
Spreading of Ultrarelativistic Wave Packet and Geometrical
Optics

Felix M. Lev

Artwork Conversion Software Inc., 1201 Morningside Drive, Manhattan Beach, CA
90266, USA (Email: felixlev314@gmail.com)

Abstract:

The red shift of light coming to the Earth from distant objects is usually explained as
a consequence of the fact that the Universe is expanding. Such an explanation implies
that photons emitted by distant objects travel in the interstellar medium practically
without interaction with interstellar matter and hence they can survive their long jour-
ney to the Earth. We analyze this assumption by considering wave-packet spreading
for an ultrarelativistic particle. We derive a formula which shows that spreading in
the direction perpendicular to the particle momentum is very important and cannot
be neglected. The implications of the results are discussed.

PACS: 03.65 Sq, 42.15.-i, 95.30.-k

Keywords: quantum theory, semiclassical approximation, geometrical optics

1 Introduction

The interpretation of astronomical and cosmological data is usually based on the as-
sumption that light coming to the Earth from distant objects travels in the interstellar
medium practically without interaction with interstellar matter and hence it can sur-
vive its long journey to the Earth. It is also assumed that with a very high accuracy
we can describe the propagation of light from distant objects in the framework of
geometrical optics. In turn, it is well-known that the approximation of geometrical
optics can be obtained from semiclassical approximation in quantum theory.

The main goal of this paper is to investigate semiclassical approximation
for ultrarelativistic particles and especially for photons. The main results are derived
in Sec. 4. As a preparatory step, in Sec. 2 we describe well-known facts about
semiclassical approximation in nonrelativistic quantum mechanics and in Sec. 3 those
results are generalized for wave packets of ultrarelativistic particles in momentum
space. In Sec. 5 it is shown that in classical electrodynamics the results on the validity
of geometrical optics can be obtained by reformulating the results on the validity of
semiclassical approximation in quantum theory Finally, Sec. 6 is a discussion.
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2 Semiclassical approximation in quantum me-

chanics

In quantum theory, states of a system are represented by elements of a
projective Hilbert space. The fact that a Hilbert space H is projective means that if
ψ ∈ H is a state then const ψ is the same state. The matter is that not the probability
itself but only relative probabilities of different measurement outcomes have a physical
meaning. In particular, normalization of states to one is only a matter of convention.
In the present paper we assume this convention, i.e. we will work with states ψ such
that ||ψ|| = 1 where ||...|| is a norm. It is defined such that if (..., ...) is a scalar
product in H then ||ψ|| = (ψ, ψ)1/2.

In quantum theory every physical quantity is described by a selfadjoint
operator. Each selfadjoint operator is Hermitian i.e. satisfies the property (ψ2, Aψ1) =
(Aψ2, ψ1) for any states belonging to the domain of A. If A is an operator of some
quantity then the mean value of the quantity and its uncertainty in state ψ are given
by Ā = (ψ,Aψ) and ∆A = ||(A− Ā)ψ||, respectively. The condition that a quantity
corresponding to the operator A is semiclassical in state ψ can be defined such that
|∆A| � |Ā|. This implies that the quantity can be semiclassical only if |Ā| is rather
large. In particular, if Ā = 0 then the quantity cannot be semiclassical.

Let B be an operator corresponding to another physical quantity and B̄
and ∆B be the mean value and the uncertainty of this quantity, respectively. We
can write AB = {A,B}/2 + [A,B]/2 where the commutator [A,B] = AB − BA
is anti-Hermitian and the anticommutator {A,B} = AB + BA is Hermitian. Let
[A,B] = −iC and C̄ be the mean value of the operator C.

A question arises whether two physical quantities corresponding to the
operators A and B can be simultaneously semiclassical in state ψ. Since ||ψ1||||ψ2|| ≥
|(ψ1, ψ2)|, we have that

∆A∆B ≥ 1

2
|(ψ, ({A− Ā, B − B̄}+ [A,B])ψ)| (1)

Since (ψ, {A− Ā, B − B̄}ψ) is real and (ψ, [A,B]ψ) is imaginary, we get

∆A∆B ≥ 1

2
|C̄| (2)

This condition is known as a general uncertainty relation between two quantities. A
well-known special case is that if P is the x component of the momentum operator
and X is the operator of multiplication by x then [P,X] = −ih̄ and ∆p∆x ≥ h̄/2.
The states where ∆p∆x = h̄/2 are called coherent ones. They are treated such that
the momentum and the coordinate are simultaneously semiclassical in a maximal
possible extent. A well-known example is that if

ψ(x) =
1

a
√
π
exp[

i

h̄
p0x−

1

2a2
(x− x0)2]
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then X̄ = x0, P̄ = p0, ∆x = a/
√

2 and ∆p = h̄/(a
√

2).
Consider first a one dimensional motion. In standard textbooks on quan-

tum mechanics, the presentation starts with a wave function ψ(x) in coordinate space
since it is implicitly assumed that the meaning of space coordinates is known. Then
a question arises why P = −ih̄d/dx should be treated as the momentum operator.
The explanation is as follows.

Consider wave functions having the form ψ(x) = exp(ip0x/h̄)a(x) where
the amplitude a(x) has a sharp maximum near x = x0 ∈ [x1, x2] such that a(x) is
not small only when x ∈ [x1, x2]. Then ∆x is of the order x2 − x1 and the condition
that the coordinate is semiclassical is ∆x � |x0|. Since −ih̄dψ(x)/dx = p0ψ(x) −
ih̄exp(ip0x/h̄)da(x)/dx, we see that ψ(x) will be approximately the eigenfunction of
−ih̄d/dx with the eigenvalue p0 if |p0a(x)| � h̄|da(x)/dx|. Since |da(x)/dx| is of the
order of |a(x)/∆x|, we have a condition |p0∆x| � h̄. Therefore if the momentum
operator is −ih̄d/dx, the uncertainty of momentum ∆p is of the order of h̄/∆x,
|p0| � ∆p and this implies that the momentum is also semiclassical. At the same
time, |p0∆x|/2πh̄ is approximately the number of oscillations which the exponent
makes on the segment [x1, x2]. Therefore the number of oscillations should be much
greater than unity. In particular, semiclassical approximation cannot be valid if ∆x
is very small, but on the other hand, ∆x cannot be very large since it should be
much less than x0. Another justification of the fact that −ih̄d/dx is the momentum
operator is that in the formal limit h̄ → 0 the Schroedinger equation becomes the
Hamilton-Jacobi equation.

We conclude that the choice of −ih̄d/dx as the momentum operator is jus-
tified from the requirement that in semiclassical approximation this operator becomes
the classical momentum. However, it is obvious that this requirement does not define
the operator uniquely: any operator P̃ such that P̃ − P disappears in semiclassical
limit, also can be called the momentum operator.

One might say that the choice P = −ih̄d/dx can also be justified from the
following considerations. In nonrelativistic quantum mechanics we assume that the
theory should be invariant under the action of the Galilei group, which is a group of
transformations of Galilei space-time. The x component of the momentum operator
should be the generator corresponding to spatial translations along the x axis and
−ih̄d/dx is precisely the required operator. In this consideration one assumes that
space-time has a physical meaning while, as discussed in Ref. [1] and references
therein, this is not the case.

As noted in Ref. [1] and references therein, one should start not from
space-time but from a symmetry algebra. Therefore in nonrelativistic quantum me-
chanics we should start from the Galilei algebra and consider its irreducible represen-
tations (IRs). For simplicity we again consider a one dimensional case. Let Px = P
be one of representation operators in an IR of the Galilei algebra. We can implement
this IR in a Hilbert space of functions χ(p) such that

∫∞
−∞ |χ(p)|2dp < ∞ and P is

the operator of multiplication by p, i.e. Pχ(p) = pχ(p). Then a question arises how
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the operator of the x coordinate should be defined. In contrast to the momentum
operator, the coordinate one is not defined by the representation and so it should
be defined from additional assumptions. Probably a future quantum theory of mea-
surements will make it possible to construct operators of physical quantities from the
rules how these quantities should be measured. However, at present we can construct
necessary operators only from rather intuitive considerations.

By analogy with the above discussion, one can say that semiclassical wave
functions should be of the form χ(p) = exp(−ix0p/h̄)a(p) where the amplitude a(p)
has a sharp maximum near p = p0 ∈ [p1, p2] such that a(p) is not small only when
p ∈ [p1, p2]. Then ∆p is of the order of p2−p1 and the condition that the momentum is
semiclassical is ∆p� |p0|. Since ih̄dχ(p)/dp = x0χ(p)+ ih̄exp(−ix0p/h̄)da(p)/dp, we
see that χ(p) will be approximately the eigenfunction of ih̄d/dp with the eigenvalue
x0 if |x0a(p)| � h̄|da(p)/dp|. Since |da(p)/dp| is of the order of |a(p)/∆p|, we have
a condition |x0∆p| � h̄. Therefore if the coordinate operator is X = ih̄d/dp, the
uncertainty of coordinate ∆x is of the order of h̄/∆p, |x0| � ∆x and this implies
that the coordinate defined in such a way is also semiclassical. We can also note that
|x0∆p|/2πh̄ is approximately the number of oscillations which the exponent makes on
the segment [p1, p2] and therefore the number of oscillations should be much greater
than unity. It is also clear that semiclassical approximation cannot be valid if ∆p
is very small, but on the other hand, ∆p cannot be very large since it should be
much less than p0. By analogy with the above discussion, the requirement that the
operator ih̄d/dp becomes the coordinate in classical limit does not define the operator
uniquely. In nonrelativistic quantum mechanics it is assumed that the coordinate is
a well defined physical quantity even on quantum level and that ih̄d/dp is the most
pertinent choice of the operator of this quantity.

The above results can be directly generalized to the three-dimensional
case. For example, if the coordinate wave function is chosen in the form

ψ(r) =
1

π3/4a3/2
exp[−(r− r0)2

2a2
+
i

h̄
p0r] (3)

then the momentum wave function is

χ(p) =

∫
exp(− i

h̄
pr)ψ(r)

d3r

(2πh̄)3/2
=

a3/2

π3/4h̄3/2
exp[−(p− p0)2a2

2h̄2 − i

h̄
(p−p0)r0] (4)

It is easy to verify that

||ψ||2 =

∫
|ψ(r)|2d3r = 1, ||χ||2 =

∫
|χ(p)|2d3p = 1, (5)

the uncertainty of each component of the coordinate operator is a/
√

2 and the un-
certainty of each component of the momentum operator is h̄/(a

√
2). Hence Eqs. (3)

and (4) describe a state which is semiclassical in a maximal possible extent.
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A well-known fact of quantum theory is that there is no operator having
the meaning of the time operator. Hence a problem arises how time should be under-
stood in quantum theory and this problem is discussed in a wide literature (see e.g.
Ref. [2]). It is usually assumed that time is a classical parameter such that the de-
pendence of the wave function on time is defined by the Hamiltonian according to the
Schroedinger equation. As noted in Sec. 4, in some cases even such an interpretation
of time might be problematic but in typical situations this assumption can be treated
as a good approximation. In nonrelativistic quantum mechanics the Hamiltonian of
the particle with the mass m is H = p2/2m and hence, as follows from Eq. (4), in
the model discussed above the dependence of the momentum wave function on t is
given by

χ(p, t) =
a3/2

π3/4h̄3/2
exp[−(p− p0)2a2

2h̄2 − i

h̄
(p− p0)r0 −

ip2t

2mh̄
] (6)

It is easy to verify that for this state the mean value of the operator p and the
uncertainty of each momentum component are the same for the state χ(p), i.e. those
quantities do not change with time.

Consider now the dependence of the coordinate wave function on t. This
dependence can be calculated by using Eq. (6) and the fact that

ψ(r, t) =

∫
exp(

i

h̄
pr)χ(p, t)

d3p

(2πh̄)3/2
(7)

The result of a direct calculation is

ψ(r, t) =
1

π3/4a3/2
(1 +

ih̄t

ma2
)−3/2exp[−(r− r0 − v0t)

2

2a2(1 + h̄2t2

m2a4
)

(1− ih̄t

ma2
) +

i

h̄
p0r−

ip2
0t

2mh̄
] (8)

where v0 = p0/m is the semiclassical velocity. This result shows that the semiclassical
wave packet is moving along the classical trajectory r(t) = r0 + v0t. At the same
time, it is now obvious that the uncertainty of each coordinate depends on time as
∆xj(t) = ∆xj(0)(1 + h̄2t2/m2a4)1/2 (j = 1, 2, 3) where ∆xj(0) = a/

√
2, i.e. the

width of the wave packet in coordinate representation is increasing. This fact, known
as the wave-packet spreading, is described in many textbooks and papers (see e.g.
Ref. [3] and references therein). It shows that if a state was semiclassical in the
maximal extent at t = 0, it will not have this property at t > 0 and the accuracy of
semiclassical approximation will decrease with the increase of t. The characteristic
time of spreading can be defined as t∗ = ma2/h̄. For macroscopic bodies this is an
extremely large quantity and hence in macroscopic physics the effect of the wave-
packet spreading can be neglected.

5



3 Wave packets for relativistic particles in momen-

tum space

The usual approach to Poincare symmetry on quantum level follows. Since classical
Minkowski space is invariant under the action of the Poincare group, in quantum
theory the angular momentum operators Mµν and the four-momentum operators P µ

(µ, ν = 0, 1, 2, 3; Mµν = −Mνµ) should satisfy the commutation relations of the
Poincare group Lie algebra

[P µ, P ν ] = 0 [P µ,Mνρ] = −i(ηµρP ν − ηµνP ρ)

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (9)

where ηµν is the diagonal metric tensor such that η00 = −η11 = −η22 = −η33 = 1 and
for simplicity Eqs. (9) are written in units h̄ = c = 1. This approach is in the spirit
of the well-known Klein’s Erlangen program in mathematics.

However, as we argue in Ref. [1] and references therein, quantum theory
should not be based on classical space-time background and the approach should be
the opposite. Each system is described by a set of independent operators. By defi-
nition, the rules how these operators commute with each other define the symmetry
algebra. In particular, by definition, Poincare symmetry on quantum level means that
the operators commute according to Eq. (9).

The next step in our construction is the definition of elementary particle.
Although theory of elementary particles exists for a rather long period of time, there
is no commonly accepted definition of elementary particle in this theory. In Ref.
[1] and references cited therein we argue that, in the spirit of Wigner’s approach
to Poincare symmetry [4], a general definition, not depending on the choice of the
classical background and on whether we consider a local or nonlocal theory, is that
a particle is elementary if the set of its wave functions is the space of an irreducible
representation (IR) of the symmetry algebra in the given theory.

There exists a wide literature describing how IRs of the Poincare algebra
can be constructed. In particular, an IR can be implemented in a space of functions
χ(p) such that the momentum operator P is the operator of multiplication by p. For
particles with spin, the functions χ(p) also depend on the spin projections but we
will not write this dependence explicitly.

As follows from Eqs. (9), the operator I2 = E2−P2, where E = P 0, is the
Casimir operator of the second order, i.e. it is a bilinear combination of representation
operators commuting with all the operators of the algebra. As follows from the well-
known Schur lemma, all states belonging to an IR are the eigenvectors of I2 with the
same eigenvalue which is denoted as m2. Then the energy operator is the operator
of multiplication by ±ε(p) where ε(p) = (m2 + p2)1/2. The choice of the energy sign
is only a matter of convention but not a matter of principle. Indeed, the energy can
be measured only if the momentum p is measured and then it is only a matter of
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convention what sign of the square root should be chosen. However, it is important
that the sign should be the same for all particles. For example, if we consider a
system of two particles with the same values of m2 and the opposite momenta p1 and
p2 such that p1 + p2 = 0, we cannot define the energies of the particles as ε(p1) and
−ε(p2), respectively, since in that case the total four-momentum of the two-particle
system will be zero what contradicts experiment.

The notation I2 = m2 is justified by the fact that for all known particles
this quantity is greater or equal than zero. Then the mass m is defined as the square
root of m2 and the sign of m is only a matter of convention. The usual convention
is that m ≥ 0. However, from mathematical point of view, IRs with I2 < 0 are not
prohibited. If the velocity operator v is defined as v = P/E then for known particles
|v| ≤ 1, i.e. |v| ≤ c in standard units. However, for IRs with I2 < 0 we will have
that |v| > c and, at least from the point of view of mathematical construction of
IRs, this case is not prohibited. The hypothetical particles with such properties are
called tachyons and their possible existence is widely discussed in the literature. If
the tachyon mass m is also defined as the square root of m2 then this quantity will be
imaginary. However, this does not mean than the corresponding IRs are unphysical
since all the operators of the Poincare group Lie algebra can depend only on m2.

The usual choice of the Hilbert space H for an IR is such that the func-
tions belonging to H are quadratically integrable over the Lorentz invariant measure
d3p/ε(p). However, it is always possible to perform a unitary transformation such
that the Hilbert space will be implemented as a space of functions quadratically in-
tegrable over d3p. For reasons which will be clear below it is convenient for us to use
such a normalization.

We conclude that in relativistic quantum theory the four-momentum op-
erators are well defined and have a clear physical meaning. In particular, it is possible
to construct IRs describing the photon and other elementary particles.

Consider first a construction of the wave packet for a particle with nonzero
mass. A possible way of the construction follows. We first consider the particle in
its rest system, i.e. in the reference frame where the mean value of the particle mo-
mentum is zero. The wave function χ0(p) in this case can be taken as in Eq. (4)
with p0 = 0. As noted in the preceding section, such a state cannot be semiclassical.
However, it is possible to obtain a semiclassical state by applying a Lorentz transfor-
mation to χ0(p). As shown in a wide literature, in standard quantum theory (based
on complex numbers) any IR representation of the algebra (9) by Hermitiam opera-
tors can be extended to an unitary IR of the Poincare group. One can directly verify
that for a spinless particle the unitary representation operator U(g) corresponding to
a Lorentz transformation g can be defined as

U(g)χ0(p) = [
ε(p′)

ε(p)
]1/2χ0(p′) (10)

where p′ is the momentum obtained from p by the Lorentz transformation g−1. If g
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is the Lorentz boost along the z axis with the velocity v then

p′⊥ = p⊥, p′z =
pz − vε(p)

(1− v2)1/2
(11)

where we use the subscript ⊥ to denote projections of vectors onto the xy plane.
As follows from this expression, exp(−p′2a2/2h̄2) as a function of p has

the maximum at p⊥ = 0, pz = pz0 = v[(m2 +p2
⊥)/(1− v2)]1/2 and near the maximum

exp(−a
2p

′2

2h̄2 ) ≈ exp{− 1

2h̄2 [a2p2
⊥ + b2(pz − pz0)2}

where b = a(1 − v2)1/2 what represents the effect of the Lorentz contraction. If
m � h̄/a (in units where c = 1) then m � |p⊥| and pz0 ≈ mv/(1 − v2)1/2. In this
case the transformed state is semiclassical and the mean value of the momentum is
exactly the classical (i.e. nonquantum) value of the momentum of a particle with
mass m moving along the z axis with the velocity v. However, in the opposite case
when m� h̄/a the transformed state is not semiclassical since the uncertainty of pz
is of the same order as the mean value of pz.

If the photon mass is exactly zero then the photon cannot have the rest
state. However, even if the photon mass is not exactly zero, it is so small that
the relation m � h̄/a is certainly satisfied for any realistic value of a. Hence a
semiclassical state for the photon or a particle with a very small mass cannot be
obtained by applying the Lorentz transformation to χ0(p) and considering the case
when v is very close to unity. In this case we will describe a semiclassical state by a
wave function which is a generalization of the function (4):

χ(p, 0) =
ab1/2

π3/4h̄3/2
exp[−p2

⊥a
2

2h̄2 −
(pz − p0)2b2

2h̄2 − i

h̄
p⊥r⊥ −

i

h̄
(pz − p0)z] (12)

Here we assume that the vector p0 is directed along the z axis and its z component is
p0. In the general case the parameters a and b defining the momentum distributions
in the transverse and longitudinal directions, respectively, can be different. In that
case the uncertainty of each transverse component of momentum is h̄/(a

√
2) while

the uncertainty of the z component of momentum is h̄/(b
√

2). In view of the above
discussion one might think that, as a consequence of the Lorentz contraction, the
parameter b should be very small. However, the above discussion shows that the
notion of the Lorentz contraction has a physical meaning only if m � h̄/a while
for the photon the opposite relation takes place. We will see below that in typical
situations the quantity b is large and much greater than a.

4 The photon in semiclassical approximation

Consider now a problem whether an elementary particle can be described in terms
of space-time characteristics. By analogy with the discussion in Sec. 2, we can
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state that in relativistic quantum theory there is no operator corresponding to time
and hence at best t can be only a good parameter defining the evolution of the wave
function according to the Schroedinger equation with the relativistic energy operator.
A problem also arises whether it is possible to define a physical coordinate operator
for an elementary particle. For example, in the representation where H is the space of
functions quadratically integrated over d3p one might define the position operator by
analogy with nonrelativistic quantum mechanics i.e. as ih̄∂/∂p. This is the Newton-
Wigner position operator proposed in Ref. [5]. Then the coordinate wave function
ψ(r) is again defined by Eq. (3) and a question arises whether this operator has all
the required properties of the physical coordinate operator.

Let us first make a few remarks about the terminology of quantum theory.
The terms ”wave function” and ”particle-wave duality” have arisen at the beginning
of quantum era in efforts to explain quantum behavior in terms of classical waves but
now it is clear that no such explanation exists. The notion of wave is purely classical;
it has a physical meaning only as a way of describing systems of many particles by
their average characteristics. In particular, such notions as frequency and wave length
can be applied only to classical waves, i.e. to systems consisting of many particles
such that space-time characteristics of those systems are measured on classical level.
If a particle state vector contains exp[i(px−Et)/h̄] then by analogy with the theory of
classical waves one might say that the particle is a wave with the frequency ω = E/h̄
and the (de Broglie) wave length λ = 2πh̄/p. However, such defined quantities
ω and λ are not real frequencies and wave lengths measured e.g. in spectroscopic
experiments where only characteristics of many-particle systems are measured. In
quantum theory the photon and other particles can be characterized by their energies,
momenta and other quantities for which there exist well defined operators. Those
quantities might be measured in collisions of those particles with other particles. The
term ”wave function” might be misleading since in quantum theory it defines not
amplitudes of waves but only amplitudes of probabilities. So, although in our opinion
the term ”state vector” is more pertinent than ”wave function” we will use the latter
in accordance with the usual terminology.

In classical theory the notion of field, as well as that of wave, is used for
describing systems of many particles by their average characteristics. For example,
the electromagnetic field consists of many photons. In classical theory each photon
is not described individually but the field as a whole is described by the quantities
E(r, t) and B(r, t) which can be measured (in principle) by using macroscopic test
bodies. In particular, the notions of electric and magnetic fields of a single photon
have no physical meaning.

It has been well-known since the 1930s [5] that, when quantum mechanics
is combined with relativity, there is no operator satisfying all the properties of the
spatial position operator. In other words, the coordinates cannot be exactly mea-
sured even in situations when exact measurements are allowed by the non-relativistic
uncertainty principle. For example, in the introductory section of the well-known
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textbook [6] the following arguments are given in favor of this statement. Suppose
that we measure the coordinates of an electron with the mass m. When the uncer-
tainty of the coordinates is of the order of h̄/mc, the uncertainty of momenta is of
the order of mc, the uncertainty of energy is of the order of mc2 and hence creation
of electron-positron pairs is allowed. As a consequence, it is not possible to localize
the electron with the accuracy better than its Compton wave length h̄/mc. Hence,
for a particle with a nonzero mass the exact measurement is possible only either in
the non-relativistic limit (when c → ∞) or classical limit (when h̄ → 0). If m = 0
is possible, the problem becomes even more complicated since the photon can create
other photons with lesser energies. However, those arguments do not exclude a pos-
sibility that the Newton-Wigner position operator can be meaningful in semiclassical
approximation.

In standard textbooks on quantum electrodynamics (see e.g. Ref. [7])
it is stated that in this theory there is no way to define a photon wave function
in coordinate representation and the arguments are as follows. The electric and
magnetic fields of the photon in coordinate representation are proportional to Fourier
transforms of |p|1/2χ(p), not of χ(p). As a consequence, the quantities E(r) and
B(r) are defined not by ψ(r) but by integrals of ψ(r) over some region. However, this
argument also does not exclude the possibility that ψ(r) can have a physical meaning
in semiclassical approximation since, as noted above, the notions of the electric and
magnetic fields of the single photon do not have a physical meaning.

One more argument that the Newton-Wigner position operator does not
have all the required properties follows. If at t = 0 the function ψ(r) has a finite
carrier (i.e. ψ(r) 6= 0 only if r belongs to a vicinity of some vector r0) and the
evolution of ψ(r, t) is governed by the Schroedinger equation with the relativistic
energy operator then it is easy to show that at any t > 0 the carrier of ψ(r, t) will
belong to the whole three-dimensional space. Then at any t > 0 the particle can
be detected at any point of the space and this contradicts the requirement that no
information should be transmitted with the speed greater than c. A rather striking
example is a photon emitted in the famous 21cm transition line between the hyperfine
energy levels of the hydrogen atom. The phrase that the lifetime of this transition
is of the order of τ = 107 years implies that the width of the level is of the order
of h̄/τ , i.e. experimentally the uncertainty of the photon energy is h̄/τ . Hence the
uncertainty of the photon momentum is h̄/(cτ) and with the above definition of the
coordinate operators the uncertainty of the longitudinal coordinate is cτ , i.e. of the
order of 107 light years. Then there is a nonzero probability that immediately after
its creation at point A the photon can be detected at point B such that the distance
between A and B is 107 light years.

A problem arises how this phenomenon should be interpreted. For ex-
ample, one might say that the requirement that no signal can be transmitted with
the speed greater than c has been obtained in Special Relativity which is a classical
(i.e. nonquantum) theory which operates only with classical space-time coordinates.
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As noted above, from the point of view of quantum theory the existence of tachyons
is not prohibited. Note also that when two electrically charged particles exchange
by a virtual photon, a typical situation is that the four-momentum of the photon is
spacelike, i.e. the photon is the tachyon. On the other hand, a fully opposite expla-
nation (pointed out to me by Alik Makarov) is as follows. We can know about the
photon creation only if the photon is detected and when it was detected at point B
at the moment of time t = t0, this does not mean that the photon travelled from
A to B with the speed greater than c since the time of creation has an uncertainty
of the order of 107 years. After the detection, the uncertainties of the coordinates
have the order of the dimensions of the detector. Note also that in this situation a
description of the system (atom + electric field) by the wave function (e.g. in the
Fock space) depending on a continuous parameter t has no physical meaning (since
roughly speaking the quantum of time in this process is of the order of 107 years).
If we accept this explanation then we should acknowledge that in some situations a
description of evolution by a continuous classical parameter t is not physical. This
is in the spirit of the Heisenberg S-matrix program that in quantum theory one can
describe only transitions of states from the infinite past when t→ −∞ to the distant
future when t→ +∞.

The above discussion shows that on quantum level the physical meaning of
the coordinate is not clear but at least there are reasons to think that in some cases
the transverse component of the Newton-Wigner position operator has a physical
meaning in semiclassical approximation (see also Sec. 5). If we also assume that
in some situations time is a good approximate parameter describing the evolution
according to the Schroedinger equation with the relativistic Hamiltonian then the
dependence of the momentum wave function (12) on t is given by

χ(p, t) = exp(− i
h̄
pct)χ(p, 0) (13)

where p = |p| and we assume that the particle is ultrarelativistic, i.e. p� m.
In view of the above discussion, the function ψ(r, t) can be again defined

by Eq. (7) where now χ(p, t) is defined by Eq. (13). If the variable pz in the integrand
is replaced by p0 + pz then as follows from Eqs. (7,12,13)

ψ(r, t) =
ab1/2exp(ip0r/h̄)

π3/4h̄3/2(2πh̄)3/2

∫
exp{−p2

⊥a
2

2h̄2 −
p2
zb

2

2h̄2 −
i

h̄
pr

−ict
h̄

[(pz + p0)2 + p2
⊥]1/2}d3p (14)

We now take into account the fact that in semiclassical approximation the quantity p0

should be much greater than the uncertainties of the momentum in the longitudinal
and transversal directions, i.e. p0 � pz and p0 � |p⊥|. Hence with a good accuracy
we can expand the square root in the integrand in powers of |p|/p0. Taking into
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account the linear and quadratic terms in the square root we get

[(pz + p0)2 + p2
⊥]1/2 ≈ p0 + pz + p2

⊥/2p0

Then the integral over d3p can be calculated as the product of integrals over d2p⊥ and
dpz and the calculation is analogous to that in Eq. (8). The result of the calculation
is

ψ(r, t) = [π3/4ab1/2(1 +
ih̄ct

p0a2
)]−1exp[

i

h̄
(p0r− p0ct)]

exp[−
(r⊥ − r0⊥)2(1− ih̄ct

p0a2
)

2a2(1 + h̄2c2t2

p20a
4 )

− (z − z0 − ct)2

2b2
] (15)

This result shows that the wave packet describing an ultrarelativistic par-
ticle (including a photon) is moving along the classical trajectory z(t) = z0 + ct,
in the longitudinal direction there is no spreading while in the transversal direction
spreading is characterized by the function

a(t) = a(1 +
h̄2c2t2

p2
0a

4
)1/2 (16)

The characteristic time of spreading can be defined as t∗ = p0a
2/h̄c. If t � t∗ the

transversal width of the packet is a(t) = h̄ct/p0a. Hence the speed of spreading in
the transversal direction is v∗ = h̄c/p0a.

5 Geometrical optics

The relation between quantum and classical electrodynamics is well-known and is
described in textbooks (see e.g. Ref. [7]). As already noted, classical electromagnetic
field consists of many photons and in classical electrodynamics the photons are not
described individually. Instead, classical electromagnetic field is described by field
strengths which represent average characteristics of a large set of photons. For con-
structing the field strengths one can use the photon wave functions χ(p, t) or ψ(r, t)
where E is replaced by h̄ω and p is replaced by h̄k. Then the functions will not
contain any dependence on h̄ (note that the normalization factor h̄−3/2 in χ(k, t)
will disappear since the normalization integral for χ(k, t) is now over d3k, not d3p).
The quantities ω and k are now treated, respectively, as the frequency and the wave
vector of the classical electromagnetic field and the functions χ(k, t) and ψ(r, t) are
interpreted not such that they describe probabilities for a single photon but such that
they describe classical electromagnetic field and E(r, t) and B(r, t) can be constructed
from these functions as described in textbooks on quantum electrodynamics (see e.g.
Ref. [7]).
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As noted in the preceding section, some authors (see e.g. Ref. [7]) state
that the function ψ(r, t) cannot be interpreted as the photon wave function in coor-
dinate representation since for each value of r, E(r, t) and B(r, t) depend not only
on ψ(r, t) but on the values of the function ψ in some vicinity of r. This vicinity
has dimensions of the order of the wave length. Hence, for example for visible light,
where the wave length is of the order of hundreds of nanometers, the quantity r can
be treated as a good coordinate in semiclassical approximation. Another argument
in favor of this statement is that in classical electrodynamics the quantities E(r, t)
and B(r, t) for the free field should satisfy the wave equation ∂2E/c2∂t2 = ∆E and
analogously for B(r, t). Hence if E(r, t) and B(r, t) are constructed from ψ(r, t) as
described in textbooks (see e.g. Ref. [7]), they will satisfy the wave equation since,
as follows from Eqs. (7,12,13), ψ(r, t) also satisfies this equation.

The approximation of geometrical optics can be formulated in full analogy
with semiclassical approximation in quantum theory. This approximation implies
that if k0 and r0 are the average values of the wave vector and the spatial radius
vector for a wave packet describing the electromagnetic wave then the uncertainties
∆k and ∆r, which are the average values of |k−k0| and |r− r0|, respectively, should
satisfy the requirements ∆k � |k0| and ∆r � |r0|. Analogously, in full analogy
with the derivation of Eq. (2), one can show that for each j = 1, 2, 3 the uncertain-
ties of the corresponding projections of the vectors k and r satisfy the requirement
∆kj∆rj ≥ 1/2 (see e.g. Ref. [8]). In particular, an electromagnetic wave satisfies the
approximation of geometrical optics in the greatest possible extent if ∆k∆r is of the
order of unity.

In view of this discussion, the results of the preceding section can be fully
applied to spreading of wave packet describing the classical electromagnetic wave. In
particular, the parameters of spreading can be characterized by the function a(t) (see
Eq. (16)) and the quantities t∗ and v∗ (see the end of the preceding section) which
in terms of the wave length λ = 2πc/ω0 can be written as

a(t) = a(1 +
λ2c2t2

4π2a4
)1/2, t∗ =

2πa2

λc
, v∗ =

λc

2πa
(17)

The quantity N|| = b/λ shows how many oscillations the oscillating expo-
nent in Eq. (15) makes in the region where the wave function or the amplitude of the
classical wave is significantly different from zero. As noted in Sec. 2, for the validity
of semiclassical approximation this quantity should be very large. In nonrelativistic
quantum mechanics a and b are of the same order and hence the same can be said
about the quantity N = a/λ. As noted above, in the case of the photon we don’t
know the relation between a and b. In terms of the quantity N we can rewrite the
expressions for t∗ and v∗ in Eq. (17) as

t∗ = 2πN2T, v∗ =
c

2πN
(18)
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Hence the accuracy of semiclassical approximation (or the approximation of geomet-
rical optics in classical electrodynamics) increases with the increace of N .

6 Discussion

In plain language, the problem discussed in this paper can be formulated as follows. Is
the fact that we can see distant stars and even planets compatible with the another
known fact that the wave function of the photon which has managed to survive
its long journey to the Earth was the subject of the wave-packet spreading? For
understanding this problem we should first answer the question of what can be said
about the characteristics of photons coming to the Earth from distance objects.

Typical conclusions based on numerous experiments with light coming to
the Earth from the Sun are as follows. We know that with a good accuracy this light
can be described in the framework of geometrical optics i.e. one can approximately
treat the light as a collection of particles moving along classical trajectories. Since
we know that the photons came from the Sun then with a good accuracy we know
the direction of their momenta and since we know the distribution of wave lengths
then (in the approximation described in Sec. 5) we know the distribution of photon
energies.

The next question is what we know about the width of the coordinate
photon wave functions in the direction perpendicular to the photon momentum in
the approximation when the coordinate operators are defined as in Sec. 4. Suppose
that a wide beam of light falls on a screen which is perpendicular to the direction
of light. Suppose that the total area of the screen is S but the surface contains
slits with the total area S1. We are interested in the question of what part of the
light will pass the screen. One might think that the obvious answer is that the part
equals S1/S. This answer follows from the picture that the light consists of many
photons moving along geometrical trajectories and hence only the S1/S part of the
photons will pass the surface. Numerous experiments show that deviations from the
above answer begin to manifest in interference experiments where dimensions of slits
and distances between them have the order of tens or hundreds of microns or even
less. Hence one can conclude that the width of the photon wave functions cannot
be of the order of say centimeters or meters since in that case deviations from the
S1/S law would be visible if the slits and the distances between them would have the
corresponding dimensions but this does not happen.

Consider, for example, the Lyman transition 2P → 1S in the hydrogen
atom on the Sun. In this case the energy of the photon is E = 10.2eV , its wave
length is λ = 121.6nm, the lifetime is τ = 1.6 · 10−9s and the period of the wave is
T ≈ 4 ·10−16s. Since the lifetime is rather small, one might think that a description of
the process by a continuous parameter t is a good approximation (see the discussion
in Sec. 4). Hence the phrase that the lifetime is τ can be interpreted such that the
uncertainty of the energy is h̄/τ , the uncertainty of the longitudinal momentum is
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h̄/cτ and b is of the order of cτ ≈ 0.48m or greater. In view of the above discussion,
the estimation a ≈ b seems to be very favorable since one might expect that the
value of a is much less than 0.48m. With this estimation N = a/λ ≈ 4 · 106. So the
value of N is rather large and in view of Eq. (18) one might think that the effect of
spreading is not important. However, this is not the case since, as follows from Eq.
(18), t∗ ≈ 0.04s. Since the distance between the Sun and the Earth is approximately
t = 8 light minutes and this time is much greater than t∗, the width of the wave
packet when it arrives to the Earth is v∗t ≈ 5760m. It is obvious from the above
discussion that such a value of the width is unrealistically large. On the other hand,
if we assume that the initial value of a is of the order of several wave lengths then
the value of N is much less and the width of the wave packet coming to the Earth is
much greater.

Consider now a photon which was created in the same reaction but on
Sirius which is the brightest star on our sky. Since the distance to Sirius is 8.6 light
years, an analogous estimation shows that even in the favorable scenario the width
of the wave packet coming to the Earth from Sirius will be approximately equal to
3 · 106km but in less favorable situations the width will be much greater.

A standard understanding of light coming to the Earth from the Sun is
such that the major part of the light comes not from transitions between atomic levels
but from processes which can be approximately described as a black body radiation
and in that case the spectrum of the radiation is approximately continuous. In that
case we cannot estimate the quantity a as above. However, even if we take for a a
very favorable value of the same order as above we obviously will come to the same
conclusion that the width of the wave packet will be unreasonably high.

One might say that the expression for v∗ in Eqs. (17) and (18) resembles
a well-known phenomenon of diffraction: if a wave encounters an obstacle having
a dimension d it begins to diverge and the angle of divergence is of the order of
λ/d. However, the phenomenon of wave-packet spreading implies that the width
of the wave packet in the transversal direction is growing even when the packet
propagates in empty space. This phenomenon takes place only for wave function
in coordinate representation while the distribution of momenta remains unchanged.
As a consequence, even when at some moment of time the packet was maximally
semiclassical (i.e. for each component of the coordinate and momentum the product
of their uncertainties is of the order of h̄), this property is not conserved with time
since uncertainties of coordinates in the transversal direction become greater. The
problem of the wave-packet spreading in the ultrarelativistic case has been discussed
in a wide literature but typically the authors consider cases when the law of dispersion
ω(k) changes as a result of propagation in a medium, when there are obstacles etc.
On the other hand, the propagation of light in the empty space in the approximation
of geometrical optics is sometimes characterized such that light behaves as particles,
for examples as bullets. However, the phenomenon of the wave-packet spreading takes
place for bullets too. In this sense the difference between bullets and photons is only
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quantitative: since bullets have large masses and dimensions, the characteristic time
of spreading for them is extremely large (see the end of Sec. 2) while for photons this
time is much smaller.

In view of the above discussion a problem arises why we can see separate
stars at all. Indeed, if the width of a wave packet is growing as discussed in the above
examples then we would see not separate stars but only a continuous background of
light coming to us from many stars. A possible explanation might be such that the
interaction of light with the interstellar medium cannot be neglected.

On quantum level a process of propagation of photons in the medium is
rather complicated because several mechanisms of propagation should be taken into
account. For example, a possible process is such that a photon can be absorbed by
an atom and reemitted in approximately the same direction. This process makes
it clear why the speed of light in the medium is less than c: because the atom
which absorbed the photon is in an excited state for some time before reemitting the
photon. However, this process is also important from the following point of view:
even if the coordinate photon wave function had a large width before absorption, as a
consequence of the phenomenon known as the collapse of the wave function, the wave
function of the emitted photon will have in general much smaller dimensions since
after detection the width is defined only by parameters of the corresponding detector.
If the photon encounters many atoms on its way, this process does not allow the
photon wave function to spread significantly. Analogous remarks can be made about
other processes, for example about rescattering of photons on large groups of atoms,
rescattering on elementary particles if they are present in the medium etc.

In 1678 Huygens proposed a principle (later developed by Fresnel) that
every point reached by a light wave can be treated as if it is an imagined source of a
secondary wave. If the above qualitative picture of light propagation is realistic then
the Hyugens principle can be understood such that the source of secondary waves is
not imagined but real.

The above qualitative picture of light propagation in the interstellar
medium seems also reasonable in view of hypotheses that the density of the interstel-
lar medium is much greater than usually believed. Among the most popular scenarios
are dark energy, dark matter etc. As shown in our papers (see e.g. Refs. [9, 1] and
references therein), the phenomenon of the cosmological acceleration can be easily and
naturally explained from first principles of quantum theory without involving dark
energy, empty space-background and other artificial notions. On the other hand, the
other scenarios seem to be more realistic and one might expect that they will be
intensively investigated.

Consider now the 21 cm radio emission line discussed above. Here τ ≈ 107

light years, λ ≈ 21.1cm and T ≈ 7 · 10−10s. In the scenario when the quantity b can
be estimated as cτ ≈ 1023m (see the above discussion) and a has the same order as
b, we get that N ≈ 5 · 1023 and t∗ ≈ 3 · 1031 years. Hence in this scenario the effect
of the wave-packet spreading is negligible. However, if we assume that the quantity
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a is of the order of several wave lengths then the situation will be fully different.
If our qualitative picture is realistic then the interpretation of several well-

known facts in astronomy and cosmology should be reconsidered. For example, a part
of the red shift of light coming to us from distant objects can be a consequence of the
fact that we observe not photons emitted by stars many years ago but photons which
reached the Earth as a result of many rescatterings and reemissions. It is reasonable
to expect that energies of such photons are less than energies of photons originally
emitted by stars and the greater the distance to a star is, the greater is the energy
loss. There exists a vast literature where the authors argue that the phenomenon of
the red shift can be explained not only by the Doppler effect. However, to the best
of our knowledge, the effect of wave-packet spreading has not been considered in this
literature.

Another phenomenon which might be reconsidered is as follows. As al-
ready noted, if a photon reaches the Earth without interaction with the interstellar
medium, then its wave function is spread in a great extent and this photons cannot
be described in the framework of geometrical optics. It is well-known that some low
energy photons (e.g. those emitted in the 21cm transition line) can propagate in the
interstellar space practically without interaction with the interstellar medium. Hence
when we observe photons coming to the Earth in this part of spectrum, we can see
not separate objects but almost a continuous background of photons coming from
many objects. In this scenario it is possible that at least a part of photons which are
believed to belong to the relic radiation, in fact have been emitted by existing stars
since their spectrum also will be isotropic in a great extents.

The above discussion shows that the wave-packet spreading has impor-
tant implications in astronomy and cosmology and should be taken into account for
explaining several well-known phenomena.
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