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Abstract 

 

It is shown that classical general relativity can be obtained as the limit of fully quantum mechanical 

vacuum made up of a dense assembly of positive and negative Planck mass particles in equal numbers, 

each of them occupying a Planck length volume.  The positive and negative Planck masses can be viewed 

as mini black and white holes.  Using Heisenberg’s dictionary to translate classical mechanical quantities 

into corresponding quantum quantities, the solution of the Boltzmann equation for this positive negative 

Planck mass assembly leads to the quantum mechanics of the positive and negative Planck mass particles. 

There then, the positive and negative Planck masses can be described by two superfluids, each one with a 

phonon-roton spectrum. General relativity emerges at large scales in regions with a difference between 

positive and negative masses, with a rippling of space-time near the Planck length.  Following ‘tHooft’s 

conjecture that the solution of quantum gravity is connected to a deterministic interpretation of quantum 

mechanics, it is proposed that the universe is separated through an event horizon to a parallel universe, by 

10
99

cm
-3

 Planck length Einstein-Rosen bridges kept open by the negative Planck masses, with time and 

space interchanged. The observable universe carries the particle nature of matter, while the hidden 

parallel universe its wave nature.   
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1. Introduction 

 

Recognizing that the fundamental laws of physics must be quantum laws, with the laws of classical 

physics limiting cases of the quantum laws, not the other way around, all attempts to obtain ultimately 

correct quantum laws by a quantization of the classical field theories must remain guesses, but these 

guesses must be governed by a number of rules.  One of the rules was already set by Planck in 1899 [1].  

It requires that the fundamental laws of physics should contain as the only free parameters,  , G, and c (  

Planck’s constant, G Newton’s constant and c the velocity of light), in addition to the condition that dS/dt 

> 0, where S is the entropy.  Superstring theory in 10 dimensions, proposed as a fundamental description 

of nature, including quantum gravity, satisfies the first three conditions, but not the dS/dt >0 condition for 

the four space-time dimension of every physics laboratory. 

 In the context of quantum gravity, the physical quantity “mass” should be intrinsically connected 

to the gravitational field for which it is its source, as the quantity “electric charge” is connected to the 

electromagnetic field as its source.  From this perspective the Higgs field appears to be “the odd man 

out”. 

 It is still widely believed that the standard model (SM) excluding gravity is renormalizable, and 

that according to this view quantum gravity is the “odd man out”. But it has been emphasized by 

Weinberg [2], that by including in quantum electrodynamics (QED) all the possible higher order 

interaction terms, not only the     term of classical electromagnetism, QED becomes non-

renormalizable.  The same is true for all the renormalizable field theories of the SM. Accordingly, there is 

much less difference between the Einstein-Hilbert Lagrangian of the general theory of relativity and the 

Heisenberg-Euler Lagrangian of QED.  With the inclusion of the lowest perturbative terms of QED in the 

Heisenberg-Euler Lagrangian, both theories are nonlinear, and both Lagrangians describe quite well 

physical reality in the low energy limit.   

 Due to the impossibility of making experiments at the Planck scale, the correct fundamental law 

must be guessed, and that must include quantum gravity. For the correct guess one may rely on the 

heuristic principle that the fundamental law should be simple.  This heuristic principle turned out to be 

successful in the entire history of physics.  

 A gravitational field Lagrangian containing the infinitely large number of higher order terms 

obtained from the curvature tensor, hardly satisfies this heuristic principle.   

 

2. Making the Guess 

For the following we define: 

 

5/ 10pm c G g  Planck mass 

3 33/ 10pr G c cm  Planck length 

5 44/ 10 secpt G c   Planck time 

4 50/ 10pF c G dyn  Planck force 

we then make the assumption that the scalar curvature invariant R of the Einstein-Hilbert Lagrangian is 

limited by  

21/ pR r   (1) 

This could for example be done by changing the Einstein-Hilbert Lagrangian from  
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L = gR  (2) 

to 

L = 
  2 21 1p p

gR

r R r R



 
 

(3) 

Consistent with assumption (1) we guess that the vacuum of space is filled with an equal number 

of positive and negative Planck masses, in the average each Planck length volume filled with one Planck 

mass of either sign. Inequality (1) implies that equal sign Planck masses repel each other, while Planck 

masses of opposite sign pass through each other, with the space curvature for both cancelling each other 

out.  However, because for a positive-negative mass dipole, the center of mass is located at ∞, the 

trajectories of either particle suffer a parallel displacement in space and time following their interaction.  

By how much can be computed by the Planck force acting over the distance
pr .  For a Planck mass it 

leads to acceleration /p pa F m , lasting for the Planck time pt , leading to the displacement and the 

velocity of this displacement equal to  

2 2

2 2 2

p p

p p

p

F ra
q t t

m
     

 

q c    

(4) 

The displacement is accompanied by a fluctuation in momentum equal to pm c for the positive mass 

particle, and to a fluctuation ( )p pm c m c    for the negative mass particle moving in the opposite 

direction, altogether to a fluctuation in momentum equal to  

 

2 pp m c   
(5) 

whereby because of (4) 

 

p q   (6) 

in agreement with Heisenberg’s uncertainty relation, here recovered from the existence of negative 

masses.  Rather than violating Newton’s actio = reactio, the recoil of the momentum fluctuation is 

transmitted to all the Planck masses occupying the vacuum.  A similar effect is known in condensed 

matter physics for a particle-hole interaction.  With 
2

pE m c   and pt t   the momentum fluctuation 

is accompanied by an energy fluctuation 

 

E t    (7) 

 

With (6) and (7) Heisenberg’s uncertainty relations for momentum and energy are thus explained by the 

mechanical fluctuations of the positive-negative Planck mass particle fluid and it is for this reason of no 

surprise, that Schr ̈dinger’s equation for a Planck mass particle can be derived from the Boltzmann 

equation for such a fluid [3]. 

 

The Boltzmann equation is given by [4] 
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 1 1 1

' 'vrel

f f f
f f ff d d

t


  
   

   v a v
r v

 
(8) 

where f is the distribution function of the colliding particles, 
'f ,

1

'f before and f , 1f  after the collision, 

with 
1

'f  and 1f  the distribution functions of the particles which by colliding with those particles 

belonging to 
'f  and f change the distribution function from 

'f to f .  The magnitude of the relative 

collision velocity is vrel c , and the collision cross section is  . The particle number density is 

 , ( , , )n t f t d r v r v  and the average velocity  ( , , ) / ,V f t d n t  v v r v r . The acceleration is 

 1/ pm U a , where ( )U r  is the potential of a force. 

The Boltzmann equation for the distribution function f  of the positive and negative Planck mass particle 

is then 

 2 ' '1
v 4 p

p

f f fU
cr f f f f d

t m

  
   



  
    

     v
r r v

 (9) 

where we have set  
2

22 4p pr r    and vrel c . U describes the average potential of all Planck mass 

particles on one Planck mass particle.  The constraint keeping constant the average number density of all 

Planck mass particle leads to a pressure which has to be included in the potential U. It can be viewed as a 

potential holding together the positive and negative Planck mass particles, which otherwise would fly 

apart.  The effective interaction between the positive and negative Planck mass particles is separated into 

the short range part entering the collision integral and the long range average potential part included in the 

potential U.  

Because of (4) one has 

   ' / 2pf f  r r r  (10) 

 

where one has to average over all possible displacements and velocities of the “Zitterbewegung”.  With 

the distribution function 
'f  before the collision set equal to the displaced distribution function f , the 

direction of the “Zitterbewegung” velocity is in the opposite direction of the displacement vector / 2pr . 

With (10) the integrand in the collision integral becomes  

   ' '

2 2

p p
f f f f f f f f   

   
      

   

r r
r r r r  (11) 

Expanding 
2

p
f
 

 
 

r
r and 

2

p
f
 
 
 

r
r   into a Taylor series 
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2 2

22 2 8

p p pf f
f f  
 

   
       

  

r r r
r

r r
 

(12) 
2 2

22 2 8

p p pf f
f f

  
     

  

r r r
r

r r
 

one finds up to second order that 

' '

2

p ff
f f f f f f
  

 
     

  

r

r r
 

(13) 2 2 22

2 24 8

p pf ff f
f f 



   
    

    

r r

r r r r
 

with higher order terms suppressed by the Planck length. Because approximately 

   , , , ,f t f t v r v r , one has 

222 2 2 2
2

2 2

' ' log

4 4 2

p p pf f f
f f f f f f  
   

    
       

     

r r r

r r r
 

(14) 
2

2

2

log

2

p f
f f 


  
  

 

r

r
 

To obtain the net displacement over a sphere with a volume to surface ratio    
3 2

/ 2 / / 2 / 2p p pr r r  , 

(14) must be multiplied by the operator  1/ 2 /p  r r , and to obtain the net value in velocity space it 

must in addition be multiplied by the operator  c / r , with the vector c in opposite direction to pr . 

Integrating the r.h.s. of (9) over dv , and setting
31/ 2 pf d r v , the number density of one Planck 

mass species in the undistributed configuration of the Planck mass particles filling space, one then has  

2 2 22

2

log1

4

p

p

cf f f fU
f

t m r

   
 

 

     
      

       

r
v

r r v v r
 (15) 

 

For an approximate solution of (15) one computes its zeroth and first moment. The zeroth moment is 

obtained by integrating (15) over d v , with the result that  

 
0

n Vn

t

 


 
 r

 
(16) 
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which is the continuity equation for the macroscopic quantities n  and V . The first moment is obtained 

by multiplying (15) with v and integrating over d v .  Because the logarithmic dependence can with 

sufficient be written accuracy as 
2 2 2 2log / log /f n     r r , one finds  

    2 2 2

2

log

4

p

p

cn n n nU
n

t m

      


     
    

     

rV V V

r r r r
 (17) 

 

With the help of (16) this can be written as  

22

2 2

log1

4

V V
V

r r r r

  
 



    
    

     p p

nU
n

t m m n
 (18) 

 

for which one can also write 

22

2 2

1 1

2p p

nU

t m m n

 




    
    

      

V V
V

r r r r
 (19) 

 

The equivalence of (16) and (19) with the one-body Schr ̈dinger equation for a positive or negative 

Planck mass can now be established by Madelung’s transformation [5].  

*

* *

2 p

n

i
n V

m

 

   

  

     



     
 (20) 

transforming Schr ̈dinger’s equation of a Planck mass pm  

2 ( )
2 p

i
i U r

t m


 

 


  


 (21) 

into 

 

 

0

1

p

nn

t

U Q
t m

 

 
 


 

 

  
   

  

V

r

V V
V

r r

 (22) 

where  

22

2

1

2 p

n
Q

m n










r
 (23) 

is the so called quantum potential.  
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The importance of this result is that quantum mechanics is shown to have its cause in the existence of 

negative masses at the Planck scale.  Another important result is that quantum mechanics becomes invalid 

for masses 
pm m .  For masses large compared to 

pm it has to be replaced by Newtonian mechanics , 

because the negative Planck masses of the vacuum cannot exert an appreciable “Zitterbewegung” on a 

mass 
pm m . The uncertainty in quantum mechanics is not seen here due to a fundamental noncausal 

structure, but rather the consequence of the principal inability to make measurements for distances and 

times smaller than 
pr and

pt , not permitting to calculate the otherwise deterministic outcome of the 

collisions between Planck mass particles which would require the knowledge obtained from such 

measurements. 

The Schr ̈dinger equation (21) is in line with Heisenberg’s dictionary for translating classical into 

quantum mechanics, here obtained from the assumption of negative masses in the classical mechanical 

Boltzmann equation. The change of the function  ,f tr  in phase space, obtained by solving the 

Boltzmann equation, involves the scattering of a positive with a negative mass particle.  In quantum 

mechanics the scattering of two positive mass particles can be described by the S-matrix. But since here 

the scattering of a positive with a negative Planck mass particle involves the non-Euclidean space-time 

geometry of a “black hole” interacting with a “white hole”, the multivalued topology of this geometry 

may in a very fundamental way be at the root of the strange feature of quantum mechanics. 

 

3. Quantum Mechanics of the Planck Mass Plasma 

 

Having established quantum mechanics for a single Planck mass particle within a dense assembly of 

positive and negative Planck mass particle, a quantum mechanical description of the many body problems 

for all the Planck mass particles can be given.  It is achieved 1) by setting the potential U in (21) equal to  

 
2 * *2 pU cr       
     (24) 

2) by replacing the field functions 
*,    with the operators 

†,    obeying the canonical 

commutation relations 

 

 †( ), ( ') ' ;r r r r   
            † †( ), ( ') ( ), ( ') 0r r r r      

     (25) 

 

whereby (21) becomes the operator field equation 

 

 2 2 † †2
2

p

p

i
i cr

t m


     

   


   


 (26) 

We justify it as follows: An undisturbed dense assembly of Planck mass particles, each particle occupying 

the volume
3

pr , has the expectation value 
* 31/ 2 pr     whereby 

2 * 22 p pcr m c    , 

implying an average potential energy 
2

pm c  for the positive and negative Planck mass particles within 

the assembly of all Planck masses, consistent with the value of the potential 
2

p p pF r m c  of the Planck 

for acting over the distance pr .  The interaction term between the positive and negative Planck mass fluid 

results from the constraint demanding that the number density of Planck mass particles shall (in the 

average) be equal to 
31/ pr . The rules of quantum mechanics for one Planck mass consistent with the 

Schr ̈dinger equation, imply the one-particle commutation rule [ , ] /p q i , which for a many-particle 
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system of Planck mass particles leads to the canonical commutation relation (25) for the operator field 

equation (26) describing the many Planck mass particle system. 

 

Equation (26) has the form of a nonrelativistic nonlinear Heisenberg equation, similar to Heisenberg’s 

nonlinear spinor field equation proposed by him as a model of elementary particles.  The two values for 

the chiralty of the zero rest mass spinors in his equation are replaced by the two signs for the Planck mass 

pm  in the kinetic energy term of (26).  The limiting mass, conjectured by Heisenberg to separate the 

Hilbert space I, containing states of positive norm, from those of Hilbert space II having those of negative 

norm, becomes the Planck mass.  But in contrast to Heisenberg’s relativistic spinor equation, eq. (26) is 

nonrelativistic.  

 

4. Hartree and the Hartree-Fock Approximation 

 

To obtain solutions of the nonlinear quantized field equation (26), it appears that suitable nonperturbative 

approximation methods must be used. But perturbation theory contradicts the spirit of the theory, because 

before perturbation theory can be applied, a spectrum of elementary particles should be derived 

nonperturbatively. Fortunately, this is possible for a nonrelativistic theory.  The most simple 

nonperturbative method which can be used to obtain approximate solutions of (26) is the self-consistent 

Hartree approximation. 

 

In the Hartree approximation, one sets the expectation value of the product of three field operators equal 

to the product of their expectation values  

 
† * 2

† *

    

     

    

 

 

 
 (27) 

where     ,
† *    . Taking the expectation value of (26), one obtains in this approximation 

 

 
2

2 2 * *2
2

p

p

i cr
t m


     
   


   


 (28) 

which is a classical field equation. 

 

However, if the temperature of the Planck mass plasma is close to absolute zero, each component is 

superfluid and should be described by a completely symmetric wave function.  Under these 

circumstances, the Hartree approximation has to be replaced by the more accurate Hartree-Fock 

approximation, taking into account the exchange interactions neglected in the Hartree approximation. In 

the Hartree-Fock approximation one has to consider the symmetric wave function of two indentical 

Planck masses 

 

 1 2 1 2

1
(1,2) ( ) ( ') ( ') ( )

2
     r r r r  (29) 

There the expectation value for a delta-function-type contact interaction between the identical Planck 

mass particles is 

 
2 2

1 2(1,2) | ( ') | (1,2) 2 ( ) ( )      r r r r  (30) 

with the direct and exchange integrals making an equal contribution.  One therefore has to put instead of 

(27) 
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† * 2

† *

2    

     

    

 

 

 
 (31) 

In this approximation, one obtains from (26)  

 

 
2

2 2 * *2 2
2

p

p

i cr
t m


     
   


   


 (32) 

In the Hartree-Fock approximation the twice as large interaction between indentical Planck masses results 

from the completely symmetric wave function of the superfluid state.  

 

5. Hydrodynamic formulation 

 

In its ground state the Planck mass plasma is superfluid and has a phonon-roton spectrum for both the 

positive and negative mass components.  Above the ground state it has a large number of quasiparticles, 

made up from stable vortex solutions.  This can best be seen by the hydrodynamic formulation, for the 

Hartree and Hartree-Fock equations, in which equations (28) and (29), have the form of the nonlinear 

Schr ̈dinger equations, obtained by the Madelung transformation [4] 

 
*

* *v
2 p

n

i
n

m

 

   

  

     



     
 (30) 

 

they become 

   

 

1

0

p

U Q
t m

n
n

t


   


 


     




 



v
v v

v

 (31) 

 

In (31) U  is called the ordinary and Q the quantum potential. 

For the Hartree approximation one finds 

 

 2 32 p pU m c r n n    (33) 

 

and for the Hartree-Fock approximation 

 2 32 2p pU m c r n n    (34) 

The quantum potential in both cases is (somewhat different definition than in (23)) 
22

2 p

n
Q

m n








   (35) 

 

The connection between (30) and (28) or (32) for the Hartree or the Hartree-Fock approximation is given 

by  
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e , 0, 

   
iSA A

         

0 2 S

 2 , n A

                      

gradv  
p

S
m

 
(36) 

 

showing that curl 0 v . The uniqueness of S requires that 

 

0d   v r  (37) 

 

but the uniqueness of  only requires that  

 

/ pd nh m    v r    n = 0,1,2… (38) 

 

Implying multiply quantized vortices. From (38) one obtains the Helmholtz theorem for the quantized 

vortices 

0
d

d
dt

   v r  (39) 

 

With the vorticity vector         and the vector identity    2
x/ 2 curl      v v v v v  one 

finds for the vortex field both in the Hartree and Hartree-Fock approximation: 

 xcurl
t


 





v


  (40) 

 

By order of magnitude the core radius of a vortex is obtained by equating the quantum potential Q with 

U  one finds that the core radius is about equal to pr , with the fluid velocity reached at this radius equal 

to c. Therefore, the velocity distribution in a singly quantized line vortex, expressed in cylindrical 

coordinates is 

 

 v / ,pc r r  v                pr r  
(41) 

= 0,                                   pr r  

 

From the stable vortex solutions a large number of possible quasiparticles emerge, from which Dirac 

spinor particles are composed of positive and negative masses [6].  Without the assumption of negative 

masses, models of a superfluid vacuum have also been proposed by Volovik [7], along the line of theories 

made for superfluid helium [8]. Electromagnetic and gravitational waves can be explained as two kinds of 

vortex waves in a lattice of vortex rings [9,10]. 

 

6. Towards a solution of the hierarchy problem 

 

The positive-negative Planck mass model, which made it possible to derive quantum mechanics from the 

Boltzmann equation, also leads to a solution of the hierarchy problem: That the Fermi weak interaction 

constant is by 32 orders of magnitude larger than Newton’s constant, contradicting the idea of 

“naturalness”. And also why is the Higgs mass so much smaller than the Planck mass.  To solve the 

hierarchy problem the following ideas have been proposed: Extra dimensions, brane worlds and 
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supersymmetry. Of these proposals only supersymmetry is not extravagant, but supersymmetry has so far 

not been observed.  

From the experimentally established phonon-roton spectrum in superfluid helium, one obtains for the 

roton energy a value about 0.16 times the Debye energy.  Replacing the Debye energy with the Planck 

energy 
2

pm c , the mass of the rotons in the Planck mass plasma should be 0.16r pm m . In the two-

component superfluid Planck mass plasma, there are positive and negative mass rotons 0.16r pm m  . 

 

We now consider the gravitational interaction of a positive mass roton with a negative mass roton 

separated by the distance r. For this (positive-negative) mass dipole the energy of the gravitational field is 

positive and with 
r rm m    given by  

 
2

rr r
G mGm m

E
r r

 

    (42) 

 

According to the mass-energy equivalence, this field has the mass 
2

2 2

rG mE
m

c c r



   (43) 

 

A second equation is given by the uncertainty relation 

rm rc
 (44) 

Eliminating r from (2) and (3), one obtains  

  
3

rG m
m

c



  (45) 

 

or because of 
2

pGm c , 

3

r

p p

mm

m m

 
 
 
 

 (46) 

 

 With 0.16r pm m  , one finds that 
3/ 4 10pm m   or 

2 1610mc GeV , about equal to the 

GUT scale. If the positive gravitational field mass is added to the positive mass of the mass dipole, one 

obtains a pole-dipole mass configuration from which one can derive the Dirac equation. It is the small 

residual mass m of the gravitational field which is the mass of a Dirac particle. 

 

While without the mass of the gravitational field a mass dipole would lead to self-acceleration, a pole-

dipole configuration leads to a helical motion reaching the velocity of light.  It is from this configuration 

that one can derive the Dirac equation. We therefore call this configuration a spinor roton, and suggest 

that the non-baryonic cold dark matter is made up of it. 

 

Quasiparticles below the roton energy scale follow from resonant excitations of vortex rings. As shown 

by J.J. Thomson [11] a vortex ring with a vortex core radius ro and a ring radius R, has a resonance 

frequency 
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2/r ocr R  (47) 

 

The superfluid Planck mass plasma has quantized line vortices with the core radius
o pr r . A quantized  

ring vortex thus leads to quasiparticles with the energy 

 

 2 /r p pm c r R  (48) 

 

A lattice of line vortices is stable if the ratio of the vortex core radius or  to the distance of separation l

between two line vortices is equal to [12] 

 
3/ 3.4 10or l    (49) 

 

Setting 2l R and o pr r , one has  

/ 147pR r  (50) 

No comparable stability calculation has been made for a three-dimensional lattice of vortex rings, but one 

can make a guess.  The instability in a lattice of line vortices arises from the fluid velocity of one vortex 

on the adjacent vortex.  For a ring vortex the velocity at the distance / pR r  is larger by the factor 

 log 8 / [13]pR r
 
. 

A better value for / pR r  can therefore be obtained by solving the equation 

 

/ 147log(8 / )p pR r R r  (51) 

 

With the result 

 

/ 1360pR r  (52) 

 

With this value one obtains for a positive and negative mass vortex ring quasiparticles with the energy 

 

 
2

2 2 12/ 1.32 10 GeV    p pm c m c r R  (53) 

 

setting 
m equal to 



rm  and inserting it into (46) one obtains  

 
6

191.6 10
p

p

rm

m R

 
  
 

 (54) 

 

resulting in 386m MeV, within the baryon energy scale of the standard model.  

 

In arriving at these results we used the Newtonian approximation to compute the gravitational interaction 

energy of a positive mass with a negative mass. Including the lowest corrections from quantum gravity 

for the potential between energy between two masses m1 and m2, one has [14] 
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2

1 2 1 2

2 2

( ) 41
V(r) = 1 3

2 10

prGm m G m m

r rc r

 
    

 

 (55) 

 

For 2 1m m m   , this simplifies to  

 
22

2

41
V(r) = 1

10

prGm

r r

 
  

 

 (56) 

 

Even for rotons, where 10 pr r , does quantum gravity only lead to a small correction.  The situation 

resembles Bohr’s theory of the hydrogen atom, where corrections from QED to the Coulomb potential of 

classical electrodynamics can be neglected. 

 

It was shown by Redington [15], the Planck mass plasma hypothesis implies a “literal rippling” of space-

time near the Planck length, but this is not enough to formulate a theory of quantum gravity. 

 

7. Quantum gravity and the interpretation of quantum mechanics 

 

According to ‘tHooft the unsolved problem of quantum gravity might be intimately connected to the 

interpretation of quantum mechanics [16].  He asks: “ Will the Copenhagen interpretation survive the 21
st
 

Century? ” He does not take a stand against Born’s statistical meaning of the wave function, but against 

its agnostic part which claims that “we will never be able to determine what actually happened during a 

physical experiment, and it is asserted that a deterministic theory is impossible.” And he believes that a 

deterministic interpretation of quantum mechanics must come from a solution of quantum gravity as a 

dissipative deterministic system.   

 

In the positive-negative Planck mass plasma the positive Planck mass can be interpreted as Planck mass 

black holes, and the negative Planck masses as Planck mass white holes. In this configuration our 

universe is connected to a second invisible parallel universe by a Planck length texture of 10
99

 cm
-3

 

Einstein-Rosen bridges, with the negative masses keeping open the bridges. Taken as small 

Schwarzschild black holes the positive mass Planck mass particles have an event horizon at r = rp , where 

upon crossing the event horizon from r > rp to r < rp , the roles of space and time are interchanged.   

 

With the negative mass Planck mass particles taking the role of small white holes, the vacuum becomes a 

texture of   
           

 Einstein-Rosen bridges to a world where space and time are interchanged, 

with the negative mass Planck mass particles keeping the bridges open for a Planck time.  This separates 

reality into an upper world where space and time appear as in our daily experience, and a lower world, 

parallel to the upper world, where the rules of space and time are interchanged, but with both 

communicating by a myriad of Einstein-Rosen bridges. We propose the hypothesis that the upper world is 

the world of what we perceive as particles, and the lower world as what we think are probability waves. 

We now can also understand why the solution of the Boltzmann equation for this positive-negative Planck 

mass particle plasma leads to the Schr ̈dinger equation as a shadow of the upper particle world cast on the 

lower wave world. 

Introducing the Planck length as a smallest length leads to the paradox that a smallest length is in 

violation of the special theory of relativity. In the proposed hypothesis that the vacuum of space is in 

reality a texture of Planck mass black and white holes, this paradox is eliminated by replacing the special 
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theory of relativity with the general theory of relativity at this length, where this length rather is the 

extension of an event horizon.   

With this division, into two different universes connected to each other by a texture of Einstein-Rosen 

bridges, the outcome of an EPR experiment becomes understandable.  While in our universe the two 

particles have the same time in the moment an observation is made but are separated by a large distance, 

in the invisible parallel universe, both particles remain at the same position, with one of the particles 

getting younger, which means it is moving back in time. Accordingly, the wave-particle duality results 

from the topology of the two spaces connected by a large number of Einstein-Rosen (wormhole) bridges, 

one representing particles in time, which is the space of everyday experience, and one representing waves 

in time, with one space and three time coordinates.   

 

The EPR experiment and the double slit experiment, the wave-particle dualism in the upper particle and 

lower wave world is sketched in Fig. 1 and Fig. 2. 

 

8. Conclusion 

 

The idea that quantum mechanics might be connected with the problem of quantum gravity and that it has 

a deterministic interpretation, first seems to show up in the derivation of quantum mechanics from the 

Boltzmann equation from the hypothesis that the vacuum is made up from a medium composed of 

positive and negative Planck mass particles. It is furthermore shown that this hypothesis can lead to a 

resolution of the hierarchy problem and to a spectrum of quasiparticles resembling the particles of the 

standard model.  

 

Ultimately, a general relativistic treatment of the positive-negative Planck mass plasma, leads to the 

possibility to explain the strange long-range nonlocal quantum correlations by a vacuum texture of many 

Einstein-Rosen bridges to a hidden parallel universe with an “exchanged” space-time metric. 

 

 

 

 

 

 

 

 

 

  



16 
 

 
 

 

Fig. 1  
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Fig. 2 
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