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Abstract

Rashba spin orbit interaction is a well studied effect in condensed matter
physics and has important applications in spintronics. The Standard Model
Extension (SME) includes a CPT-even term with the coefficient Hµν which
leads to the Rashba interaction term. From the limit available on the coeffi-
cient Hµν in the SME we derive a limit on the Rashba coupling constant for
Lorentz violation. In condensed matter physics the Rashba term is understood
as resulting from an asymmetry in the confining potential at the interface of
two different types of semiconductors. Based on this interpretation we suggest
that a possible way of inducing the Hµν term in the SME is with an asymmetry
in the potential that confines us to 3 spatial dimensions.
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1 Introduction

There are several examples where a mechanism employed in particle physics can
be realized in a condensed matter system. Spontaneous symmetry breaking, which
is the basis of the Higgs mechanism, is one such example, which can be realized in
ferromagnetic systems when spins, at low temperatures, align in a particular direction
and the rotational symmetry of the system is broken. In this article we present
another example where a well known empirical effect in condensed matter can serve
as a guide to better understand the origin of a term that can lead to testable Lorentz
violation.

Lorentz symmetry implies the invariance of the laws of Physics and constancy of
the speed of light in all inertial frames. There is no evidence for its violation to date,
but scenarios exist in theory that incorporate this possibility and provide a framework
that can be used to test this to a even higher degree of accuracy. Furthermore,
evidence of Lorentz violation can also provide evidence for an underlying theory that
exists at higher energy scales. The Standard Model Extension (SME) [1] is such a
framework that incorporates the effects of Lorentz violation in a manner consistent
with our current understanding of the standard model of particle physics. The various
terms in the SME can arise as Vacuum Expectation Values (VEVs) of tensor fields
in an underlying theory. String theory is an example of such an underlying theory,
but there can possibly be other scenarios which can give rise to these terms in the
SME. Herein, we shall discuss another possible scenario that can give rise to one of
the terms in the SME.

Spintronics is an emerging field in condensed matter physics which involves design-
ing innovative electronic devices by manipulating the spin of the electron. Rashba
spin orbit interaction (RSOI) has widespread applications in spintronics [2]. This
interaction term results from the asymmetry of the confining potential at the junc-
tion of, for example, two different semiconductors. The current understanding of the
RSOI can lead to interesting implications for the SME which we will discuss in this
article.

The paper is organized as follows: We briefly review the SME in section 2. In
section 3 we show that the Rashba term can be obtained from the non-relativistic
limit of the Dirac equation with the Hµν term. We also calculate the spinors and the
Klein-Gordon equation in this section and obtain the dispersion relation. We discuss
the RSOI term in section 4 and derive a limit on the Rashba coupling for Lorentz
violation from the known limit on the coefficient Hµν . In section 5 we discuss the
implication of the current understanding of the Rashba interaction term for the SME.
We conclude in section 6.
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2 Brief review of the SME

The Standard Model is now understood as an effective quantum field theory which
is the low-energy limit of an underlying theory that describes gravity in addition to
other forces. Lorentz violating extensions of the SM can be one of the possible ways
to search for low-energy signals of such an underlying theory. The minimal SME
(mSME) includes all SU(3)×SU(2)×U(1) gauge invariant and renormalizable terms
that violate particle Lorentz invariance (for reviews see [3] and references therein).
Scenarios that motivate the SME include mechanisms that arise in string theory where
Lorentz tensor fields develop vacuum expectation values as a result of spontaneous
breaking of Lorentz symmetry. Note that the terms in the SME preserve invariance
of observer Lorentz transformations which involve a change in coordinates. The
violation of Lorentz invariance in the SME appears in the context of particle Lorentz
transformations which involve boosting particles while the background fields remain
invariant.

The QED sector of the mSME Lagrangian for a single species of fermion is given
by (~ = c = 1),

L =
i

2
ψ̄Γµ

↔
∂µ ψ − ψ̄Mψ, (1)

where, µ = 0, 1, 2, 3 and

Γν = γν + cµνγµ + dµνγ5γµ + eν + if νγ5 +
1

2
gλµνσλµ, (2)

M = m+ aµγ
µ + bµγ5γ

µ +
1

2
Hµνσ

µν . (3)

The operators with coefficients aµ, bµ, eµ, fµ and gλµν are CPT-odd, whereas the coef-
ficients Hµν , cµν and dµν are associated with CPT-even operators. These coefficients
are constant background fields which couple to fermions and can lead to observable
Lorentz violating effects. In addition, these coefficients in the mSME are not func-
tions of space-time. These fields remain invariant under CPT transformations, so,
CPT is broken by operators that are odd under this symmetry. All these coefficients
are expected to be very small since no evidence for Lorentz violation has been ob-
served yet (for recent limits on these coefficients see [4]). Furthermore, these fields
transform in their respective manners (e.g. as vectors, tensors, etc.) under observer
Lorentz transformations so that the Lagrangian is observer Lorentz invariant. Under
particle Lorentz transformations only the fermion fields are boosted or rotated and
the background fields given in equations (2) and (3) remain invariant. Therefore, the
terms in the mSME lead to particle Lorentz violation.

In this article we shall focus on the Hµν term specifically the 0i (i = 1, 2, 3)
components in order to attain the Rashba interaction term. We consider the following
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Dirac Lagrangian with an additional term of the mSME,

L = ψ̄(iγµ∂µ −m)ψ −Hµνψσ
µνψ. (4)

The coefficient Hµν is real (L† = L), has dimensions of mass, and is antisymmetric,
with the operator ψσµνψ even under CPT (C-odd, P-even and T-odd). A possible
way of inducing the Hµν term is through the VEV of an antisymmetric tensor field
[5]. Following limit on this coefficient is known from experiments involving Torsion
pendulums and Xe/He masers [4],

Hµν . 10−26 GeV. (5)

From this limit, we will calculate the limit on the Rashba coupling constant for
Lorentz violation in section 4 and compare it with limits known on the Rashba cou-
pling constants for different materials in condensed matter.

3 Rashba interaction term in the SME

In this section we will consider a simple case with a single non-zero component of the
coefficient Hµν and calculate the non-relativistic limit, Klein Gordon equation and
spinors. The non-relativistic limit of various terms in the mSME given in equations
(2) and (3) have been calculated in [6, 7] using the Foldy-Wouthuysen transformation
and for some terms in [8]. We choose the coefficients Hij = 0. Note that non-zero Hij

coefficients can lead to terms of the form εjklHklσ
j in the non-relativistic limit which

can effect the Zeeman or hyperfine transitions in hydrogen atoms [9]. We shall focus
on the case of non-zero H0i components and show that anyone or all of these can lead
to the RSOI term. As a simple case, we choose H01 = H02 = 0 and H03 ≡ h 6= 0,
which amounts to choosing an observer Lorentz frame in which H03 is the only non-
zero coefficient. With these choices the equation associated with the Lagrangian (4)
becomes

(iγµ∂µ −m)ψ − hσ03ψ = 0. (6)

Non-relativistic limit: In the non-relativistic limit, equation (6) yields a term that
is of the form of RSOI. In order to get the non-relativistic limit we assume plane wave
dependence of the wave-function as, ψ = e−ip.xw(~p), w(~p) being a four component
spinor in this case. Equation (6) in momentum space becomes

(γµpµ −m− hσ03)w(~p) = 0. (7)

We choose w(~p) in two component form as w = (φ χ)T , where φ and χ are two
component spinors. We further assume the presence of an electromagnetic field and
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replace pµ → pµ − eAµ, Aµ being the vector potential and e the charge of the elec-
tron. Substituting w and pµ in equation (7), we get the following equations for the
components φ and χ

χ =
~σ.~Π− ihσ3
E +m− eA0

φ, (8)

φ =
~σ.~Π + ihσ3
E −m− eA0

χ, (9)

where, ~Π = ~p − e ~A and ~σ are the Pauli matrices. In the non-relativistic limit,
E + m ∼= 2m and E −m ∼= H, where H is the non-relativistic Hamiltonian. Using
these approximations, we get the following Hamiltonian with the Rashba interaction
term

Hφ =

[
(~σ.~Π)2

2m
+
h

m
(σ1Π2 − σ2Π1) +

h2

2m
+ eA0

]
φ (10)

=

[
~Π2

2m
− e

2m
~σ. ~B + eA0 +

h

m
(σ1Π2 − σ2Π1) +

h2

2m

]
φ, (11)

where the last two terms result from Lorentz violation and the second last term is
the RSOI term for confinement in the z-direction. For B = 0, the eigen values of the
above Hamiltonian are (1 ≡ x, 2 ≡ y, 3 ≡ z)

E =
~p2

2m
± h

m

√
p2x + p2y +

h2

2m
, (12)

which shows that the degeneracy of the spin up and down state is lifted because of
the Rashba interaction term. This splitting can be seen as due to the presence of an
effective magnetic field. We shall discuss the Rashba interaction term in more detail
in the next section.

Klein Gordon equation: The Klein Gordon equation for (6) can be obtained
by multiplying it with the opposite sign of the mass term. This gives

(∂µ∂µ + ih{γµ, σ03}∂µ + (h2 +m2))ψ(x) = 0. (13)

This equation contains off-diagonal elements, which can be removed if we perform
another multiplication, but this time with the opposite sign of the off-diagonal term
yielding:

(
[
∂µ∂µ + (h2 +m2)

]2
+ 4h2(∂21 + ∂22))ψ(x) = 0. (14)

Assuming plane wave solutions, the dispersion relation comes out as[
p2 − (h2 +m2)

]2 − 4h2(p21 + p22) = 0. (15)
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The values of energy for the above dispersion relation are:

E2 =

(√
p21 + p22 ± h

)2

+ p23 +m2, (16)

⇒ E = ±
√
p′2 + p23 +m2, (17)

where, p′ =
√
p21 + p22 ± h. The negative energy solutions are interpreted in the

usual way as positive energy anti-particles. From the dispersion relation we can see
that the degeneracy of the spin up and down states is lifted for both positive and
negative energy solutions. Equation (17) can be the relativistic dispersion relation
for an electron confined in a 2-dimensional plane. It shows that the net momentum
in the xy-plane is changed where as the momentum along the z-direction, remains
unchanged. The momentum in the z-direction will be quantized for confinement in a
potential well and can be ignored for a 2-dimensional electron gas (2DEG). Similar
dispersion relations can be obtained for confinement in other planes. We saw from
equation (12) that the non-relativistic limit of the modified Dirac equation also leads
to the splitting of the energies of the two spin states. So in this case the splitting
also takes place for relativistic particles, as can be seen from the energy dispersion
relation (17).

Spinors: The spinors for the Dirac equation (6) are given in Appendix A and
can be chosen by first assuming plane wave solutions for particles as ψ = e−ip.xu(~p)
and then choosing the two positive energy eigenstates which are linearly independent.
The spinors for antiparticles are similarly chosen by assuming plane wave solutions
with opposite four momenta as, ψ = eip.xv(~p) and then choosing the positive energy
solutions following the interpretation of negative energy solutions as positive energy
anti-particles. The spinors u1(~p) and v1(~p) are related by the charge conjugation
operation as uc1(~p, h) = iγ2u

∗
1(~p, h) ∝ v1(~p,−h). Note the change in sign of the h

parameter. This is because the SME operator we consider is odd under CPT, the
antiparticles are interpreted as interacting with the opposite sign background field
Hµν . Furthermore, the charge conjugated Dirac equation has the opposite sign for this
term since this operator is odd under charge conjugation. The spinors corresponding
to spin up and down particles are also connected via the combined time reversal
and parity operation as uPT1 (~p, h) = −γ1γ3(γ0eiφ)u∗1(~p, h) ∝ u2(~p,−h). Again, the
opposite sign for the parameter is due to the term being odd under time reversal
operation.

4 Rashba Interaction

Spin-orbit interaction is a relativistic effect which can be obtained from the non-
relativistic limit of the Dirac equation, if we consider O(v2/c2) terms, usually referred
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to as the Pauli SO term. It is given by (not using natural units),

HSO = − ~
4m2

ec
2
~σ.(~p× ~∇V ), (18)

where me is the mass of the electron, ~p is its momentum, V is the potential and σ
are the Pauli matrices. The SOI is enhanced in materials like semiconductors due to
large gradients in potentials [2]. Rashba interaction is a type of spin-orbit interaction
(SOI) which exists in materials with structural inversion asymmetry [2, 10, 11]. This
asymmetry can be present at the surface of a crystal or at the interface of two different
types of crystals where the space inversion symmetry of the material is broken. The
asymmetry of the confining potential mimics an electric field perpendicular to the
interface of the two materials and can influence a 2DEG trapped at this interface.
Electrons, upon Lorentz transformation to their rest frame, ‘see’ this electric field as
an effective in-plane magnetic field with which their spin interacts to give rise to this
SOI. This, therefore results in a spin polarized 2DEG at the interface and lifts the
degeneracy of the two spin states of the electrons thereby splitting the fermi level into
two as given in equation (12). This effect can be tuned by a gate voltage [12] and
can therefore be used to control the spin state of the 2DEG. The RSOI Hamiltonian
for a 2DEG confined to move in the xy-plane is given by

HR =
αR
~

(σxpy − σypx), (19)

where αR is the Rashba coupling constant and is a measure of the asymmetry of the
confining potential. The above Hamiltonian results in different energies for the spin
up and down states for a 2DEG as can be seen from equation (12). An electron moving
in the x direction, for example, is either polarized in the +y or -y direction which can
be seen as due to an effective field By proportional to momentum px (αRpx ∝ µBBy,
µB being the Bohr magneton). The Rashba coupling constant is usually given in
units of eV-m and is related to the coefficient h by the following relation:

αR =
~c
m
h. (20)

So the limit on the coefficient h given in equation (5) translates to the following limit
on the Rashba coupling constant for Lorentz violation (≡ αRLV ) for the electron,

αRLV . 10−30 eV-m. (21)

The experimental value of αR for different materials is of the order 10−11−10−10 eV-m.
The limit available on Hµν , therefore, translates to a very small limit on the Rashba
coupling constant. For the case of condense matter systems this constant is a measure
of the structural inversion asymmetry and in our case, gives a measure of violation
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of Lorentz symmetry. The Rashba coupling constant for Lorentz violation is propor-
tional to the background field Hµν . The splitting of the Fermi surfaces in this case
will be really small because of the small value of the Rashba coefficient for Lorentz
violation.

As described in section 2, adding the LV term to the Dirac equation couples the
electron to the constant background field Hµν . The origin of Rashba interaction in
the mSME is due to these fields that transform in different ways under observer and
particle Lorentz transformations. The Rashba interaction term results from the cou-
pling of the 0i component of the operator ψ̄σµνψ with Hµν . The operator ψ̄σµνψ
breaks time reversal symmetry but not parity. Under the time reversal operation
the non-relativistic limit in equation (17) implies E+(−p) = E−(p) and under parity
E+(−p) = E+(p). Under the combined operation of time reversal and parity opera-
tions, E+(p) = E−(p), which implies degeneracy for the spin up and down states in a
crystal. The Rashba interaction preserves time reversal symmetry but breaks parity.
At the interface of two crystals the potential breaks the space inversion symmetry
and leads to the RSOI. Note that in the SME the operator that leads to the Rashba
interaction term breaks time reversal symmetry and preserves parity.

5 Interpretation of Rashba Interaction term in the

SME

In this section we discuss how the current understanding of the Rashba interaction
term in condensed matter can be utilized to propose a possible origin of the 0i com-
ponents of the Hµν term in the mSME. The Rashba term given in the Hamiltonian
(11) results from confinement in the z-direction. Similarly if we add the non-zero
terms for the coefficients H02 and H03 we can get a Rashba term for confinement in
the x and y direction. The Hamiltonian in this case is given by [6],

H =
~p2

2m
+

1

2m
εijkH0iσjpk +

H2
0i

m
. (22)

which can be written as,

H =
~p2

2m
+
H01

m
(σ2p3 − σ3p2) +

H03

m
(σ1p2 − σ2p1)

+
H02

m
(σ3p1 − σ1p3) +

(H2
01 +H2

02 +H2
03)

2m
. (23)

The energy eigenvalues for this case are,

E =
p2

2m
± E ′ + H2

0i

m
, (24)

8



where,

E ′ =
1

m
[(H02px −H01py)

2 +H2
03

(
p2x + p2y

)
(25)

−2H03(H01px +H02py)pz +
(
H2

02 +H2
01

)
p2z]

1/2.

The momentum dependent splitting of the electrons in this case is 2E ′. Assuming the
H0i coefficients of the same order, H01/m ' H02/m ' H03/m ≡ αRLV , E ′ simplifies
to

E ′ = αRLV

√
(px − py)2 + (py − pz)2 + (px − pz)2. (26)

Following the same procedure as section 3, we can get the dispersion relation for this
case as

E2 = −→p 2 +m2 ± 2αRLV

√
(px − py)2 + (py − pz)2 + (px − pz)2 + 3α2

RLV . (27)

The relativistic dispersion relation shows that the spin degeneracy is lifted and the
splitting of the spin up and down states depend on the momentum in all three direc-
tions.

Keeping in view the manner in which the Rashba interaction term is interpreted
in condensed matter physics we can propose a similar interpretation for the H term
in the mSME. The above Hamiltonian can be seen as resulting from confinement of
the fermions in 3 dimensional space in a potential well. The field Hµν can there-
fore result from the asymmetry in this potential well. Rubakov and Shaposhnikov in
[13] proposed that scalars and fermions can be trapped in 3 dimensional space in a
potential well that is narrow along the fourth extra spatial dimension. This interpre-
tation of generating the H0i component is inspired more from the empirical aspects
of the Rashba interaction term. A more accurate way of showing this would be to
begin with a potential that leads to both confinement of the matter fields and the
asymmetry of which leads to the H0i component of the field Hµν .

Since the Rashba effect is an intensively studied term, this proposition can be
tested through very sensitive experiments. As discussed earlier, the RSOI leads to a
spin polarized 2DEG at the interface of two semiconductors and the Rashba coupling
can be controlled by a gate voltage. This leads to spin polarized currents and can
be used to achieve control over the electron spin. Rashba interaction is known to
lead to the Spin Hall Effect [14]. Similar to the ordinary Hall effect which leads to
accumulation of opposite charges at two sides of a conductor, the SHE leads to the
accumulation of opposite spins due to a spin current transverse to an applied electric
current. Similarly, there are several devices that function on the RSOI such as the
Datta Das transistor [15]. If the background fields in the SME exist than a very
sensitive experiment such as this can be devised in order to test the presence of the
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field Hµν and, possibly, get a more stringent limit on this coefficient. The presence of
a non-zero field Hµν can, therefore, not only serve as evidence for Lorentz violation,
but might also hint towards the presence of extra spatial dimensions.

6 Conclusion

We discussed a term in the SME that leads to the Rashba spin orbit interaction.
The Rashba effect has wide spread applications in spintronics and has its origin in
the asymmetry of the confining potential of a 2 dimensional electron gas. The limit
on the coefficient Hµν , which yields the Rasha term, implies a very small limit on
the derived Rashba coupling constant for Lorentz violation. Since the origin of the
Rashba interaction is the asymmetry in the confining potential well, we proposed that
the origin of the H field in the SME can analogously be seen as due to the asymmetry
in the potential well that confines us to 3+1 dimensional space-time.
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Appendix A

The spinors for the Dirac equation (6) for particles and anti-particles can be chosen
as

u1(~p) = Nu
1


1

−i(px+ipy)√
p2x+p

2
y

−i(E+−m)

h−ipz+
√
p2x+p

2
y

px+ipy√
p2x+p

2
y

(E+−m)

h−ipz+
√
p2x+p

2
y

 , u2(~p) = Nu
2


−i(px−ipy)√

p2x+p
2
y

1
px−ipy√
p2x+p

2
y

E−−m
−h+ipz+

√
p2x+p

2
y

−i(E−−m)

−h+ipz+
√
p2x+p

2
y

 ,

v1(~p) = N v
1


px−ipy√
p2x+p

2
y

E−−m
−h+ipz+

√
p2x+p

2
y

−i(E−−m)

−h+ipz+
√
p2x+p

2
y

−i(px−ipy)√
p2x+p

2
y

1

 , v2(~p) = N v
2


−i(E+−m)

h−ipz+
√
p2x+p

2
y

px+ipy√
p2x+p

2
y

E+−m
h−ipz+

√
p2x+p

2
y

1
−i(px+ipy)√

p2x+p
2
y

 .
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These can be written in a more compact form as

u1(~p) = Nu
1

(
χ1

Fχ′1

)
, u2(~p) = Nu

2

(
χ2

−Gχ′2

)
,

v1(~p) = N v
1

(
−Gχ′2
χ2

)
, v2(~p) = N v

2

(
Fχ′1
χ1

)
(A-1)

where Nu,v
1,2 are spinor normalization factors, χ′i = σ3χi and

χ1(~p) =

(
1

−i(px+ipy)√
p2x+p

2
y

)
, χ2(~p) =

( −i(px−ipy)√
p2x+p

2
y

1

)
(A-2)

F =
−i(E+ −m)

h− ipz +
√
p2x + p2y

, (A-3)

G =
−i(E− −m)

−h+ ipz +
√
p2x + p2y

, (A-4)

E± =

√
(
√
p21 + p22 ± h)2 + p23 +m2. (A-5)

The spinors u1(~p) and u2(~p) correspond to particles, whereas v1(~p) and v2(~p) cor-
respond to anti-particles. The spinors u1(~p) and v1(~p) are related by the charge
conjugation operation as uc1(~p, h) = iγ2u

∗
1(~p, h) ∝ v1(~p,−h). The spinor correspond-

ing to spin up particles u1(~p) is related to the spinor with opposite spin u2(~p) by the
time reversal and parity operator, i.e., uPT1 (~p, h) = −γ1γ3(γ0eiφ)u∗1(~p, h) ∝ u2(~p,−h),
where the proportionality constant involve the normalization constants and φ is an
arbitrary phase. The orthonormality conditions for the spinors are given by

u(1)†(~p)u(1)(~p) =
4(E+ −m)

E+

,

u(2)†(~p)u(2)(~p) = 2 +
2(E− −m)2

E2
−

,

v(1)†(~p)v(1)(~p) = 2 +
2(E− −m)2

E2
−

,

v(2)†(~p)v(2)(~p) =
4(E+ −m)

E+

,

u(r)†(~p)u(r
′)(~p) = 0, (r 6= r′)

v(r)†(~p)v(r
′)(−~p) = 0, (r 6= r′)

u(r)†(~p)u(r
′)(~p) = 0,

v(r)†(−~p)u(r′)(~p) = 0, (A-6)

where r, r′ = 1, 2.
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