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Abstract. 

 

   It is the intention here to examine in detail the way in which purely physical ideas are 

introduced into General Relativity to enable the initially pure mathematical theory to be 

applied to physical problems. The intention is to examine the approach used frequently in 

undergraduate presentations since this is the point in life when so many are crucially 

influenced by thoughts and ideas put before them. 
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Introduction. 

 

   The theory of general relativity grows out of what is initially pure mathematical reasoning 

associated with the field known as Riemannian Geometry. When first introduced to the area, I 

suspect many students - I myself being one such student some years ago - are seduced by the 

beautiful and powerful mathematics. This, in turn, often – probably usually – prevents the 

student asking questions that might occur to them under different circumstances. Such 

questions frequently revolve around the way in which highly physical concepts such as mass 

and potential are introduced into an essentially pure mathematical scenario to produce what is 

supposedly a theory of gravitation purporting to generalise that of Newton. 

   It might be noted that concerns about this very topic have been raised fairly recently [1]. 

Hence, it is the aim of this article to examine in some detail the way in which the pure 

mathematical theory is usually developed for undergraduates before noting how the physical 

concepts alluded to above are introduced. It should be admitted from the outset that none of 

the material here is new; the mathematical detail is being included purely to enable a full and 

complete examination of all the steps followed so that, having seen precisely how and where 

physical ideas are introduced, conclusions may be reached.  

 

The Background Theory. 

 

   In most, if not all, textbooks introducing this subject, the general pattern is laid out very 

quickly. The first few chapters of such books are devoted to a fairly detailed study of the 

basics of tensor algebra and tensor calculus. This is seen quite clearly in, for example, the 

book by Adler, Bazin and Schiffer [2], where the first real mention of physics occurs in 

chapter 4 when tensors in physics are discussed. However, it should be noted from the outset 

that such an approach is highly desirable, even essential, considering that the basic 

foundations of the subject are firmly rooted in Riemannian Geometry and involve the 

constant use of tensors.   

   The starting point for everything is an introduction to tensors and manipulations involving 

these quantities. At this stage, tensors are purely mathematical entities which transform 

according to rigorously specified rules. After these preliminaries, one is plunged into the 

details of Riemannian Geometry and it is interesting to note that the path followed closely 

resembles that to be found in books devoted entirely to the study of differential geometry [3]. 

Again, this might be felt to be as it should be, but it does indicate just how deeply rooted the 

whole theory is in pure mathematics. Often, once attention is restricted to Riemannian space, 

a discussion of geodesics in such a space ensues. A geodesic is, of course, simply a curve of 

stationary length between two points and is easily visualised as a generalisation to general 

spaces of the straight line in Euclidean space. In a Euclidean space, the square of the distance 

between two neighbouring point with coordinates (x,y,z) and (x+dx,y+dy,z+dz) is written 
ds2 = dx2 +dy2 + dz2 

and, in a Riemannian space, this is written 

ds
2
 =  gijdxidxj 

for the square of the distance between the neighbouring points x
i
 and x

i
+dx

i
, where i,j may 

take the values 0,1,2,3, since a four dimensional space is usually considered. This expression 

for the distance between two neighbouring points is a quantity generally referred to as the 

metric and the quantity gij is called the metric tensor. The notation in this latter expression is 

such that, although the 2 refers to a power as usual, the i and j are indices over which one 

must sum for the values 0,1,2,3. In order to discuss these curves called geodesics, it is 
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necessary to carry out the manipulation referred to as covariant differentiation. The notation 

used here is for an ordinary partial derivative to be denoted as follows: 
    

   
       

where the index notation has been used again. 

Once this has been introduced, further manipulations lead to the introduction of the so-called 

Christoffel symbols: 

       
 

 
                   , 

which is the Christoffel symbol of the first kind, and 

   
           , 

which is the Christoffel symbol of the second kind. 

    The next crucial step is to note that, if Ai is a vector, then the quantity 

        
    

is a tensor and is called the covariant derivative of Ai with respect to x
j
. It is often written Ai;j  

    Next the second order covariant derivative of a vector is evaluated and it is noted that the 

order of differentiation is crucial in this manipulation. In fact, after some work, it is seen that 

                  
       

     
    

     
    

          
   , 

which serves to act as an introduction to, and definition of, the Riemann or Curvature tensor. 

    By simply examining the definition, several properties of the Riemann tensor may now be 

found. The most important for the present purpose is the so-called Bianchi identity, which is 

                         , 

where the process of lowering the first index by using the fact that 

             
  

has been employed. 

Another technique of great use in connection with tensors is that of contraction. This is best 

explained via the example of contracting the Riemann tensor on its first and last indices: 

            , 

which is the Ricci tensor. 

   Now multiplying the Bianchi identity by g
mj

 and noting that    
  

    

                  
 

    

Then multiply by g
kn

 and again note that    
     to give 

    
          

    

or 

   
  

 

 
  

   
  

   

or 

      
     

which shows that the tensor   
  has zero divergence, is given by   

    
  

 

 
  

   and is 

known as the Einstein tensor. 

   It is important to note that everything commented on or derived up to now has been 

associated with an abstract mathematical space. There has been no mention of anything 

physical; no gravitational fields have been mentioned and no masses have been introduced. 

The entire discussion might be thought to have been geometrical in nature. However, 

basically at this point, Einstein took the equations 

Gij = 0 

as his field equations for empty space-time. This choice was not made completely randomly, 

but on the basis of three principles: 
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(i) the principle of covariance which basically states that the laws of physics 

must be expressed in a form independent of any coordinate system, 

(ii) the principle of equivalence which states that there is no difference between 

an acceleration and a gravitational field,    

(iii) Mach’s principle which states that the geometrical properties of space-time 

are determined completely by the material present in it. 

The precise details of the argument involved may be found in many textbooks on the subject 

[2]. However, initially, a search is instigated for a tensor quantity which describes a matter 

distribution with respect to any frame in space-time and then an attempt is made to link this 

to the Einstein tensor defined above. The obvious candidate at the time had to be the so-

called energy-momentum tensor,   
   since both matter and electromagnetic energy contribute 

to its components. Since mass and energy are fundamentally identical, it was expected that all 

forms of energy – including electromagnetic – would contribute to the gravitational field. 

Accordingly, the equation 

  
     

  

was adopted as Einstein’s Law of Gravitation, where κ is a constant of proportionality yet to 

be determined and this equation reduces to 

  
    

in the absence of matter or, alternatively, for empty space-time. Do note that this is the same 

equation for empty space-time as that mentioned above but with the one suffix raised by the 

usual techniques of tensor manipulation. 

 

The Introduction of Physical Concepts. 

 

  Although the above appears to show how genuinely physical quantities are introduced into 

general relativity, the reality is, if anything, even more bizarre. It should be noted that the 

process involves two separate steps. Firstly, by having recourse to Newtonian ideas, a value 

is found for the constant κ. Secondly, a solution for the field equations in empty space-time is 

sought for the case of a spherically symmetric static field. This second step was originally 

investigated by Schwarzschild in 1916 [4] but more of that later. 

   For the first step, well-established Newtonian theory is assumed a first approximation to the 

field equations. Therefore, the situation is considered in which velocities are assumed small 

and gravitational fields weak. If these assumptions are made and the case of a free particle in 

a potential field ϕ is considered, the component of the metric tensor denoted by     is found 
to be given by 

          
Hence, the potential field is introduced by comparing a result derived purely geometrically 

with a result from Newtonian mechanics. 

   The complete equations relevant for Einstein’s Law of Gravitation are then considered and 

it is noted that, in the approximation being used, the component of the energy-momentum 

tensor denoted by     is equal to , the density of matter involved. By using this together 

with the above expression for    , it is found that 

    
 

 
   

and, when this is compared with the well-known Newtonian expression 

         
it is seen immediately that, for consistency, κ must be chosen to have the value 4π.  

   As stated already, the second step consists of searching for a solution to the equations 

appropriate for empty space-time but, following Schwarzschild, attention is customarily 

concentrated upon a solution for a spherically symmetric, static field. This problem actually 
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involves seeking a suitable expression for the line element ds
2
. After some general 

geometrical arguments, it is found that, in terms of spherical polar coordinates, the most 

general line element with the designated properties may be written 

                                . 
Recognising the fact that the coefficients in this expression represent components of the 

relevant metric tensor, that is: 

                                     
 

the various components of the Einstein tensor may be evaluated. Since each of these 

components must be separately equal to zero for empty space-time, these equations may be 

solved to yield 

          
    

 

where a and b are constants. 

   Referring back once again to the earlier result identifying     with       , where ϕ is the 
Newtonian potential and noting that, for the gravitational field surrounding a spherically 

symmetric mass m, 

    
    

it follows that the constants a and b must be chosen to have the values 

b = 1  and  a  =  2m   

for consistency. 

Hence, a mass, m, is introduced into the situation which supposedly describes empty space-

time purely to achieve consistency with well-established results of Newtonian mechanics. 

 

Discussion. 

 

   It is immediately obvious from the above discussion that the ideas of potential and mass 

only enter the theory when the Newtonian approximation is considered. This does not seem 

totally unreasonable when contemplating the entry of the potential but a moment’s reflection 

introduces an element of unease when it comes to the introduction of mass into the theory. In 

the initial discussion of the Newtonian approximation, the complete Einstein equation 

describing his Law of Gravitation was used. This involved the presence of the energy-

momentum tensor appearing on the right-hand side of the equation, albeit in a simplified 

form. However, in the second part of the discussion, the empty space-time version of the 

equation was used. Hence, only the Einstein tensor appeared and the equation used placed 

this tensor equal to zero. From all that has gone before, it is abundantly clear that this tensor 

is a purely geometrical quantity, describing the purely geometrical properties of the space-

time. Hence, when the investigator has sought a line element for such a space, how valid is it 

to call on a Newtonian result which involves a particle mass when the evaluation of certain 

constants is contemplated? Indeed, considering the original problem concerned an empty 

space-time, how valid is it to draw on results relating to the gravitational field surrounding a 

spherically symmetric mass? The immediate reaction must surely be that there cannot be a 

mass, spherically symmetric or otherwise, in an empty space and so, how can such an entity 
have any part to play in the said discussion? There are certainly some serious questions here 

which are in need of urgent answers. Those answers may be readily forthcoming but they 

haven’t appeared as yet and undergraduates continue to be seduced by the beauty of the 

mathematics. If anything, the situation becomes all the more disturbing when it is 

remembered that Hermann Weyl once said “I always try to combine the true with the beautiful, 

but when I have to choose one or the other, I usually choose the beautiful”. It might be wondered 

how far this attitude extends in the realms of academia? 
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   Nevertheless, the questions posed here are deceptively simple but far reaching as far as 

physics is concerned and the anonymous quote – ‘A child can ask questions a wise man 

cannot answer’ – springs to mind very readily. The questions are simple but cannot be 

dismissed too readily. 

   Of course, whatever qualms may be harboured, the fact remains that the theory has been 

successful in explaining several observed phenomena. However, it has to be noted that these 

same phenomena do admit explanations by means other than recourse to the methods 

associated with general relativity and this fact might be felt to raise further queries. One 

example of such alternative explanations is provided by the work of Bernard Lavenda [5] and 

another by that of Harold Aspden [6]. Work such as this cannot be ignored or dismissed as 

irrelevant and is based on methods seemingly more directly linked with physical reality than 

general relativity appears to be. As noted earlier, the mathematical theory associated with 

general relativity is truly beautiful but such beauty is not, of itself, any guarantee of 

correctness. It does seem that the time has come for the topic to be reassessed and any such 

reassessment must be carried out by people with completely open minds. 

   Finally, it should be noted, once again, that the method for seeking a spherically symmetric 

solution to the Einstein equations was originally due to Schwarzschild. However, again it 

must be stressed that the version of the so-called Schwarzschild solution appearing in the vast 

majority of texts is not actually that due to Schwarzschild himself, as may be noticed by 

either checking his original article or the fairly recent translation of that article [4]. The 

crucial difference is the absence of the well-known singularity at r = 2m in his original. 

Hence, when checking through the minute details of what is simply sketched out here, 

reference to the original is advisable. 
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