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Abstract

We consider a non-negative integer valued grading function on tensor
products which aims to measure the extent of entanglement. This
grading, unlike most of the other measures of entanglement, is defined
exclusively in terms of the tensor product. It gives a possibility to
approach the notion of entanglement in a more refined manner, as the
non-entangled elements are those of grade zero or one, while the rest
of elements with grade at least two are entangled, and the higher its
grade, the more entangled an element of the tensor product is. The
problem of computing and reducing the grade is studied in products
of arbitrary vector spaces over arbitrary fields.



1 Introduction

The notion of entanglement plays a fundamental role in modern quan-
tum mechanics and especially quantum information theory, see,e.g.,
[1]. In this note we study entanglement by using a non-negative in-
teger valued grading function defined on tensor products. This pro-
vides a possibility to bring further light upon the notoriously complex
structure of entangled states. Instead of the standard dichotomy, en-
tangled/separable, we suggest a more refined scale of degrees of en-
tanglement, with the elements of larger grade having a higher level of
entanglement. We further study the problem of the computation of
the grade of a tensor, as well as the reduction of that grade. This study
is done in the case of tensor products of arbitrary vector spaces over
arbitrary fields, although some of the results only hold for more partic-
ular cases. This provides a possibility to apply the approach presented
here, which is based on the graded tensor products, to generalizations
of entanglement not only in the standard quantum mechanics over
the field of complex numbers, but even to non-Archimedean quan-
tum models, see [2] for extended review on p-adic physical models, see
[3] on other non-Archimedean physical models, including models over
nonstandard numbers, and comparing them with p-adic theory.

2 Grading tensor products

Let E,F be vector spaces over the field K. For n ∈ N = {0, 1, 2, 3, . . .},
we denote by

E
n⊗
F (1)

the null vector subspace of E
⊗

F , if n = 0, while for n ≥ 1, we
denote the set of all elements z ∈ E

⊗
F which have the form

z = x1 ⊗ y1 + . . .+ xn ⊗ yn (2)

for suitable x1, . . . , xn ∈ E, y1, . . . , yn ∈ F . We call

E
n⊗
F
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the n-graded subset of the tensor product E
⊗

F . Clearly

E
0⊗
F ⊆ E

1⊗
F ⊆ . . . ⊆ E

n⊗
F ⊆ . . . ; (3)

(E
n⊗
F )
⋃

(E
m⊗
F ) ⊆ E

max{n,m}⊗
F (4)

(E
n⊗
F ) + (E

m⊗
F ) ⊆ E

n+m⊗
F, n,m ∈ N; (5)

K(E
n⊗
F ) ⊆ E

n⊗
F, n ∈ N; (6)

E
⊗

F =
⋃
n∈N

(E
n⊗
F ). (7)

The difficulty with these n-graded subsets

E
n⊗
F

is that, except for n = 0, they are not closed under addition, thus they
are not vector subspaces of E

⊗
F .

Now, in view of (7), we define the tensor grading mapping

gr : E
⊗

F −→ N (8)

by

gr(z) = min{n ∈ N | z ∈ E
n⊗
F}. (9)

and gr(z) is called the tensor grade of z.

As is well known, we have the injective mapping

E × F 3 (x, y) 7−→ x⊗ y ∈ E
⊗

F (10)

and obviously, for z ∈ E
⊗

F , we have

gr(z) ≤ 1 ⇔ z = x⊗ y, for suitable x ∈ E, y ∈ F. (11)
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Let us now for n ∈ N denote

E
⊗

n

F = {z ∈ E
n⊗
F | gr(z) = n}. (12)

Then clearly

(E
⊗

n

F )
⋂

(E
⊗
m

F ) = φ, n,m ∈ N, n 6= m; (13)

(E
⊗

n

F )
⋂

(E
m⊗
F ) = φ, n,m ∈ N,m < n. (14)

Further we have

E
⊗

0

F = E
0⊗
F = {0} (15)

and the surjective mapping

E × F 3 (x, y) 7−→ x⊗ y ∈ {0}
⋃

(E
⊗

1

F ). (16)

Consequently

ENT (E
⊗

F ) =
⋃
n>1

(E
⊗

n

F ) (17)

is the set of entangled elements in the tensor product E
⊗

F .

Obviously

E
⊗

F =
⋃
n∈N

(E
⊗

n

F ), (18)

thus
E
⊗

F = {0}
⋃

(E
⊗

1

F )
⋃
ENT (E

⊗
F ). (19)

Note 1.1. An interest in the above comes from the quanta. The
state space of the composite of quantum systems is given by the ten-
sor product of the state spaces of the component systems. Further,
in case E

⊗
F , for instance, is the state space of such a composite

system, then the entangled elements z in it are precisely those for
which gr(z) ≥ 2, see (1.16), (1.17) above. And as is well known, the
phenomenon of quantum entanglement is fundamental with respect
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to quanta. By introducing the grading function (8), (9), we obtain
a measure of entanglement, according to which the higher the grade
of a tensor, the more entangled it is. An important feature of the
grading function gr in (8), (9) is that it is defined exclusively in terms
of the respective tensor product E

⊗
F , unlike the various measures

of entanglement in the literature.

3 Tensor Reduction

We are interested in the following general problem of tensor reduction:

∀ a1, . . . , an, an+1 ∈ E, b1, . . . , bn, bn+1 ∈ F :

 ∃ c1, . . . , cn ∈ E, d1, . . . , dn ∈ F :

a1 ⊗ b1 + . . .+ an ⊗ bn + an+1 ⊗ bn+1 = c1 ⊗ d1 + . . .+ cn ⊗ dn

 ⇔ ?

3.1 Schmidt decomposition

Theorem 3.1. Let H1, H2 be Hilbert spaces. Every representation
of a tensor u ∈ H1 ⊗H2 can be changed to a Schmidt decomposition,
without increasing the number of terms in the representation. In other
words, let u =

∑n
k=1 xk ⊗ yk. Then there is a representation u =∑n

k=1 αkuk ⊗ vk, with the {uk} and {vk} each being orthonormal sets,
while αk are non-negative constants.

Proof. Let J = span{xk}nk=1 and K = span{yk}nk=1. Then J inherits a
Hilbert space structure from H1, and has dimension m1 ≤ n. Similarly
K inherits the Hilbert space structure from H2, and has dimension say
m2 ≤ n. Observe that u ∈ J ⊗ K. By the Schmidt decomposition
theorem, there exists orthonormal sets {uk} in J , and {vk} in K so
that u =

∑m
k=1 αkuk ⊗ vk, with the scalars {αk} being non-negative,

and m ≤ minm1,m2 ≤ n.

As a result, every grade-optimal representation can be changed to a
Schmidt representation with the same number of terms, namely

Corollary 3.2. Let H1, H2 be Hilbert spaces and u =
∑n

k=1 xk ⊗ yk ∈
H1

⊗
H2, with gr(u) = n. Then there exists a Schmidt decomposition
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u =
∑n

k=1 αkuk ⊗ vk, with orthonormal sets {uk} and {vk}, and with
the scalars {αk} being non-negative.

In the above theorem and corollary, the field K can be either R or C,
as is customary for Hilbert spaces.

We also note that, as is well known, the Schmidt decomposition can
be effectively computed by usual methods of linear algebra, since it is
closely related to the singular decomposition of matrices.

3.2 A criterion for tensor reduction

Let X, Y be vector spaces over any field K, and let the superscript
“#” denote linear functionals. The following proposition is essentially
in [4, Proposition 1.2]. We include a proof in the Appendix.

Proposition 3.3. The following are equivalent for u =
∑n

k=1 xk⊗yk ∈
X ⊗ Y :

(i) u = 0;

(ii)
∑n

k=1 φ(xk)ψ(yk) = 0 for every φ ∈ X#, ψ ∈ Y #.

(iii)
∑n

k=1 φ(xk)yk = 0 for every φ ∈ X#.

(iv)
∑n

k=1 xkψ(yk) = 0 for every ψ ∈ Y #.

We use this to provide a criterion for tensor reduction.

Theorem 3.4. Let X, Y be vector spaces over a field K, and repre-
sentation

u =
n∑

k=1

xk ⊗ yk ∈ X
⊗

Y

Then gr(u) < n, if and only if the following criterion is satisfied: the
collection {xk} or the collection {yk} are linearly dependent.

Proof. To prove the sufficiency of the criterion, suppose that the col-
lection {xk} is linearly dependent. Then one can replace xn with∑n−1

k=1 rkxk, where the rk’s are scalars, and use the bilinearity of “⊗”
to get a representation of u in terms of n− 1 elementary tensors.
Similar reasoning applies if not {xk} but {yk} is linearly dependent.
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To prove the necessity of the criterion, suppose u has a representation

u =
m∑

k=1

x′k ⊗ y′k

for some m < n and x′k’s and y′k’s in X, Y respectively, and that the
criterion is not satisfied. Then, using the linear independence of the
{xk}, one can choose, for any integer j, 1 ≤ j ≤ n, a φ ∈ X# so that
φ(xj) = 1 and φ(xk) = 0 for k 6= j. So, by Proposition 3.3 we get

yj =
n∑

k=1

φ(xk)yk =
m∑

k=1

φ(x′k)y′k.

This shows that yj is in the span of {y′k}mk=1. Since j is arbitrary, we
get that the yj’s span a subspace of dimension m and are therefore
linearly dependent, contradicting the assumption that the criterion is
not satisfied.

Although the results below can possibly be obtained by other means,
it is interesting that they are also straightforward consequences of the
above theorem.

Corollary 3.5. Given u =
∑n

k=1 xk ⊗ yk ∈ X
⊗

Y , then gr(u) is the
minimum of the dimensions of span{xk} and span {yk}.

Corollary 3.6. If X, Y have dimensions m,n respectively, then for
all u ∈ X

⊗
Y we have gr(u) ≤ min{m,n}

A result of special interest which gives a more detailed information
on the structure of the minimum number of terms in an entangled
element u ∈ X

⊗
Y , is in

Corollary 3.7. Given u =
∑n

i=1 xi⊗ yi ∈ X
⊗

Y , then, after a prior
permutation of the terms in this sum, and possibly of the factors xi

with yi, the vector u ∈ X
⊗

Y can be reduced to one of the following
two forms

u =
∑m

j=1 xj ⊗ vj
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where m = gr(u) ≤ n and vj is in the span of y1, . . . , yn, or alterna-
tively, it can be reduced to

u =
∑m

j=1 uj ⊗ yj

where uj is in the span of x1, . . . , xn.

Proof. If m = n, then the proof is completed by taking λj = 1.
Let therefore m < n. Then according to Theorem 3.4., at least one
of the sets {x1, . . . , xn} or {y1, . . . , yn} is linearly dependent. Let us
assume that this is the case with {x1, . . . , xn}. Then in view of Corol-
lary 3.5., and after a suitable permutation of the terms in the sum
u =

∑n
i=1 xi ⊗ yi, and possibly, of the factors xi with yi, we can as-

sume that the subset {x1, . . . , xm} is linearly independent and has the
same span with {x1, . . . , xn}. Therefore, each xj, with m < j ≤ n, is
a linear combination of x1, . . . , xm, namely

xj =
∑m

i=1 µj, i xi, m < j ≤ n

with µj, i ∈ K. Consequently, we have

u =
∑m

i=1 xi ⊗ yi +
∑n

j=m+1

∑m
i=1 µj, i xi ⊗ yj =

=
∑m

i=1 xi ⊗ yi +
∑m

i=1

∑n
j=m+1 µj, i xi ⊗ yj =

=
∑m

i=1 xi ⊗ (yi +
∑n

j=m+1 µj, i yj)

3.3 Conclusions

The basic result regarding the computation of the grade of an element
in a tensor product is in Corollary 3.5. which is valid for arbitrary
vector spaces over arbitrary fields. And that computation reduces to
the computation of the dimension of two finite dimensional vector sub-
spaces.

In the case of more particular tensor products, namely, of Hilbert
spaces, which are of interest related to quanta, the computation of the
grade of an element in such tensor products can also be made with
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the help of the well known and understood Schmidt decomposition.

In this way, the study of the extent of entanglement of any given el-
ement u in a tensor product, study done with the help of its grade
gr(u), is well established. Namely, if gr(u) ≤ 1, then u is not entan-
gled. On the other hand, if gr(u) ≥ 2, then the larger gr(u) is, the
more entangled is u.

Appendix : Proof of Proposition 3.3

Proof. We prove (i)⇒ (ii)⇔ (iii)⇒ (i).

The equivalence (ii)⇔ (iv) is similar to (ii)⇔ (iii).

Recall that the universal mapping property of tensor products guaran-
tees the existence, for any bilinear functional A : X ×Y → F, a linear
mapping we denote TA : X ⊗ Y → F, that satisfies TA(x, y) = A(x, y)
for all (x, y) ∈ X × Y.
(i)⇒ (ii) : Let φ, ψ be given. Every linear mapping T has the property
u = 0⇒ T (u) = 0. Let T = TA, where A(x, y) = φ(x)ψ(y).

(ii)⇔ (iv) :

∑n
k=1 φ(xk)ψ(yk) = 0 ∀φ ∈ X#, ψ ∈ Y #

⇔ ψ(
∑n

k=1 φ(xk)yk = 0) ∀φ ∈ X#, ψ ∈ Y #

⇔
∑

k φ(xk)yk = 0 ∀φ ∈ X#

(iii) ⇒ (i) : Recall that, due to the linear structure, T (u) = 0 for all
T : X⊗Y → F implies u = 0. And every such T is the linearization of
the bilinear map A(x, y) := T (x⊗ y). So it is sufficient to prove that
TA(u) = 0 for all bilinear A : X × Y → F.
Let A : X × Y → F be given. Let E,F respectively be the spans of
{xk} and {yk}, and B = A|E×F .

Then because of the finite dimensions of E and F we have a repre-
sentation B(x, y) =

∑m
j=1 αk(x)βk(y), where each αk belongs to E#

and each βk belongs to F#. Without changing the notation, we can
extend each αk to belong to X#, and βk to belong to Y #.
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So

TA(u) =
n∑

k=1

A(xk, yk)

=
n∑

k=1

B(xk, yk)

=
n∑

k=1

n∑
j=1

αj(xk)βj(yk)

=
n∑

j=1

βj

(∑
k

α(xk)yk

)
=0,

using (iii). Thus TA(u) = 0 for each A ∈ B(X × Y ).
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