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Abstract

Bernhard Riemann has written down a very mysterious work
“Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse” since
1859. This paper of Riemann tried to show some functional equations
related to prime numbers without proof. Let us investigate those functional
equations together about how and where they came from. And at the same
time let us find out whether or not the Riemann Zeta Function {(s) =
Zs(n)(s‘l)sin(ng)f‘(l —5){(1 — s) really has zeroes at negative even

integers (—2, — 4, — 6 ...), which are called the trivial zeroes, and the
nontrivial zeroes of Riemann Zeta Function which are in the critical strip
(0 < R(s) < 1) alllie on the critical line (R(s) =3 ) (or the nontrivial
zeroes of Riemann Zeta Function are complex numbers of the form

( % +x i)). Step by step, you will not believe your eyes to see that Riemann

has made such unbelievable mistakes in his work. Finally, you can easily
find out that there are no trivial and nontrivial zeroes of Riemann zeta
function at all.

1.Introduction

Prime numbers are the most interesting and useful numbers. Many
great mathematicians try to work with them in several ways. One of them,
Bernhard Riemann, has written down a very famous work “Ueber die
Anzahl der Primzahlen unter einer gegebenen Grosse” since 1859 showing
a functional equation {(s) or Riemann Zeta Function without proof. He
believed that with the assistance of his functional equation and all of the
methods shown in his paper, the number of prime numbers that are
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smaller than x can be determined.

Someone believes that by using analytic continuation technique, he
or she can extend a domain of a powerful analytic function, derived from
two or more ordinary expressions or equations, which can help him or her
reach the shore he or she tries to. One of them, Riemann, might has thought
for about 150 years ago that he could extend the domain of his new analytic
function, which was the composition of Riemann Zeta Function and Pi or
Gamma function, to the entire complex plane by using this technique. But
this technique, just like others, needs to be checked or proved for the
essential conditions of the former equations and of the new functional
equation itself. Until now usages of Riemann Hypothesis in mathematics
and physics are still found more and more, despite the truth that itis justa
“hard to solve” problem, not a proven one!

2.7(s),2sin s U(s)[](s—1),(s) = 25n(5‘1)sin? F(1—-s)i(1—y5)

derivations, and trivial zero solution of {(s)

2.1 Let’s start from the great observation “The Euler Product”

Ni-2) = =5 o
For p = all prime numbers
n = all whole numbers =1,2,3,...,00
Leonard Euler proved this “Euler Product Formula” in 1737.

Let us follow the proof from the series
o 1 1,1 1,1
2;1-:1 (E) = 1+;+§+E+;+... ..(A)
Multiply ...(A) by zi bothsides

Lyt Iy _ L 1,1, 1,1
21 () =ptetatatt - .(B)

Subtract... (A) by ...(B) to remove all elements that have factors of 2

Lyg+ee Ly — qqplyl 1,11
(1-2)Z38 ) = l+g4g+ o+t o+ (O



Multiply...(C) by —; bothsides

Loq_lygte Ly _ 1,1t 1 1 1
S(-20808 () = s+t ottt (D)

Subtract ...(C) by... (D) to remove all elements that have factors of 3
or 2 or both

_Ayi= iyt Ly —oqp ittt 1
(1 35)(1 25)2n=1 (ns) - 1+ 55 +7s+ 1ls+135+17s+"' "'(E)

Repeat the process infinitely yields

(A= )(A-2)A-5) A-2) -8 () = 1

Or T35 G) = OO I
r Z 1 (n) (1__5)(1_—3)(1—§)(1_?)(1_H)
o Ly -
n=1 (nS) - ppl’;z[me[(l_é)]
MG = oa-iH
p prime

Riemann denoted this relation {(s) = > (is) = J] (1- i )1
n p prime p

would converge only when real part of s was greater than 1(:(s)>1) in his
paper “Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse”

since 1859.

Riemann Zeta Function {(s) will diverge for all s < 1, for example
— — y+4o 1y 1,1, 1,1
If m(s) - 1 4 C(S) - Zn:1 (ns) - 1 + 2s + 3s + 45 + "

(D) = = +=+-+-+-

By comparisontest = += +=4= +-d4-+=+= =+
1 2 3 4 5 6 7 8 9
R N I T L T Lt
1 8 8 8 8 16

1 1 1 1 1 1 1 1 1
butI +E +(Z+Z) +(§+g+§+§) +(E+)
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= +oo
50 (1) =45 45+ + =+
finally diverges to oo
IfR(E) =0, U)=2i3 () = c+m+mtste
W0 = S+ttt
= 1+1+1+1+..

finally diverges to o

IFRE) =-1,365) = L3 () = S++m+t o+
(-1 = 1+2+3+4+..
finally diverges to o
2.2 Next, let us consider I'(s) = Gamma function

2.2.1T(s) whens >0

Gamma function was first introduced by Leonhard Euler
(1707-1783) in his goal to generalize the factorial to non integer values,
and was studied more by Adrien-Marie Legendre (1752-1833)

I'(s) = J, (@ @™ du
Which will converge if real part of s is greater than 0 (R(s) >0)

And can be rewritten as

(s+1)

r(s) = =

or TI(s+1) = (s)I'(s) convergesif R(s)>0

Let us prove using integration by parts



[(s+1) = [ (@ du forR(s)>0

~WPE@I + [, @ ()W du

= [limyoe =@ — limyo =)™ ()]
+, @ ()W du

e}

= [=+3]+sf, (0 S du

Use L’Hospital'Rule to find % (indeterminate form)

OIS
(&)W

= limy_

Repeat differentiation until (u)® — (u)©

Then lim,_ .

Thus
So
. 1
Find F(E)
From

r'G)

(D) (s-1)..(w)©
(e)(w

—(U) (s)
(&)W

= limy_

(—D()(s-1)..(1)
(o)

=0
[(s+1) =0 + s/ (W W)™ du

[(s+1) = sT(s) R(s)>0

') = J, (&) "™ du

@ @™ du

~WPEO + [T (- HwF Y du
[limy oo —(@ 2 (@Y — limy o —(w) 2 ()]

+ [ O (D@ du



=[—o+0h{—§XLW®YﬂWoo“?”du

= (I3
From Euler Reflection Formula
[()I(l-s) = =—— , 0<s<1
r;)ra-;) = # = n
;) = vu
= 1.772
Find I'(1)

[(s+1) = [, (@)W W du
ro+1) = [ (@ W du

= —@5
= limy_e — ()W — lim,_,o —(e) W
= —-0+1
ra =1
Find I'(2)
From [(s+1) = sT(s)
r(1+1) = 1r()
re) =1
And for s = positive integers = 1,2, 3.....
The relation between gamma function and factorial can be found from
[(s+1) = sT(s) , R(G)>0

= s(s—DI'(s—1)



= s(s—1)(s—2)..(1)) I 1)
= s! for s = positive integers
2.2.2 T'(s) whens= 0
Find I'(0)

From Euler Reflection Formula

I'(s)T(1—s) = —

sinms
limg o () T(1—s) = limg, si:ns
T
F(O) F(l) ~ a~sin0 «©

And T(1) =1

so I'(0)

Il
8

2.2.3 T'(s) whens< 0
By substitution R(s) < 0 into equation above yields
I'(s+1) which will equal (s)I'(s) for every R(s) <0 (negative integers, or
negative non integers).

Let us proof using integration by parts
r¢s) = [, ™™Wdu , R(E)<0, s=-a
F(s+1) = [; W®.(e)Wdu
= [FWE@IF + [ @ (@ du
= [limy e =W (@)Y —limy, o —(WY (e)™V]
+J, @ (=) du
= [0+ 0]+ s[ (@ @D du

= (s)['(s) , RO



Find I'(—3)
From  I(—;+1)= (-)I(-3)
r[-)= -)TIE)
= (-2

= —3.545
Find I'(—1)

From ro) = foo(u)(_l)(e)(_“) du

~WPEMIS + O (DWW du

1o
= [limyoe, —(W (@)Y —limy o — (W) ()]
+ 5 (@D du
= [0+ 0] + (-1 [, @ du
= (-Df, @ du
o = (-DIr(-1)
r(-1) = —oo

Find I'(—3)
From F(—%) = foo(u)(_%_l)(e)(_“) du
- Veors+ [ @ (<3- )@

= [limyoe —(W) 270 (@)CW — limy, o —(w) 20 (e) W]

f (&)W ———1)(u)( ~1)-1 g
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Find I'(-2)
From T(-1) = ["P ()™ du
= W @MY + [ (@ (=2)(W du
= [limy e —(W) TP ()Y —limyo —(W) D ()]
+ 5 @V (=) du
= [-0+0] +(-2) [, (W du
—o0 = (=2)[(-2)

[(—-2) = o

Next for s = zero, positive, negative integers or non integers
From TI(s) = fooo(u)(s'”(e)(_“) du
r(-s)= ["@@9"9(e)™™ du
= W@ + [, @V (1 - 5) - DG du
= [limye ~@D () = limyo =W ()]
+[ @ -9 - D@D du

= [-0+0]+((1 —5s)—DI'({(1-5)-1)
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= [(A—=s) = 1JI[(1 =) 1]
So T (1-s)=(—s)['(—s)
( s = zero, positive, negative integers or non integers)
And T(1+s) = (s)I'(s)
(s = zero, positive, negative integers or non integers)
2.3 Consider [](s) = Pifunction

Pi function has been denoted by Carl Friedrich Gauss since
1813

e = 7@ W du
The relation between Pi and Gamma functions are
N1 = [ @@ Pdu (1)
= I(s)

Which will converge if real part of s is greater than 0, (R(s) >0)
2.4 How to find the product of {(s)[[(s—1) and corresponding
value of R(s)
From equation ..(1)
+oo=>u=0
Let u = nx

Then +o00>=x> 10
Multiply equation ...(1) by ni both sides
1 1 o, s
(D61 = ) @ W™ du
— f";oo(e)(—nx) (nx)(s—l) (n) s dnx

— f";oo(e)(—nx) (nx)(s—l) (n)(—s) ndx
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— ftoo(e)(—nx) (nx) &P (n)~6-Dgx
= [TP(e)"™ (x)& D dx ~(1.1)
To make sure that the result of (nx) ®~ multiplies by (n)~¢~1

of equation ...(1.1) will exactly be (x)®~* without (n)®~Dleft, the values of
s from () of {(s) (which 1 < %(s) < +00) , and from (u)*™ of [](s—1)
(which 0 < R(s) < +0) must be the same. So the values of all the real parts
of s of the product ( %)H(S—l) must be those numbers which are larger
than 1 or (1< R(s) < +00).

Then try to make infinite summation of (%)H(s—l)

for R(s) >1

15 QM- =% @™ @ Pd .. (12)

or  IONG-D=21% [F@T™ @ dx  .(13)
And from (e) ©™ = (e)™

-x)\ (n (e)(_X)
= (e)m [W]

— (e(—XJ) (n-1) (e) (=x)

Then {(s)[1(s-1) = X5 fo“:‘” (e =D ()0 () (- Djy

+ 0o
= z:z(e(-x))(n—l)(e)(-x) XS Vdx ... (1.4)

O+
,for R(s) >1
+o00 +oo
(-x)y(n-1) _ (n-1)
Let Zn=1(e ) = Zn=1ar
From Geometric Series
+ 0o _ .

anlar(“ D = lim,Le Sn
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= ljm &2

n-o (1-1)

n

a ar

= lim][ ,a=1 ,r= (&)™ (<1)

n-oo (1-1) h (1—T)]

0T <x< 4+

. a_’r‘n _ . (e(—x))n _ +
But llmn—)OO (1_7") - llmn_>oo —(1_e(‘X)) = 0 , 0 S X S -I-OO
So Z:ol ar®™® = (1:) ,a=1 ,r= ()™ (<1),0t <x< 4w

o0 =X - J— —1

And then Z/T:l (e( ))(n D - (1_e(—x))
R CIC
ot (1—e(=9)

Thus (s)[1(s-1)

_ + 00 (X)(s—l)
- f* (1_e(—x))(eX) dX

or -1 = [ 4y, Rs) >1 .. (2)

(e*-1)

2.5 Riemann’s attempt to extend the analytic equation {(s)[](s—1)

to the negative side of real axis, the formation of the equation

2sinms {(s)[[(s-1) = if+o°Lde

+oo  (e*-1)
Riemann substituted (—x) into (x)®™ of integral ... (2),
and took consideration in positive sense around a domain (+o0,+00 ),
then by Cauchy’s theorem “ if two different paths connect the same two
points, and a function is holomorphic everywhere “in between” the two
paths, then the two path integrals of the function will be the same.” And
briefly, “the path integral along a Jordan curve of a function, holomorphic in
the interior of the curve, is zero.”
§ fawdu = 0

if a and b are two points on Jordan curve (simple closed curve)c
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then §fwdu = [ fwdu + [ fw)du
= 0

And let us consider improper integral when b— +o ,a= 0"

Then §fWdu = limy_ e [ f@)du + limy o [ f)du

or  §fwdu = [."fwdu + ff;f(u)du
=0

_ (o6

oD dx

And for f(u)du

oo (—x)6-1 0 (—x)6-1 + v\ (s-1)
Then [FX _gx = 2" _gx + ff 9 gx =0

too  (e*-1) (e*-1) ©  (e*-1)
400 (_X)(S—l] . +00 (_X)(s—l) _ +00 (_X)(s—l) .
or f+00 (e*-1) dX - f‘” (e*-1) dX f‘” (e*-1) dX =0
0 (s-1)
That means the value of the equation {(s)[[(s—1) = | M ?2‘—1) dx after

_ (s-1)
extending to [ e (0 dxis always equal to zero independent from the

oo (e-1)

values of s of {(s) or [](s—1).

Now, let us go further from the above equation

0 —_v)(s-1)
[ Y 4k = 0

too  (e*-1)

o0 (—1)6-1 (s-1) 0 (—1)6-1 (s-1)
f+ (-1 (x) dx —f+ D) dx

' @1 ' @1
(_1)(5) + 00 (X)(s—l) _ (_1)(5) +00 (X)(s—l)
o o e i T Ty e ey O

From Euler’s Formula
()™ = -1
(cosm +isinm) = —1

cost = —1, sinm = 0
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+00 (_X)(s—l)

Hence [, ey dx = 0

_ (DO e (0D (D) koo (06D
=y e dx Ty le ey

dx

(ein')(s) +00 (X)(s—l) (e—in')(s) +00 (X)(s—l)
=) (re gy — &L (TP
oo o e & T TS e e

_ (ein')(s)_(e—in')(s) f+oo (X)(s—l)
I G IR A Gy

= [_(eirt)(S) + (e—in)(s)] fo-l'-oo (()Z)X(i—ll)) i

. . o0 (5)(—1)
— [(e—lT[)(S) _ (elT[)(S)] foi' ((Xe)x_l) dx (3

(s=1)
= [(cos 7s - i sin ts) — (cos 7ts +isin 7s)] fotoo ((Xe)"—1)

.. 400 (x)—1D)
= —2isinms [, o dx

= —2isin s {(s) [[(s—1) .. (4)
= (0) ¢(s) [1(s—1)

+00 (_X)(s—l)
or [~

dx = —2isin s {(s) [[(s—1)

0 =(0)ds)I(s-1)
Multiply by i both sides

P [F 0 gy = —2(0)%sinws U(s) [[(5-1)

too (e"-1)

= —2(=1)sin 7s {(s)[[(s-1)

400 (—X) (s-1)

Or  2sinms{(s)[I(s-1) = if, ey dx. =0 ..(5

(0)¢)I(s-1)= 0

That means the value of the equation 2sin s {(s)[[(s—-1) =
i

too " (@—D) dx must always equal zero.

Riemann observed the many valued function from above
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equation

(s-1)Log(-x)

(-0 = (e)
and said that the logarithm of (—x) was determined to be real only

when x was negative. Therefore Riemann tried to show that the integral

f+oo (—x)6V
too  (e*-1)

(400, +00) of the integral, this looked strange and confused.

dx would be valuable if x < 0 in contrary with the domain

Another confusion was that Riemann did not change (x) of the

_ (s-1)
denominator (e* — 1) of his equationf %

dx to (—x) simultaneously
while he changed (x) of the numerator (x)®™ to (—x). Actually (x) of both
denominator and numerator come from the same function [J(s—1), so they
have to be changed to (—x) at the same time.

I do not really know what was in his mind, but if one looks carefully
at the first page of his original paper “Ueber die Anzahl der Primzahlen

unter einer gegebenen Grosse”, you can see the traces of confusion and

hesitation which caused him to change the boundary of the integral

—_ ) (s-1)
f(e)?—_l)dx from (400, +00) to (—o , +0) and back to (+o , +) again.

2.5.1 Firstly, he might try to extend the functional equation
¢(s) [1(s—1) to the negative values along the x-axis (which means that he
was trying to consider the integral on the domain (—oo, +0).

From equation ... (1.4)

+

Z(S)H(S_l) — ” Z:z(e(-X))(n—l)(e)(-x) (X)(s—l)dx

ot

Riemann extended it to negative values along x-axis
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C(S)H(S—l) — j+oo Z::c;(e(—x))(n—l)(e)(—x) (X)(s_l)dx
ot
+ f Z;:.;(e('x))(n‘l)(e)(-x) (X)(s—l)dx

Consider f Z:z(e(—X))(n—l)(e)(—x) (X)(s—l)dx

Let Z :z(e(—x))(n—l) —_ Z :‘: ar(n_l)

From Geometric Series

400 _ .
anl ar®P = lim,_., Sn

= lim | a @
n-oo (1-1) (1-71)

] ,a=1,r= ()" (>1)

. 1 r"
B nl—l>roro1 a-r (1—r)]

]

, X< 0 or (—x)=positive

. 1-r"
N n1—1>rcg [(1—1‘)

Then from Factorization, let us consider the numerator (1 — ")
(a®=b") = (a—b)(a™ ! + a" 2b+a"3b? + ---+ab""2+b"" 1)

Inthiscase a=1,b=r

So (1"—r") = (1-r)( 1"t + 1" 2r+1773r? + - r" 24" h)

(1-1r) (1071410241032 4o p0=2 4 P01

_ (1-r, ..
Hence llmn_,oo[—(l_r) 1= limy, e (1-1)
= (14r+ré+..4+r°72 4 =71
= 00
+ o0 (n-1) _ +00 (-x)\(n-1)
So anlar o anl(e )

= ® ,a=1,r= (™ ~o<x<0
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Thus J > ::'; (eC0)=D ()9 (x) =Dy

= [0 (0)(e)" () Vdx

diverges to oo for —oo <x <0~

Then {(s)[[(s—1) = +wz:z(e(—x))(n—1)(e)(—x) (X)(S'”dx

-
_|_f z:z(e(—x))(n—l)(e)(—x) (X)(s—l)dx
diverges to oo for —oo <x < 0~

400
So extending {(s)[J(s—1) = Z:z(e('X))(“‘l)(e)('X) (x)® Ydx to

O+
to _ .
.\ anl(e(-x))(n—l)(e)(—X) (X)(s—l)dx+j anl(e(—x))(n—l)(e)(—x) (X)(S_l)dX
0 —00

will cause it to diverge to co.

2.5.2 Secondly, he might try to take integration along a closed
curve C covered the domain (40, +0), which by famous Cauchy’s
theorem “if two different paths connect the same two points, and a
function is holomorphic everywhere “in between” the two paths, then the
two path integrals of the function will be the same.” And briefly, “the path
integral along a Jordan curve of a function, holomorphic in the interior of
the curve, is zero.”

$ fwdu = 0

if a and b are two points on Jordan curve (simple closed curve)c

then §fwdu = [ fwdu + [ fwdu

= 0
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And let us consider improper integral when b— 4o ,a= 0"
+
Then ¢ f(w)du = lim,_,q f0b+f(u)du + limp_, 4 o fbo fw)du

or  $fwdu = [[Tfwdu + [° fuw)du

=0
And f du = Wy
nd for f(u)du = ooy &
+oo (GTD L heo (007D 0 _(0C7Y
Then |, oo dx= Jos o X Jroo T

f+oo x)e® dx  — f+oo (x)&V dx

T (e*-1) T (e*-1)
=0
f+oo (1)(5) (X)(s—l) < — +o00 (1)(5) (X)(s—l)
@ (e*-1) 0" (1) (e*-1)
+oo (P +00 (x)(s »
= O [ oy dx — (O 7 dx

From Euler’s Formula again

(" = -1
(—e)tm = 1
(cosm tisinm) = —1
cosm = —1,sinm= 0
+oo (x)(s~D .
Hence [, = = 0
_ ( ) + oo (X)( ( ) + oo (X)(
= (O [ ax - (0O 17O dx
_ ( ) + oo (X)( -1) . _ ( ) + 00 (X)(S_l)
( el”)s o+ (x ) dx ( e ln)s 0t (e*—1)
i o (s—1)
z[(_elﬂ')(S) ( e—lTL’)(S) + (X) — dx .(6)
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(s=1)
= [(—cos s — isin ws) — (—cos 7s + isin 7s)] fotoo ((}2"—1) X

+oo ()51

= —2isinms [, o dx . (7)

+oo (x)5—1)

= (O) f()+ (e"—l) dX

or [ % dx = —2isinms [ (fe)x:)
0 = —=2isinms {(s) [[(s—1)
0 = (0)¢(s) [1(s-1)
Multiply by i both sides
if:z%dx = —2(i)%sin s {(s) [I(s—-1)

= 2sinms {(s) [[(s—1)

Or 2sinms {(s) [[(s-1) = if o ?

to (e'-1)

dx = 0 .. (8)

(0)Us)[I(s-1) =0
That means the value of the equation 2sin s {(s)[[(s—1) =

i f+oo (X)(s—l)

+oo (1) dx must always equal zero.

Now look at the many valued function again

©°P = (e)

The logarithm of x is determined to be real when x is positive

(s-1)Log(x)

number within the domain (400, +0).
2.6 Can we really get trivial zeroes ( —2, —4, —6,...) from
Riemann Zeta Function (s) = 25(n)(5_1)sin(n§)F(1 —s){(1—5s)?
To answer this question, we have to study two functional

equations and their relationship.
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1L (@MEIreYs) = @~ GFIres) -s)
2. (@)~ OTEYs) = @) I - $)Y1 - s)

Firstly, you should pay attention to an interesting fact which
is hidden in those equations.

2.6.1Let us start changing [[(s—1) of equation ...(1) to []G — 1).
From [[(s-1) = [."(©) "™ du (1)

Or I'(s)

fo" @ @ du
Which converges when R(s) >0 ,+c0>u=>0"
Thus [I¢-1) =[5 WEY du

Multiply by ( ) (r)(~2) both sides and let u = nnmx (as Riemann did)

() @ENE-1) = L7 =5 (3) @ @k D

(m)\2/ \(nm)\2

_ f+oo(nn7'cx)(s )

(-nnmx)
o+ (nnn)( ) (e) nnm dx

— f+°° (nnrrx)( ) (e)( nnx) dx
(nnn)( )

= [ 7@ ()G dx
Take infinite summation both sides
S @M@DNE-1) =255 [ @06 dx
= 0*:”2 @) )G d

But Riemann denoted Yreo (@) = Y(x)
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Then %39 M (E-1) = [ wE)@EY dx
Or MEIMNE-1)46) = vE@EDdx .(9)

Let’s consider the value of Y(x).

Evaluate yi(x) by Euler’s Formula for eachof 0% <x< +o
) =255 (e)m™)

= (e)) 4 (e) (410 4 ()OO 4
You can see just only x = 0%; Y(x) = () 7O 4 (e)4TON) 4 () 97O 4

= 1+1+1+4+...

= o
This means that the value of Yi(x) = X+ (e)"™) from equation

@NE-11 = 758 @G dr

is equal to oo when we start fromx =0

Next, consider for each of 0t <x < +
V9= T4 @)

=535 (@]
+00 [(e)(—l)(nnn)](x)

= Zin=1

+00 [(e)(i)z(n)(nn)](x)

= Zin=1

= Yt [(e)im]O0OM)

= Y+% [(cosm + isinm) D]

=yta [(_1)(nn)](i)(x)

= [[(-1)DD]OX) 4 [(—=1)@@D]DO@) 4 ... 4 [(=1)) () ]DE)]

; foreach of 07 < x< 40
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— [(_1)(i)(x) + (1)(i)(x) + (_1)(i)(x) 4ot (1)(i)(x)] ..(9.1)
; foreachof 07 <x < 4+
Half of the summations from equation ...(9.1), for each of (i)(x) =
odd numbers, are equal to zero. And the summations of the remainders, for
each of (i)(x) = zero and even numbers, are equal to (diverge to ) .

Y(x) = { 0 ,(D) = odd numbers

o , (i)(x) = 0 and even numbers
So TIE-1)@Ys) = 17w )EY dx

= (0) fotm(x)(%_l) dx ; (i)(x) = odd numbers
+(o0) fotoo ()@Y dx; (i) (x) = 0 and even numbers

= oo (divergesto o) ..(9.2)
or TOmes) = [Te0E dx
= oo (divergesto o)

2.6.2 From I(s) = [.7(e) W*™ du

1 —(?) 1-s\ _ rt+o (e) (-nnmx) (E _1)
[—)= —s —s d
(n(l—s)) () ( 2 ) f0+ (nn)(lT)(n)(lT) (nnmx)\ 2 nnrm dx

= Jor @Cm™) 071 dx)

2 () @ (5 = 5 [P ar
= [0 @) ()7 1 dx
But Riemann denoted o (e)tMT) = (%)

0 ,()x) = odd numbers

o , (i)(x) = 0and even numbers as proof above

And from Y (x) = {

so T (%) (m)" g1 —s) = fotoo U )Y dx
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= (0) fotoo(x)(¥_1) dx ; ({()(x) = odd numbers
+(0) fotoo(x)(¥'1) dx ; (i)(x) = 0and even numbers
= oo (divergesto o)

Consider if fotoo P(x)(x) (5-1) dx # oo ,then

1

(n)—(¥)p (?) U(1—5s) # (n)(-%)r(g)z(s) except when s =~

1-s
2

But exactly fotootp(x) (x)( -1) dx = oo (diverges to ») ,so

m) G (22)1a - ) = @)y

= ©O
2.6.3 From I'(s) = fotoo(e)('“) (WS du

Let u = nnx

+00 (e)(—nﬂ:x)

1 (11— e
() @O =9) = [ asgams ()i dx

n@-s)

= [27(@0m™) (x)(1=5-D dx)

I-;-=O.1 (n(ll—s)) (n)_(l_S)F(l - S) == Z;;-zo.i Otoo(e)(_nﬂx) (x)(l_s_l) dx

— O-I-I-OOZ;_?& (e)(—nnx)(x)(l—s—l) dx

denote o (@) = p(x)
so (M I -9yl -5) = [.7dx) )T dx
Let’s consider the value of ¢p(x).
Evaluate ¢(x) by Euler’s Formula. for each of 07 <x < 4
() =275 (™

= (€)™ +(e) 2™+ (e) 3™



24

You can see just only x = 0*; ¢p(x) = (€) PO 4 () 2T 4 (¢)B3TOD) 4
= 1+1+1+...
= o
This means that the value of $p(x) = Y75 (e)"™) from equation
@ING-11s) = 758 @G d
is equal to oo when we start fromx =0

Next, consider for each of 0t <x < 4+
609 = 545 (™

=238 (et
+00 [(e)(—l)(nn)](x)

= Lin=1
=Yt [(e)(i)z(n)(n)](x)
= Yt [(e)ImDmM]@)
= ¥+= [(cosm + isinm) ™D
=yta [(_1)(n)](i)(x)
= [[(=1D)D)O® 4 [(=1)PD]D) 4 ... 4 [(=1) @O
;foreachof 07 <x< 4w
= [(—1)DO® 4 (DO 4 (—1)O® 4 (1)DX)]
;foreachof 07 <x< 4w
Half of the summations from the above equation, for each of
(i)(x) = odd numbers, are equal to zero. And the summations of the

remainders, for each of (i)(x) = 0 and even numbers, are equal to (diverge

to) .
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0 ,(D)x) = odd numbers
o ,(i)(x) = 0and even numbers

() = |
So (M ™AOTA-9)I1-9) = L7 dE dx
= (0) [70EVdx ; () = odd numbers
+(00) [ () &~V dx ; (1) (x) = zero and even numbers
= o (divergesto o)
2.6.4 From T(s) = [."(e)CY (W)*™ du

Let u =nnx

1 - +oo ()X .
(W) (1)~Or(s) = Jos W(nnx)( Do do

= [ @™ () dx

;2.1 (nis)) (T[)—(S)F(S) — Z,.;.;,l Otoo(e)(-nnx)(x)(s_n dx
= [27% @) ()6 dx

denote Y5 ()" = ¢(x)

0 ,()x) = odd numbers

And from ¢(x) = {oo ,(0))(x) = 0and even numbers

as proof above

so (@™OTE)Ys) = [ )V dx
= (0) f0++°°(x)(s—1) dx ; (i)(x) = odd numbers
+(o0) fotoo(x)(s‘l) dx ; (i)(x) = 0 and even numbers
= oo (divergesto o)
Consider if fotoo $(x)(x)E-Ddx # oo, then

(M~ Ir - s)g(1—s) # (@) Wr(s)((s) exceptwhens=-

400

But exactly f0+ dx)(x)¢Vdx= o, s0
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M~ rA - s)g1—s) = (W) OTE(s) = o

Next from ()" C=9T(1—s){(1—s) = fotoo d(x) ()75 gx,

+ o0

If we try to extend f0+ dx) () dx to f:;o d(x) (x)175-D dx by
taking integration along a closed curve C covered the domain (40, +),

then, by famous Cauchy’s theorem, we will get
[12 9GO A= dx = [ 966V dx + [, GG 15D d

0 =/ oI Vdx — [1° ¢ (x) 375V dx

_ (1)(1—5) _ (1)(1—5)

(1) ) ]fo-l;oo b (x) (x)(l—s—l) dx

From Euler’s Formula

(@™ = -1
(cosm *isinm) = —1
cost = -1, sinm= 0

MO 1)) rtoo —s—

= (=) = (=emm) ] [ 0000 dx
= [(=cosm(1 —s) —isinm(1 — s) — (—cosm(1 — s) + isinmw(1 — 5)]
27 90 ()5 dx
= —2isin(1—s) [, ¢ )3V dx
= —2isint(1 —s) " "IT(1 — 5)(1 —s)
So [[7 @) Vdx =0

= —2isinm(1 —s) m~IT(1 — $)Y(1 —s)

But 71" T(1-5)q(1—5s) = o
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So sinm(1 — s) = (sinmcosms — cosmsinms)
= sinms
must equal zero to cause
[17 600GV dx =0
= —2isinm(1 — s) 1~ (1 — 5)Y(1 — s)
= —2isint(1 — s)( )
= —2isinms (00)

= —2i(0) (=)

. . s s
And sints = 2sin — COS—

[72 0G0 Ddx=0
= —2isints 1~ =IT(1 — s){(1 — s)
= —2i2sin=> cos— 7~ IT(1 - $){(1 - 5) .. (9:3)
= —2i(0) 7911 - 5)Y(1 —s)
And from
@ (L)1 -9 = 17006 ax
Next, extend [~ px)()( 7 D dx to [7° o) ()5 ) dx by

taking integration along a closed curve C covered the domain (40, +0),

then by famous Cauchy’s theorem, we get
[ P05 dx = [ b7 ) dx - [ “ ()07 ) dx
=0

) )
= (- e
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0= [ e 0 (5 a

_ eosn(t3 ()1)lsmn<_)> (—cosn(1 ();smm 7 00005

= —2isinn(=) 12900007 Y d

= (0) [ 00T ) dx

= r (521 -

From  sinm(—2) = (sinZcos™ — cossin)
= cos?

Then 0 = —2isinn (S 1 (22) 11— 5)
= —2icos%sn_($)r‘($) (1—5s)  ..(9.4)
= = GIr(2)a -9

so cos— =0

Thus from ....(9.3) and ....(9.4)

—21251n—cos

1= A=ST(1 -5 (1 —-s)= 0

= —2icos%sn_(£) ( )Z(l —s)

cancel term —2icos ? (which = 0) both sides ( remember that the

aim of our process is just only to follow or prove all of Riemann’s process of
deriving equation to see whether it is true or not, so we have to go on
although the way to derive the equation look so strange !)

Then 251n

2 7=1=9r(1 — 5)Y(1 —s)

- ( )5(1_5)

(0]
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+o00

And from ()~®T(s)(s) = Jor POM) (-1 gx
= o
so (M)~ Or(s)i(s) = Zsin?n‘(l‘s)r‘(l —s)(1—=5s) ..(9.5
() = 2sin=(w)

Because 7~ 9T(1 — 5){(1 — s) and ()~ T(s)I(s) are always equal
to o0, and because sin ? cos ? = (0 while cos ? always= 0, so sin ? must
always equal 1.

Because TI'(s)alone # 0 and I'(s) = o only for some values of s
and (m)"®alone# 0 and (r)"®never = o, so {(s) itself must always
equal oo to cause (1)~ T'(s){(s) always equal oo (diverge to o).

Finally (s) = ZSin%sn(S_l)F(l —s)U(1 —5s) .. (9.6)

= 2(1)( )
= oo (always diverges to o)
and sin? must always equal 1.
If you need the exact {(s)= ZSsin%n(s‘l)I‘(l —5s){ (1 —s) instead of
25in%n(s‘1)[‘(1 — 5)I(1 — s), you can get it by multiplying equation
(M)~ (1 = $)Y(s) = [i) P dx
= o0

by (2)~(1=9), the above equation then becomes

e +00 (1-s-1)
(2m) O = $)Y(s) = [ T —

= 00

and then extend R.H.S. by famous Cauchy’s theorem to
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+00 p(x)(x) (17 -1
f-}-oo (2)(1—5) dX 0

_ [P e@UT 0 pW0

0* ()= +oo  (2)(1-9)
_ (1o dx)(x)A-s-1 f+oo d) (x)1~s -1
= f0+ (2)(1—5) - ot (2)(1_5) -

OGRS f+oo b (x)(x)A~5-1)
B (1) €8] ot (2)(1—5)

.. .. (1-s-1)
=(—cosn(1 —s) —isinn(1 — s) — (—cosn(1 — s) +isinm(1 — s)] fotm%

. +00 p(x)(x)(1—s-1)
= —2lSll’1T[(1 - S) f0+ W

= —2isinm(1 — 5)(2m)"A=9IT(1 — 5)Y(1 — 5)

= —2i(0)(2n)"=9T(1 — $)Y(1 —5)

But sin(1 — s) = (sinmcosms — cosmsinms)
= sinms
. . TS TS
And sinmts = 2sin ~ COS—
+00 p(x) (x)A=S D _
so f, o —dx =0

= —2isinn(1 — s)(2m)~" =T (1 - 5){(1 — 5)
= —2isints(2m) "7 (1 — s)Y(1 —s)
= —ZiZSin%S cos%s 2m)~ =911 — $)(1 —s) ...(9.7)
= —2i(0)2m)~ 9T (1 - 5){(1 —s)
Then follow the previous process, and finally you will get
U(s) = zssin%r(s—l)m — )1 —5) ..(9.8)
= 25(1) ()

= oo (always diverges to o) and sin? must always equal 1.
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It looks as if the functional equation {(s)= Zssin?n(s'l)r‘(l —s)U(1—5)
will be equal to zero if and only if the value of sin ? = 0( or values of
s (of sin %S) are equal to —2, —4, —6,... ), which are the trivial zeroes
of {(s) as many people think. That is not true, actually from process above,
it is shown that {(s) = ZSsin?n(s_l)F(l —5){(1 —s) = oo (always
diverges to o ) and sin ? must equal 1 only. There is no trivial zero of

Riemann zeta function {(s) = Zssin?n(s‘l)r‘(l —5){(1 —s) = oo atall!

I would like to specify (confirm) that the value of {(s) from equation
(s) =21 (ni) , which is up to the value of s and converges only when

R(s)>1, is not the same as the value of {(s) from functional equation
iU(s) = Zssin%sn(s_l)[‘(l — 5)C(1 — s) which is always equal to o
(diverges to ).

3. Integral of the remaining complex quantities

Next Riemann tried to find the integral of the remaining complex
quantities in negative sense around the domain. He mentioned that the
integrand had discontinuities where x was equal to the whole multiple of
+2mi, if the real part of s was negative (integer). And the integral was thus
equal to the sum of the integrals taken in negative sense around these
values. The integral around the value n2mi was = (—2mni)~Y (=2mi), then

Riemann denoted

2sin s () [1(s-1) = @m)® R [(=1) & + (i) ©D)]
Let us prove together,

Last time when Riemann talked about positive sense around a
domain, he worked with values of x on (400, 4+00). This time he talked
about negative sense around that domain and worked with x which were
imaginary numbers = +n2mi.

. p+oo (x)G-D

From..(5) 2sinms{S)[I(s-1 =i/, o dx = 0
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o (6D 0" (06D
0 =if. oo 4 + if,. oD
+00 (X)(s 1) . +00 (X)(s—l)
=1 =y dx [ =y dx
Lt ()80 Lt (%Y
=1 ot (1_e(—x))(eX) dX lf*‘ (1_e(—x))(eX) X

i +00 (X) (s-1) (e) (-x)

For x=%x, = £ n2mi

(e_(xn)) ] dx iy
n

0 _lf+ (xn)(Sﬂm

From Riemann Sum

[I25) dx = Tk f(sn) Axy
= Y2 flx,) Ax,
[I2 5= dx = T4 f(—sn) Axy,

= Xn21 f(=xp) A(—xy)

Thus by Riemann Sum

(e_(xn))
(1—3_(xn))

o ) ] dx, —

( xn)(s 1)2 (e—( xn))

—i f0t°°

(X) (s-1) (e) -x)

(1_e(—x)) dX

(e —(—xn))

+o0 o
o (—xp) 1)[m] d(—xn)

for x,,1 =5, = x

n
if x, = n2mi = right-hand end
point on [(x,) — (x,4+1)] of the
interval [0, +0).

for (—x,-1)=<(=sp)= (=%,)

if (—=x,)=(—n2ni) =
right-hand end point on
[(=xp-1) —

interval [0, +o0)

(—x,)] of the

(e=(=xm)y

. oo .
o (=x) S Pl o) A(2n) =

+00 _ o _ (n-1) _
i o+ (xn)(s 1) Z,T=1(e (xn)) e (xn)dxn

Tem I d(—x,)
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= i[O T (e )™ dx,
" (x) SO 5 (e ) P d(—x,)
=i Otoo(nZRi)(S_l) Z,Tﬁ'i(e_(zni))(nn) dx
—i [ (—n2mi) D £ (e=C2) ™™ g (—x,)

i Y+ (n2mi) S [cos2m — isin2m] "™ [2mi]

—i Y% (—n2mi) 7Y [cos2m + isin2m] W [—2mi]
= i Y32 (n2m) S [1]M[2mi]
—i Y75 (—n2mi) D [1] [ —2mi]
i Y4 (n2mi) Y [2mi] — i 3% (—n2mi) S0 [~ 2]

= TS OOED® MCD i 372 (~)OEn® (D

0= i()®CD® ZZE(n)“‘” —i(=)®2m)® Z:z(n)(s—l)
= L OOED® XN + (=) 3 DOEm® 37 ()¢
=1 ()EVED® Z::;(n)(s_” — (=)ED 2 Z::;(n)(s_l)
Multiply by —1 both sides
= (DHEDR® z:: (MDY +(=)ED(27)® z "(n )(s=1)
= 2m® ¥ T MED (=)D + (HED)

The result is exactly the same as that of Riemann
2sin s 4(s) [1(s-1) = @m)® MCD [(=i) & + (i) ©D)]
=0

4. Finding nontrivial zeroes on critical line (s = > + ti )

From ... (9.2) ]_[(55—1)(71)(_ D(s) = f0++°° U ()G dx = oo,
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independent from the values of s.

Actually we can not go on anymore with this functional equation
]'[(% —1)(77)(' %)Z(s) = fotoo P(x) (x)&-Y dx = o0.And so we have
nothing to do further with the equation H(g) (s — 1)(7‘[)(_ %)Z(s) = ()
denoted by Riemann. If someone tries to continue studying this Riemann’s

Hypothesis, he or she has to unavoidably solve the mysterious and

doubtful equations below

1L TIE-1D)@E DY) = =+ W@ E D+ () 1dx

s(s-1)
42.50) = TI()(s ~ D@ 2i(s)
Let’s see what's we can do with these two equations.

£LTE-D@EDs) = ==+ wE[E Y + ()~ Jdx

s(s-1)

This equation is true. Let us prove together.
From [[¢-1)m)2es) = 7w EY dx -(9)
= [T @E Y dx+ [, wE) ()G dx
From CQUE +1) = DY) +1) (acobi, Fund. S.184)
NE-DMEDYs) = [Te@@E Y+ [y w(5) 0 dx
+1 o [006F) = GV dx
= [[Te@@EVdx+ [y (3) 0 dx

AP 1 ol
HEE e g e

= f1+°° L|J(X) (x)(%—l) dx + f01+ v (i) (x)(s%g) dx
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+ [

(1-0) (1-0)
(S 1)] 2[ (;) ]

= f1+°° Y(x) (x)(%_l) dx + f01+ v (i) (x)(s;_B) dx

1

+ (s)(s-1)
So we get
NE-1)@ ()
= ST WEEE D dx+ [ w (5) @) dx .. (10)

Let's consider [, 4 (2) ()(") dx
Supposeu= - then du = 1)(x)?dx , dx= €1)(w)2du
Then [y, y(3) @) dx = [} v =) 1)) 2du
= [P W) du
But [y ) du = [Ty ) dx
S0 Ju () 0 dx = [T w6060
Andthen  [](¢-1)@(2g(s)

= ()( f+°°L|J(X)(x)(2 -1) dx+f L|J( )(x)(sz_s) dx

- (S)(s 1) f+°°¢(x)(x)(2 1) dx +f P)(x)” 3 dx

The same as that found in the original Riemann’s paper (1859)
ME-1) @)
= [T WG Y dx+ [, v (l) 06 dxt2 [L10E - (6] dx

+ 170106 D+ 0 ) ax - (11)

(S)(s 1)
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42. 5® = M1~ D@ E2yEs)
This equation may be not true because it looks as if there is a

missing term. Let’s prove.

From [IE-1)@E2s) = [Te@0@EVdx  ..(9)
= o
Let us consider this equation of Riemann . what we want here is only
to prove from how or from where his new functional equation was derived. If
it came from wrong sources (or former equations) or from wrong methods
( of deriving equations), then it was a wrong equation and further using of it
would be inappropriate.

Now, from the equation,

H(%—l)(n)<- 27(s)

Multiply equation ...(11) by G) (s — 1) both sides and sets = % + it
(as Riemann did)

ME-1) () s - DmEcs)

CIC!

~ DD 5y - 1) 00106 + 00 ax

1,.
1+7+lt

+(g+it)( 1) o ool ) 4 (X)—( 2 )] "

N =

60160 DeoG) + 0D eolHyax

/N
o~
~

CJ i

N—

N =

I
—
~

) 0 D@ E ) + (o)~ 1o

Il
N e
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(tt+%
2

N—

f1+oo P (X)) [(cos(% tlogx) + isin(% tlogx))

1
2

+(cos(§ tlogx) — isin(% tlogx))] dx

= % — (te+3) f1+°° q;(x)(x)(_%) (Zcos(%tlogx)) dx

2

[N

=2 (et +3) [ )03 cosCtlog) dx

=¢(t) (therighthand side looks like that of Riemann, doesn’t it? But
the left hand side does not.)
You can see, there are two doubtful equations of Riemann here.

1. The left hand side of the above equation
]_[(g —1) G) (s — 1)(n)(_ g)é(s) = &(t) is different from the equation of

Riemann [] (%) (s — 1)(”)(_ %)Z(S) = £(t). Has he made a mistake to write
(%) (s - D@ DY) instead of [1(;-1) (2) s - DM DZ()? The

answer is no! Let’s prove from the relation
s s s s s
rd+2) = (I and Me-1)= ré)
Then [] (;) = (2) H(g —1). So in this case Riemann was right.
2. From the equation
Ne-1) () 6 - DmEye)
o _3
= %— (tt + %) f1+ P ) cos(%tlogx) dx
= 00
Hence the number of roots of the equation
00 -3
tt) = %— (tt + %) f1+ L|J(X)(x)( 1) cos(%tlogx) dx
= 00

derived by Riemann do not exist. It's impossible (not true) to show
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that the number of roots of £(t) = 0, whose imaginary parts of t lie between
%i and - %i and whose real parts lie between 0 and T, is approximately
T T T
= ( E logg - E ) .
Next, let us consider the integral [ dlog£(t) [or =/ d log(e0)] . It’s

impossible to show that the integral [ d log &(t), taken in a positive sense

around the region consisting of the values of t whose imaginary parts lie

between %i and - %i and whose real parts lie between 0 and T, is equal to

(Tlog— - T)i. Actually [ dlog&(t) = [ dlog(c0) = co.

[t is not right to denote that all « of the complex numbers(% + 1 x),

which are called the non trivial zeroes of {(s), are roots of the equation

oo _3
E(t) = % — (tt + i) f1+ P @) cos (% tlogx) dx
(which is always equal to oo and has no root at all).

One can not express log&(t) as Y, log(1 — %)Hog £(0).The reason is that
&(t) always = o0, and no « is found because there is no root (% + i x) or

non trivial zero of {(s).

5. Determination of the number of prime numbers that are

smaller than x

Next, Riemann tried to determine the number of prime numbers
that are smaller than x with the assistance of all the methods he had
derived before.

From the identity by Riemann

log{(s) =—Xlog(1 - (»)™*)
= Xp T HIXpF+IEp ¥+ ..(12)
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Let’s prove by using Maclaurin Series

d 1
- (log(1-x) =

= Geometric Series  1+X+X?+X3+... forx<1
By integration
—log(1-x) = X+iX*+ X3 +X* +...
Thus forx= (p)™° <1
—log(1-(@)™) =@ +;@) > +H{®E) > +..
For p = prime numbers 2, 3,5, ...
—log(1-(2)™%) =2 +i2) > +i(2) > +..
—log(1-(3)™°) =)~ +:(3) > +:B)*+..
—log(1=(5)™) = (5)™ +1(5) 2 +1(5) > +..
Then —[log(1—(2)7%) +log(1—(3)7°) +log(1—(5)7%)+..]
= ()7 + 22T+ 2)7 +..
+(3) T+ 13)F+13) 7 +...
+(5)7F + 2(5)TF+(5)7 +...
+...
Or —Xlog(1-(@) ) =Xp  +iXp ¥ +iXp~> + -
For p = prime numbers = 2,3,5,..
n = all whole numbers = 1, 2, 3,...,0

Riemann denoted that

()= I 1-=)1 =38 ), Re) >1
p prime p n
logg(s) = log T (1--)

p prime
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=log[1-(2))".A-3)HLA-GB))" ]
=log(1 — (2)5) +log(1 — (3)™)™* + log(1 — (5))" +..
= —[log(1 — (2)™%) +log(1 — (3)™%) + log(1 — (5)™5) + -]
=—Xlog(1 - )

Solog{(s) =—Xlog(1 - @) ) =Xp~  +1Xp ¥ +1Xp % + -

One canreplace (p~*)" bys fpofl(x)‘(”l)dx.
Let's prove together
Sfoo (x)—(s+1) dx = (s 1 o
p" (-5) p"
1 00

- = (X)(s) ] p"

_ 1

- (% - (pn)s)
= (p)on .. (13)

Hope that my paper is clear enough to point out the mistakes or give
disproof of the original Riemann’s Hypothesis and explain the following
sentences.

1. “All zeroes of the function &(t) are real”. This is not true because
50 = NE-1) (3) s - D@EDi(s), fors =1+ it

1 1\ p+oo _3 1
= - (tt + Z) f1+ P ()3 cos(; tlogx) dx
is always equal to 0. So there are no roots (all zeroes) of equation

50 =T1¢C-1) (3) s - D@(s), fors= T +it

% _3
% — (tt + %) f: L|J(X)(x)( ) coS thogx) dx
= ©O
2. “The function (functional equation) {(s) has zeroes at the negative

even integers —2, —4, ... and one refers to them as the trivial zeroes”. This is
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not true, actually there are no trivial zeroes of {(s) because {(s) always =

oo as proof above.

3. “The nontrivial zeroes of {(s) have real part equal to % or the

nontrivial zeroes are complex numbers = % + i < where « are zeroes of
&(t)". This is not true because &(t) = ]_[(% —1) G) (s — 1)(77,')(_ %)Z(s),

. o0 _3
fors =(%+ it)yor &(t) = % — (tt + %) f1+ L|J(X)(x)( 7) cos(%tlogx) dx
is always equal to oo for any values of s (or t). So «, zero of equation
£(t)= oo, can not be found by this equation and (% + [ x), the nontrivial

zeroes of {(s), can not be found too.
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