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I. INTRODUCTION

A. Maxwell’s equations

Maxwell’s equations were first published in 1865 [1] . In the manner of vector calculus,

as now seen in most modern textbooks [2] and revert to natural units, these equations read

(c = ε0 = µ0 = 1) 

∇ ·B = 0, (Gauss’ law of magnetism),

∇×B = J + ∂tE, (Ampère’s law);

∇ · E = ρ, (Gauss’ law);

∇× E = −∂tB, (Faraday’s law);

(1)

where E,B,J are conventional vector fields, with E the electric field strength and B the

magnetic field strength and ∇ is the three-vector gradient (identified in bold) given by

∇ = σi
∂

∂xi
= σi∂i

and σi = γiγ0 denote a right-handed orthonormal frame for relative space defined by the

timelike vector γ0. Maxwell’s four equations given in Eq. (1) along with the Lorentz force

law

K = q(E + v ×B), (2)

completely summarize classical electrodynamics [2].

B. Navier-Stokes equation

Generally, a fluid flow is described by the Navier-Stokes (NS) equation [3]:

∂v

∂t
+ (v ·∇)v = −1

ρ
∇P − ν∇2v , (3)

where v is fluid velocity, P is pressure, ρ is density and ν is the coefficient of viscosity which

is assumed constant. Note that only the convective terms are nonlinear for incompress-

ible Newtonian flow. The convective acceleration is an acceleration caused by a (possibly

steady) change in velocity over position. In principle, the study of fluid dynamics is focused

on solving the Navier-Stokes equation with particular boundary conditions depend on the

phenomenon under consideration. Mathematically it has been known as the boundary value

problem. The most interesting problem in fluid dynamics is turbulence phenomenon.
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II. SPACETIME IN GEOMETRIC ALGEBRA

Nature’s law is believed to be written in the language of mathematics. The mathematical

formalism of geometric algebra[4–6, 8, 11], developed by Clifford in 1878, as convincingly

argued by Hestenes [9], provides a single unified mathematical language for physics. To

model the Minkowski spacetime, we introduce a set of four basis vectors {γµ, µ = 0 . . . 3,

satisfying

γµ ·γν = ηµν = diag(+ − − −). (4)

The vectors {γµ} satisfy the same algebraic relations as Dirac’s γ-matrices, but they now

form a set of four independent basis vectors for spacetime, not four components of a single

vector in an internal ‘spin space’. When manipulating (geometric) products of these vectors,

one simply uses the rule that parallel vectors commute and orthogonal vectors anticommute.

From the four vectors {γµ} we can construct a set of six basis elements for the space of

bivectors:

{γ1γ0, γ2γ0, γ3γ0, γ3γ2, γ1γ3, γ2γ1}. (5)

After the bivectors comes the space of grade-3 objects or trivectors. This space is four-

dimensional and is spanned by the basis

{γ3γ2γ1, γ0γ3γ2, γ0γ1γ3, γ0γ2γ1}. (6)

Finally, there is a single grade-4 element. This is called the pseudoscalar and is given the

symbol I, so that

i = γ0γ1γ2γ3. (7)

The symbol I is used because the square of I is −1, but the pseudoscalar must not be

confused with the unit scalar imaginary employed in quantum mechanics. The pseudoscalar

I is a geometrically-significant entity and is responsible for the duality operation in the

algebra. Furthermore, I anticommutes with odd-grade elements (vectors and trivectors),

and commutes only with even-grade elements.

The full STA is spanned by the basis

1, {γµ}, {σk, Iσk}, {Iγµ}, I, (8)

where

σk = γkγ0, k = 1, 2, 3. (9)
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III. FORMAL SIMILARITY BETWEEN ELECTROMAGNETISM AND HYDRO-

DYNAMIC

In order to see directly the formal similarity between mathematical structure of electro-

magnetism and hydrodynamic, we start our discussion first by simply considering the ideal

(with coefficient of viscosity ν = 0) and incompressible fluid, the Navier-Stokes equation Eq.

(3) then becomes

ρ

(
∂v

∂t
+ (v.∇)v

)
= −∇P , (10)

∇ · v = 0 . (11)

Taking advantage of the equation in vector calculus v × (∇ × v) = ∇(1
2
v2) − (v ·∇)v, it

can be rewritten as follows,

∂v

∂t
+ ∇

(
1

2
v2

)
− v × (∇× v) = −1

ρ
∇P , (12)

or,
∂v

∂t
= v × (∇× v)−∇

(
1

2
v2 +

P

ρ

)
. (13)

Here we define the scalar potential or the Bernoulli energy function as Φ ≡ 1
2
v2 + P

ρ
, the

vorticity as W ≡ ∇× v and the Lamb’s vector as L ≡ W× v, then the equation becomes,

∂v

∂t
= −W × v −∇Φ

= −L−∇Φ . (14)

By definition, we get immediately

∇ ·W = 0. (15)

Imposing curl operation in Eq. (14) we obtain the vorticity equation as follow,

∂W

∂t
= −∇× (W × v) = −∇× L , (16)

which gives the curl of L field.

Using the incompressible condition 0 = ∂
∂t

(∇ · v) = −∇ · L − ∇2Φ, we can obtain the

information about the divergence of L field:

∇ · L = −∇2Φ ≡ j . (17)
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We still need the curl of W to form a Maxwell-like equation. Consider the definition of

the Lamb’s vector L = W × v. Taking the derivative ∂/∂t in the definition we obtain,

∂L

∂t
=

∂W

∂t
× v + W × ∂v

∂t
. (18)

Substituting Eq. (14) and (16), we get,

∇×W = J +
1

v2

∂L

∂t
, (19)

where,

J ≡ 1

v2
{−v∇2Φ + [∇× (v ·W)]v + W ×∇(Φ + v2) + 2 [(∇× v) ·∇]v} . (20)

Then we get the Maxwell-like equations for ideal and incompressible fluid,

∇ ·W = 0 ,

∇×W = J + 1
v2 ∂tL ,

∇ · L = j ,

∇× L = −∂tW ,

, (21)

IV. GEOMETRIC ALGEBRA APPROACH TO HYDRODYNAMIC EQUATION

We assume 1
v2 = 1. In this section, we derive a compact hydrodynamic equation using the

powerful geometric algebra approach. First we replace the cross product with the exterior

product ∇ ∧W = I∇×W, so now the equations read:

∇ ·W = 0 ,

∇ ∧W = I(J + ∂tL) ,

∇ · L = j ,

∇ ∧ L = −∂tIW ,

, (22)

Then we assemble equations for the separate divergence and curl parts of vector derivative

∇W = ∇ ·W + ∇ ∧W.

∇(IW) = −J− ∂tL , ∇L = j − ∂t(IW) ,

It follows that we can introduce the term hydrodynamic field strength as F = L+IW. Then

we can combine all these equations into a single multivector equation:

∇(L + IW) + ∂t(L + IW) = j − J
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Each of the separate equations can be recovered by picking out terms of a given grade.

We can still introduce the spacetime current for the flow J , which has

j = J · γ0, J = J ∧ γ0.

It then follows that

j − J = γ0 · J + γ0 ∧ J = γ0J.

Using the spacetime vector derivative ∇ = γµ∂µ and ∇γ0 = ∂t − ∇, we can get the most

compact version of convariant equation

∇F = J (23)

If we multiply ∇F = J by ∇, we get

∇2F = ∇J = ∇ · J +∇∧ J.

Here the

∇2 = ∇γ0γ0∇ = (∂t −∇)(∂t + ∇) =
∂2

∂t2
−∇2

is a scalar operator, so the left-hand side can only contain bivector terms. It follows directly

that the scalar part of the right-hand side vanishes

∇ · J = ∇ · J + ∂j
∂t

= 0

which simply recoveres the total charge conservation.

The above discussion can be summarized by the following table 1.

V. CONCLUSION

A simple and compact approach to hydrodynamic using geometric algebra is proposed.

The great formal similarity between the mathematical structures of electromagnetism and

hydrodynamic is very worthy further study. It may help gain more in-depth understanding

of both fields.

[1] J. C. Maxwell, “A dynamical theory of the electromagnetic field”, Royal Society Transactions

155, 459-512 (1865).

6



Unified singe compact GA equation for both Electromagnetism and Hydrodynamic

∇F = J

Electromagnetism Theory Hydrodynamic Theory

Scalar potential V Bernoulli energy

function

Φ ≡ 1
2v

2 + P
ρ

Vector potential A Velocity field v

Electric field E Lamb’s vector L ≡ W × v

Magnetic field B Vorticity W ≡ ∇× v

Charge density ρ Hydro-charge j ≡ −∇2Φ

Current density J Hydro-current J ≡ J(Φ,v)

Gauss’s law for

magnetism

∇ ·B = 0 ∇ ·W = 0

Ampère’s law ∇×B = J + ∂tE ∇×W = J + 1
v2 ∂tL

Gauss’s law ∇ ·E = ρ ∇ · L = j

Faraday’s law ∇×E = −∂tB ∇× L = −∂tW

Electromagnetism

field strength

F = E + IB Hydrodynamic

field strength

F = L + IW

Potential function

A

E = −∇V − ∂A
∂t , B = ∇×

A

L ≡ W×v,W ≡ ∇×v

Lorenz gauge ∇ ·A + ∂V
∂t = 0

Coulomb gauge ∇ ·A = 0 Incompressible

condition

∇ · v = 0

Charge

conservation

∇ · J = ∇ · J + ∂ρ
∂t = 0 Hydro-charge

conservation

∇ · J = ∇ · J + ∂j
∂t = 0

EM Invariants F 2 B2 −E2 Hydro-

Invariants

W2 − L2

2B ·E 2W · L

Force K = γq(E + v ×B)

TABLE I: Analogy between electromagnetism and hydrodynamics
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