑
n n.

The boundary of the anti-de Sitter spacetime is more general than this ele-
mentary case with the Poincaré disk. The boundary of the AdS5, ∂AdS5 = E4

c ,
is a conformally flat spacetime [7]. In line with the even dimensional construc-
tion we may for instance consider AdS6, ∂AdS6 = E5

c ,with a compactifi-
cation of one dimension of E5

c into E4
c × S1. The conformal transformation

gµν → Ω2gµν the flat spacetime element ds2 = du2 − ∑
i dxidxi is a

time dependent transformation for du/dt = Ω−1 and a de Sitter spacetime for
Ω2 = e

√
Λ/3 t. This is approximately the spacetime for our physical universe.

It is then argued that the negative cosmological constant in the AdS5 spacetime
may manifest itself as a positive cosmological constant on the boundary.

4 Geometric quantization of brane-world?

The AdSn+1 group of isometries O(n, 2) contains a Möbius subgroup, or mod-
ular transformations, so this discrete group does not necessarily act effectively
on AdSn+1. This means that the discrete group Γ is not necessarily convergent
on the boundary space Mn. Such a convergence means there exists a sequence
gi ∈ Γ which admits a north-south dynamics of poles p± on a sphere, which
in the hyperbolic case defines the past and future portions of a light cone [8].
The limit set of a discrete group is a closed Γ-invariant subset that defines a
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ΛΓ ⊂ Mn so the complement ΩΓ acts properly on Mn. This Γ-invariant closed
subset of ΛΓ ⊂ Ln is the space of lightlike geodesic in Mn. The action of Γ on
ΩΓ ∪AdSn+1 is contained in Mn. The open set ΛΓ is the maximal set that the
Γ acts properly on ΩΓ ∪ AdSn+1. The other is the discrete group Γ is Zariski
dense in O(n, 2).

The lightlike geodesics in Mn are copies of RP 1, which at a given point p
define a set that is the light cone C(p) [8]. The point p is the projective action
of π(v) for v a vector in a local patch Rn,2 and so C(p) is then π(P ∩Cn,2), for
P normal to v, and Cn,2 the region on Rn,2 where the interval vanishes. The
space of lightlike geodesics is a set of invariants and then due to a stabilizer
on O(n, 2), so the space of lightlike curves Ln is identified with the quotient
O(n, 2)/P , where P is a subgroup defined the quotient between a subgroup with
a Zariski topology, or a Borel subgroup, and the main group G = O(n, 2).
This quotient G/P is a projective algebraic variety, or flag manifold and P is a
parabolic subgroup. The natural embedding of a group H → G composed with
the projective variety G → G/P is an isomorphism between the H and G/P .
This is then a semi-direct product G = P o H. For the G any GL(n) the
parabolic group is a subgroup of upper triangular matrices, called Borel groups
[9].

The connection between the symplectic group symplectic group Sp(2Nf ) ⊂ SU(2Nf ) ∼ SO(2, 2)
and the parabolic group of upper triangular matrices is a geometric quantization
[10]. The symplectic manifold (M, Ω), where Ω is the skew symmetric matrix
defines a prequantization as a representation of elements of the Poisson algebra
f ∈ C∞(M) as sections of a Kahler line bundle L, with π : L → M . The
prequantization line bundle contains the one form ω = df + 2πiα, for α
on the line bundle, such that the curvature R = D ∧ D, for D = d + ω
under π : R = iΩ. Let T = T (M) be the tangent bundle to M for elements
u, v ∈ T . The Poisson bracket {u, v} ∈ Γ(T ) exists on sections of T , and the
quantum algebra QM of M is the operators formed from functions f such that
their Hamiltonian vector fields xf xa = Ωab∂bH, and [xf , T ] ⊂ T . QM forms
a pre-Hilbert space of half-forms, tensor density fields with weight s = 1/2,
with fop = f + i~1/2LT xf , with α = i~1/2LT xf . This is a form of the
?-product that is an extension of the function on a symplectic manifold into a
quantum algebra.

This gives two routes to quantization. The first is with a geometric quantiza-
tion approach with the enveloping algebra on U, V and Sp(2Nf ) for a D-brane,
the other is with the conformal completion of the AdSn. In the latter case the
parabolic subgroup of Borel groups or Heisenberg groups. The parabolic group
defines light cones, which are an invariant of spacetime. The invariance of space-
time is proper time, where in this construction the proper time is zero. In the
geometric quantization approach the coordinates of phase space are employed,
and Hamiltonian vector fields ua = dγa/dt are defined according to a coordi-
nate definition of time. Quantum fields in spacetime are defined according to
local operators that commute on a spatial surface of simultaneity. Hence QFT
is defined according to coordinate time. In one case the quantization ?-product
is constructed according to light cones, or proper intervals, which is more com-
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mensurate with the structure of general relativity. In the braney approach the
quantization is tied to coordinate geometry and is in line with quantum field
theory. These rely entirely on different definitions of time. The open question
is then how are these related, whether they ultimately give identical results,
or whether these two schemes are aspects of a more general quantum gravity
scheme.

5 Concluding statements

The braney dynamics with strings is a form of QCD, where the endpoints of a
string are “quarks” with a color identified with the brane it is anchored to. The
QCD dynamics of the brane with SU(2, 2) symmetry, or SO(4, 2), is governed
by the noncommutative geometry of the ?-product. The development of a brane
from the bifurcation of a string is a form of infinite momentum boost which in-
creases the number of degrees of freedom on the brane. As the number of modes
increases the brane becomes a classical-like object. The SU(2, 2) ∼ SO(4, 2)
is the isometry group for the AdS4, and acts as a QCD-like gauge field. The
decomposition of SU(2, 2) into Sp(4) ∼ Sp(2, 2) form the symplectic basis
for the noncommutative geometry of the brane, or AdS-brane.

The observable universe is likely connected to AdS spacetime. Hartle, Hawk-
ing and Hertog argue the physical universe may indeed by anti-de Sitter. As
with the Poincaré half plane, or the Poincaré disk, the geodesics are great arcs
which leave the boundary with enormous curvature and high energy, traverse the
space and return to the boundary. An observer in an anti-de Sitter spacetime
would observe distant objects to be highly blue shifted. Any object observed at a
great distance would emit radiation which is blue shifted towards the observer.
It is for this reason the anti-de Sitter spacetime was considered in quantum
gravity, for this property makes it the perfect box to hold a black hole. The
boundary has a repellant gravitational influence. The argument is made for why
the observable universe is a conformally flat spacetime on the boundary of the
AdSnspacetime.

The noncommutative geometry of the brane, or geometric quantization, then
shares some relationship with the conformal completion of the AdSn spacetime
and the Borel group upper triangular matrix form of the Heisenberg group. The
two approaches then share some relationship which is as yet not clear. It could
be the two forms of quantization are not equivalent and then must embed in
some more general form of quantum gravity.
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