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Abstract—Uncertainty measures in the theory of belief func-
tions are important for the uncertainty representation and
reasoning. Many measures of uncertainty in the theory of belief
functions have been introduced. The degree of discord (or
conflict) inside a body of evidence is an important index for
measuring uncertainty degree. Recently, distance of evidence
is used to define a contradiction measure for quantifying the
degree of discord inside a body of evidence. The contradiction
measure is actually the weighted summation of the distance
values between a given basic belief assignment (bba) and the
categorical bba’s defined on each focal element of the given bba
redefined in this paper. It has normalized value and can well
characterize the self-discord incorporated in bodies of evidence.
We propose here, some numerical examples with comparisons
among different uncertainty measures are provided, together
with related analyses, to show the rationality of the proposed
contradiction measure.

Index Terms—Evidence theory, uncertainty measure, belief
function, discord, conflict.

I. INTRODUCTION

Dempster-Shafer evidence theory [1], also known as theory

of belief functions, is one of the important uncertainty rea-

soning tools. It has been widely used in many applications.

Evidence theory can be seen as a generalization of probability

theory, where the additivity axiom is excluded. In probability

theory, Shannon entropy [2] is often used for quantifying

uncertainty while in the framework of evidence theory, there

also need the uncertainty measure for quantifying the degree

of uncertainty incorporated in a body of evidence (BOE).

In uncertainty theories, we can consider two types of

uncertainty including discord (or conflict) and non-specificity,

hence ambiguity [3]. There have emerged several types of

uncertainty measures in the theory of belief functions. They are

either the generalization of Shannon entropy and other types of

uncertainty measures in probability theory or are established

based on the conflict obtained by using some combination

rule. For example, non-specificity [4] proposed by Dubois and

Prade is a generalization of Hartley entropy [5]; aggregate

uncertainty (AU) measure [6] and ambiguity measure (AM) [3]

can be regarded as the generalized forms of Shannon entropy.

In Martin’s work [7], [8], the auto-conflict measure was

proposed based on the conjunctive combination rule. There are

also lots of other types of uncertainty measures in the theory of

belief functions (See details in [3], [9], [11]). All the available

uncertainty measures characterize the uncertainty either from

one aspect (e.g. non-specificity and discord) or as a whole, i.e.

the total uncertainty (e.g., AM and AU).

Like in [7], [11], we attempt to break the traditional ways to

establish uncertainty measure in the theory of belief functions.

That is, we do not generalize the uncertainty measures in

probability theory or use combination rule to obtain the

uncertainty measures in theory of belief functions. In this

paper we modify the contradiction measure proposed in [11]

to characterize the internal conflict (or discord) degree of

the uncertainty in bba’s. For a bba with L focal elements,

based on each focal element, a categorical bba (a bba with

a unique focal element) can be obtained. Thus there are

totally L categorical bba’s. We calculate Jousselme’s distance

of evidence [10] between the original given bba and each

categorical bba then we can obtained L values of distance.

By using the masses of the given bba to generate the weights

and executing weighted summation of the corresponding L
distance values, the contradiction can be obtained. To make

the contradiction measure be normalized, the normalization

factor is designed and added. Some simulation results are

provided to verify the correctness of the normalization factor.

This contradiction measure can well characterize the conflict

incorporated in a BOE, i.e. the self-conflict or internal conflict.

Some numerical examples with comparisons among different

uncertainty measures in the theory of belief functions are also

provided to show the rationality of the proposed contradiction

measure. It should be noted that this work is based on our

previous paper [11]. The idea of constructing contradiction

measure based on distance of evidence is first preliminarily

proposed in that paper, where there exist some errors in the

definition -corrected here- and related analyses are far from

enough.

II. BASICS IN THE THEORY OF BELIEF FUNCTIONS

A. Basic concepts in the theory of belief functions

In Dempster-Shafer evidence theory [1], The elements in

the frame of discernment (FOD) (denoted by Θ) are mutually

exclusive and exhaustive. Suppose that 2Θ denotes the pow-

erset of FOD and define the function m : 2Θ → [0, 1] as the



basic belief assignment (bba) satisfying:
∑

A⊆Θ

m(A) = 1, m(∅) = 0 (1)

A bba is also called a mass function. Belief function (Bel)
and plausibility function (Pl) are defined below, respectively:

Bel(A) =
∑

B⊆A

m(B) (2)

pl(A) =
∑

A∩B ∕=∅

m(B) (3)

Suppose there are two bba’s: m1, m2 over the FOD Θ with

focal elements A1, . . . , Ak and B1, . . . , Bl, respectively. If

k =
∑

Ai∩Bj=∅ m1(Ai)m2(Bj) < 1, m : 2Θ → [0, 1]
denoted by

m(A) =

⎧





⎨





⎩

0, A = ∅
∑

Ai∩Bj=A

m1(Ai)m2(Bj)

1−
∑

Ai∩Bj=∅

m1(Ai)m2(Bj)
, A ∕= ∅ (4)

is a bba. The rule defined in Eq. (4) is called Dempster’s rule

of combination. In Dempster’s rule of combination,

K = 1−
∑

Ai∩Bj=∅

m1(Ai)m2(Bj) (5)

is used to represent the conflict between two BOEs. In recent

research [12], both K and distance of evidence are used to

construct a two tuple to represent the conflict between BOEs.

B. Uncertainty measures in the theory of belief functions

In the theory of belief functions, a BOE hides two types

of uncertainty: non-specificity [4] and discord, hence ambigu-

ity [3]. The available related definitions on degree of uncer-

tainty in the theory of belief functions are briefly introduced

below.

1) Auto-conflict

A n-order auto-conflict measure was proposed in [7] based

on non-normalized conjunctive combination rule [13].

an =

(

n
⊕
i=1

m

)

(∅) (6)

The conjunctive combination rule ⊕ is defined as

mConj(C) =
∑

A∩B=C

m1(A)m2(B) := (m1 ⊕m2)(C) (7)

When n = 2, the auto-conflict equals to K in Dempster’s rule

of combination.

2) Non-specificity

N(m) =
∑

A⊆Θ

m(A) log2 ∣A∣ (8)

Non-specificity can be seen as weighted sum of the Hartley

measure for different focal elements.

3) Confusion

Höhle proposed the measure of confusion [14] by using bba

and belief function in spirit of entropy as follows.

Confusion(m) = −
∑

A∈Θ

m(A)log2(Bel(A)) (9)

4) Dissonance

Yager proposed the measure of Dissonance [14] by using

bba and plausibility function in spirit of entropy as follows.

Dissonance(m) = −
∑

A∈Θ

m(A)log2(Pl(A)) (10)

5) Aggregate Uncertainty measure (AU)

There have emerged several definitions aiming to represent

the total uncertainty in the theory of belief functions. The

most representational one is a kind of generalized Shannon

entropy [2], i.e. the aggregated uncertainty (AU) [6].

Let Bel be a belief measure on the FOD Θ. The AU

associated with Bel is measured by:

AU(Bel) = max
PBel

[−
∑

�∈Θ

p� log2 p�] (11)

where the maximum is taken over all probability distributions

that are consistent with the given belief function. PBel consists

of all probability distributions ⟨p�∣� ∈ Θ⟩ satisfying:
⎧

⎨

⎩

p� ∈ [0, 1], ∀� ∈ Θ
∑

�∈Θ p� = 1
Bel(A) ≤ ∑

�∈A p� ≤ 1−Bel(Ā), ∀A ⊆ Θ
(12)

As illustrated in Eq. (11) and Eq. (12), in the definition of AU,

the calculation of AU is an optimization problem and bba’s

(or belief functions) are used to establish the constraints of the

optimization problem. It is also called the ”upper entropy”. AU

is an aggregated total uncertainty (ATU) measure, which can

capture both non-specificity and discord.

AU satisfies all the requirements for uncertainty mea-

sure [9], which include probability consistency, set consis-

tency, value range, sub-additivity and additivity for the joint

BPA in Cartesian space. However, AU has the following short-

comings [3]: high computing complexity, high insensitivity to

the changes of evidence, etc.

6) Ambiguity Measure (AM)

Jousselme et al [3] proposed AM (ambiguity measure)

aiming to describe the non-specificity and discord in the theory

of belief functions. Let Θ = {�1, �2, . . . , �n} be a FOD. Let

m be a bba defined on Θ. Define

AM(m) = −
∑

�∈Θ

BetPm(�) log2(BetPm(�)) (13)

where BetPm(�) =
∑

�∈B,B⊆Θm(B)/ ∣B∣ is the pignistic

probability distribution proposed by Smets [16]. Jousselme

et al [3] declared that the ambiguity measure satisfies the

requirements of uncertainty measure and at the same time it

overcomes the defects of AU, but in fact AM does not satisfy

the sub-additivity which has been pointed out by Klir [17].

Moreover in the work of Abellan [9], AM has been proved to

be logically non-monotonic under some circumstances.

There are also other existing uncertainty measures in the

theory of belief functions, see details in related reference [3].



III. CONTRADICTION MEASURE BASED ON DISTANCE OF

EVIDENCE

As we can see in the previous section, all the available

uncertainty measures in the theory of belief functions are direct

or indirect generalization of entropy defined in probability

theory or are defined by using some combination rule. Hence

in [11], we break such ways in spirit of entropy in probability

theory. Distance of evidence is used to construct the uncer-

tainty degree, which is called contradiction and shown below.

Contrm(m) =
∑

X∈X

m(X) ⋅ d(m,mX) (14)

where X represents the set of all the focal elements of m(⋅).
But it should be noted that the definition in Eq. (14) is not

a normalized value. We should obtain a normalized definition

for the convenience of use.

The maximum contradiction measure for m(⋅) defined on

Θ = {�1, �2, ..., �n} occurs when m(⋅) has a uniform distri-

bution:

m({�1}) = m({�2}) = ⋅ ⋅ ⋅ = m({�n}) =
1

n

It depends on the cardinality of Θ and the distance used.

For ∣Θ∣ = n, we use Jousselme’s distance, we get max

Contrm =
√

n−1
2n .

Proof:

Contrm = n ⋅ 1
n
⋅ d(m,m�i) = d(m,m�i)

i.e.: where

{

m�i({�i}) = 1,
m�i({�j}) = 0, j ∕= i, j = 1, ..., n

But the distance between m and m�i is the same,

d(m,m�i) =

√

(m−m�i)
T
Jac(m−m�i)

=

√

√

√

√

√

√

√

⎷

0.5
[

n−1
n

,− 1
n
, ⋅ ⋅ ⋅ ,− 1

n

]

⎡

⎢

⎢

⎢

⎣

1 0 ⋅ ⋅ ⋅ 0
0 1 . . . 0
... 0

. . .
...

0 0 ⋅ ⋅ ⋅ 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

n−1
n

− 1
n

...

− 1
n

⎤

⎥

⎥

⎥

⎦

=

√

√

√

√

√

√

√

⎷

0.5
[

n−1
n

,− 1
n
, ⋅ ⋅ ⋅ ,− 1

n

]

⎡

⎢

⎢

⎢

⎣

n−1
n

− 1
n

...

− 1
n

⎤

⎥

⎥

⎥

⎦

=

√

0.5
[

(

n−1
n

)2
+ (n− 1) ⋅ 1

n2 ]
]

=

√

0.5 (n−1)2+n−1
n2 =

√

0.5n2−n
n2 =

√

n−1
2n

Therefore, in this paper, we use the normalized factor

√

n−1
2n

and then the correct normalized contradiction measure is

defined below:

Contrm(m) =

√

2n

n− 1
⋅
∑

X∈X

m(X) ⋅ d(m,mX) (15)

To further verify the correctness of the normalization factor,

we design the experiments as follows.

Randomly generate 500 bba’s and calculate their corre-

sponding contradiction values based on Eq. (15). The method

to randomly generate bba’s is as follows [18].

Input: Θ : Frame of discernment;

Nmax: Maximum number of focal elements

Output: Bel: Belief function (under the form of a bba, m)

Generate the power set of Θ P(Θ);
Generate a random permutation of P(Θ) → ℛ(Θ);
Generate a integer between 1 and Nmax → k;

FOReach First k elements of ℛ(Θ) do

Generate a value within [0, 1] → mi, i = 1, ..., k;

END

Normalize the vector m = [m1, ...,mk] → m′;

m(Ak) = mk;

Algorithm 1: Random generation of bba

Based on the above algorithm, the bba’s generated have

random number of focal elements. We set the cardinality of

FOD to be 3 and 4, respectively in each experiment. Thus we

totally do two experiments and the experimental results are

illustrated in Fig.1.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

bba’s

C
o
n
tr

m

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

bba’s

C
o
n
tr

m

Max Value

|Θ|=4

|Θ|=3

Max Value

Fig. 1. Values of contradiction Contrm

As shown in Fig.1, when ∣Θ∣ = 3, the max value (one) is

obtained at the 15th bba, which is:

m({�1}) = m({�2}) = m({�3}) = 1/3.

When ∣Θ∣ = 4, the max value (one) is obtained at the 489th

bba, which is:



m({�1}) = m({�2}) = m({�3}) = m({�4}) = 1/4.

From the proof and the experiments above, it can be seen

that the selection of normalized factor is correct.

IV. EXAMPLES

A. Example 1

In this experiment, we use the bba’s with focal elements
of singletons and the total set. Suppose that the FOD is Θ =
{�1, �2, ..., �5}. The initial bba is

m({�1}) = m({�2}) = m({�3}) = m({�4}) = m({�5}) = 0;
m(Θ) = 1

Then at each step, the mass of m(Θ) decreases by Δ = 0.05,

and the mass of each m({�i}) increase by Δ/5 = 0.01, where

i = 1, ..., 5. After 20 steps, m(Θ) will become zero and

m({�1}) = m({�2}) = m({�3}) = m({�4}) = m({�5}) =
0.2. Then the experiment will finish.
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Fig. 2. Comparisons among different uncertainty measures in Example 1

As we can see in Fig. 2, although AU is deemed as a total

uncertainty measure, we cannot detect the change of bba in

each step based on AU.

The values of non-specificity decrease with the increase of

masses of singletons.

For contradiction, K , dissonance and confusion, their values

all increase with the increase of masses of singletons. Con-

tradiction increases faster than K in the first half of all the

steps and then it increases slower than K in the second half.

Confusion increases faster than dissonance in the first half

of all the steps and it increases slower than dissonance in the

second half. The change trends of contradiction and confusion

are more rational. Because at the first half of all the steps, the

relative changes of the masses of singletons increase more

significantly than the relative changes in the second half.

The value of contradiction belongs to [0, 1] and it reaches

its maximum value at the final step, i.e.:

When m({�1}) = m({�2}) = m({�3}) = m({�4}) =
m({�5}) = 0.2, Contrm = 1

B. Example 2

In this experiment, we use the bba’s with focal elements
of singletons and the total set. Suppose that the FOD is
Θ = {�1, �2, ..., �5}. The initial bba is

m({�1}) = m({�2}) = m({�3}) = m({�4}) = m({�5}) = 0;
m(Θ) = 1

Then at each step, the mass of m(Θ) decreases by Δ = 0.05,

and the mass of one singleton m({�1}) increase by Δ = 0.05
at each step. After 20 steps, m(Θ) will become zero and the

experiment will finish.
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Fig. 3. Comparisons among different uncertainty measures in Example 2

As we can see in Fig. 3, with the increase of m({�1}) and

the decrease of m(Θ) in each step, the AU and non-specificity

decrease.

Although for the original bba, the non-specificity is highest,

the conflict inside should be the least. So AU can not charac-

terize the discord part of the uncertainty incorporated in the

BOE.

K and Dissonance cannot detect the change of bba.

The value of the proposed contradiction increases at first

and reaches the max value when the bba becomes

m({�1}) = 0.5,m(Θ) = 0.5

Then with the increase of m({�1}) and the decrease of m(Θ)
in following steps, the value of the proposed contradiction

decrease and it reach zero when m({�1}) = 1, which is the

clearest case.

If we consider the two focal elements {�1} and Θ are

different in the power-set of Θ, when their values are equal

the uncertainty reaches the max value. This should be more

rational.

Confusion has the similar change trend compared to that of

our proposed contradiction measure. But the maximum value

of confusion does not occur at the middle.

C. Example 3

In this experiment, we use the bba’s with focal ele-

ments of the same cardinality. Suppose that the FOD is

Θ = {�1, �2, ..., �5}.



The initial bba is

m({�1, �2}) = m({�1, �3}) = m({�1, �4})
= m({�2, �3}) = m({�2, �4}) = 0;m({�3, �4}) = 1

Then at each step, the mass of m({�3, �4}) decreases by Δ =
0.05, and the masses of all the other focal elements increase

by Δ = 0.05/5 = 0.01 at each step. After 16 steps, masses

of all the focal elements become equal.
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Fig. 4. Comparisons among different uncertainty measures in Example 3

As we can see in Fig. 4, Non-specificity can not detect

the change of bba. This is because Non-specificity mainly

concerns the cardinality of focal elements.

AU can detect the change of bba, but after step 10, the

values of AU are the same with the change of bba in following

steps. Thus AU is not sensitive to the change of bba.

With the change of bba in each step, K and Dissonance

change very little. Thus here K and dissonance are not so

sensitive to the change of bba.

For contradiction proposed and confusion, they can detect

the change of bba well.

D. Example 4

Suppose that the FOD is Θ = {�1, �2}. The initial bba is

m({�1}) = a, m({�2}) = b,

m({�1, �1}) = 1− a− b.

Suppose that a, b ∈ [0, 0.5], we calculate the values of all the

uncertainty measures according to the change of a and b
As we can see in Fig. 5, with the change of a and b, AU

are always the same.

All the other measures can detect the change of a and b.
We can see that the value of the proposed contradiction

varies relatively uniformly when compared with other meau-

res. Thus the contradiction is not too sensitive and at the same

time not too insensitive to the change of bba.

The value range belongs to [0,1], which is good characteris-

tic for being a measure for quantifying the degree of discord.
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Fig. 5. Comparisons among different uncertainty measures in Example 4

V. FURTHER ANALYSIS

In definition of Contrm in Eq. (15), the distance used is

Jousselme’s distance. In our work, we have also tried other

types of distances in the theory of belief functions to construct

the contradiction, which include

1) Betting commitment distance (Pignistic probability dis-

tance)

dT (m1,m2) = max
A⊆Θ

{∣BetP1(A) − BetP2(A)∣} (16)

where BetP represents the pignistic probability of correspond-

ing bba.

2) Cuzzonlin distance

dCuzz(m1,m2) =

√

(m1,m2)
T
IncIncT (m1,m2) (17)

where Inc is
{

Inc(A,B) = 1, ifA ⊆ B
0, others

(18)

3) Conflict distance

dK((m1,m2)) = mT
1 (I− Inc)m2 (19)

4) Bhattacharyya distance

dB(m1,m2) = (1−√
m1

T
I
√
m2)

p (20)

We do following experiments to compare the different

contradiction measures defined on the different distance def-

initions above. When we use dCuzz and dK to construct

normalized contradiction measures, the normalization factor

should be (n− 1)/n.

A. Example 5

Suppose that the FOD is Θ = {�1, �2, �3}.

The initial bba is

m({�1}) = m({�2}) = m({�3}) = 0;m(Θ) = 1

Then at each step, the mass of m(Θ) decreases by

Δ = 0.05, and the mass of each m({�i}) increase by

Δ/3 = 0.05/3,where i = 1, 2, 3.
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Fig. 6. Comparisons among different contradiction measures based on
different distance measures - Example 5

B. Example 6

Suppose that the FOD is Θ = {�1, �2, �3}.

The initial bba is

m({�1}) = m({�2}) = m({�3}) = 0;m(Θ) = 1

Then at each step, the mass of m(Θ) decreases by Δ = 0.05,

and the mass of m({�1}) increase by Δ = 0.05. In the final

step, the bba obtained is

m({�1}) = 1
m({�2}) = m({�3}) = m(Θ) = 0;
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Fig. 7. Comparisons among different contradiction measures based on
different distance measures - Example 5

As we can see in Example 5 and 6, all the contradiction

measures obtained based on different distance definitions can

well characterize the degree of discord inside BOEs. Till now,

only Jousselme’s distance is a strict distance metric, so we

suggest to use Jousselme’s distance.

VI. CONCLUSION

In this paper, we propose a new normalization of a measure

called contradiction to characterize the degree of discord or

conflict inside a body of evidence. This contradiction measure

is distance-based and it can well describe the discord part

of the uncertainty in the theory of belief functions. Some

numerical examples are provided to support the rationality of

the proposed contradiction measure.

In our work, we have also preliminarily tried other types

of distance in evidence theory to construct the contradiction

measure. In our future work, we will further analyze the

contradiction defined on different distance measures. Con-

tradiction measure can represent the qualities of different

information sources to some extent. Thus we will also try

to use the contradiction measure in applications based on the

evaluation of bba’s, for example, the weights determination in

weighted evidence combination.
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