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Abstract. This paper raises the following questions. Can there be a stable (massive) graviton? If so,
does this massive graviton, as modeled by Kaluza-Klein dark matter, with a modification of slight
four-dimensional space mass, contribute to dark energy, at least in terms of re-acceleration? The
answer appears to be affirmative, if one assumes that the square of a frequency for graviton mass
is real-valued and greater than zero. The author finds evidence that re-acceleration of the universe
one billion years ago in a higher-dimensional setting can be justified in terms of a modification of
standard Kaluza-Klein dark matter models, if one considers how an information exchange between
present and prior universes occurs, which would mandate more than four-dimensional space time,
according to the author.
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OVERVIEW

This article first asks for criteria for massive graviton stability, then applies stable
massive (four-dimensional) gravitons in terms of a Kaluza-Klein (KK) dark matter
(DM) model, with small four-dimensional graviton mass, to obtain re-acceleration of the
universe a billion years ago. This re-acceleration is a way to obtain dark energy (DE),
at least in terms of a macro-effect in cosmological structure. To look at the problem
of massive graviton stability, the author first applies a modification [1, 2] of the KK
representation of DM according to Maartens [3], with a small mass in four dimensions.
Then, using Visser’s treatment of a stress energy tensor [4], he obtains the square of
frequency of a massive graviton, which is both positive and real-valued. The paper
concludes with a summary of Yurov’s double inflation hypothesis [5] which contributes
to understanding the results in Fig. 1, which show re-acceleration a billion years ago, due
to the existence of a stable massive graviton. This would permit a better understanding
of Smoot’s values [6] for the initial information content of the universe as specified in
his Paris Observatory talk in 2007.



IDENTIFICATION OF GRAVITON STABILITY REQUIREMENTS
FROM GRAVITON FREQUENCY

If the graviton is stable, with small mass, then its macro-effects show up in the deceler-
ation parameter behavior, indicating re-acceleration a billion years ago. Specifically for
non-zero graviton mass, where we writeh≡ηuvhuv= trace∙(huv) andT = trace∙(Tuv),
Maggiore [7] delineated:
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The present work uses the 1998 analysis by Visser [4], of non-zero graviton mass for
bothT andh. Using Eq. 1, with particle countnf as a way to present initial gravitational
wave (GW) relic inflation density and using Maggiore’s definition [7] leads to the
following:
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Here,nf is the frequency-based numerical count of gravitons per unit phase space.
The reasons for applying the values of Visser [4] forT andh in Eq. (1) are as follows.

To start with, a modification [1, 2] of work by Maartens [8] writes as:

mn(graviton) =
n
L
+10−65grams (3)

On the face of it, assignment of a mass of about 10−65 grams for a four-dimensional
graviton, allowing form0(graviton−4D)∼ 10−65 grams [1, 2], violates all known quan-
tum mechanics, and is to be avoided. Numerous authors, including Maggiore [7], have
demonstrated how adding a term to the Fiertz Lagrangian for gravitons, and assuming
massive gravitons, leads to results that appear to violate field theory.

Visser’s Treatment of a Stress Energy Tensor for Massive Gravitons

Visser [4] stated a stress energy treatment of gravitons along the lines of
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Furthermore, his version ofguv= ηuv+huv can be written as setting
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One can add velocity reduction with regards to speed propagation of gravitons [5]:
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Then one can insert all this into Eq. (1) to obtain a real value for the square of
frequency greater than zero, i.e.,
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According to Kim [9], if the square of the frequency of a graviton, with mass, is
greater than zero and real-valued, it is likely that the graviton is stable (with regards to
perturbations). The article by Kim [9] relates to gravitons in brane/string theory, but it is
likely that the same dynamic holds for semi-classical representations of a graviton with
mass. The conditions for a positive value of the square of frequency in Eq. (7) are the
same as the conditions for which the following inequality holds, in terms of parameter
space values for the variables in Eq. (9) below. Equation (9) allows for stable giant
gravitons.
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OBTAINING RE-ACCELERATION OF THE UNIVERSE A
BILLION YEARS AGO WITH STABLE GIANT GRAVITONS

Beckwith [1, 2] used a version of the Friedman equations as inputs into the deceleration
parameter using this equation by Maartens [3]
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Maartens [3] gave a second Friedman equation:

Ḣ2=

[

−

(
κ̃2

2
∙ [p+ρ] ∙

[

1+
ρ2

λ

])

+
Λ ∙a2

3
−2

m
a4 +

K
a2

]

(11)

Also, if we are in the regime for whichρ ∼=−P for red shift valuesz between zero to
1.0-1.5 with exact equality,ρ =−P for zbetween zero and 0.5. Because of Eq. (12), the
net effect will be to obtain and usea= ba0= 1c/(1+z). As given by Beckwith [1, 2],
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Equation (12) assumesΛ= 0= K, and the net effect is to obtain a substitute for DE,

by presenting how gravitons with a small mass are done withΛ 6= 0, even if curvature
K = 0.

Re-acceleration of Universe atz∼ 0.423due to giant gravitons?

In a revision of the work by Alves et al. [1, 2], Beckwith [1, 2] used a higher-
dimensional model of the brane world and the KK graviton towers of Maartens [3].
For a non-zero graviton, Beckwith [1, 2] applied the densityρ of the brane world in the
Friedman equation as used by Alves et al. [10]
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Equation (3) thus creates a joint DM and DE model, with all of Eq. (12) being for KK
gravitons and DM, and grams being a four-dimensional DE. Equation (13) is part of a
KK graviton presentation of DM/DE dynamics. Beckwith [1] found that acceleration of
the universe increased atz∼ 0.423, a billion years ago, as shown in Fig. 1.

FIGURE 1. Re-acceleration of the universe according to Beckwith [1, 2]; note thatq< 0 if z< 0.423.



LINK TO INITIAL INFLATION, USING YUROV’S DOUBLE
INFLATION THEORY

The following is speculative, and if confirmed through additional research would be a
major step toward a cosmological linkage between initial inflation, and re-acceleration of
the universe one billion years ago. Yurov’s double inflation hypothesis [5] claimed that
there exists one emergent complex scalar fieldΦ and that its evolution in both initial
inflation and re-acceleration is linked. In other words, Yurov [5] stated that this scalar
field would account for both the first and the second inflation potential, and in both cases,
chaotic inflation of this type:

V = ↔m
2Φ∗Φ (14)

The mass term for early universe versions of the Friedman equation would then be, as
Beckwith [1, 2] understood it:
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Furthermore, its bound would be specified by having
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The terml would be an artifact of five-dimensional space time, as provided in a metric
given by Maartens [8] as
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Yurov [5] wrote the second scalar fields, contributing to the second inflation (and
represented in Fig. 1), as:
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To make a full linkage between Yurov’s formalism [5] for double inflation, Fig. 1,
and initial inflationary dynamics - as referenced by obtainingnf ≈ 106 to 107 - would
be to make the following relationships between Yurov’s versions [5] of the Friedman
equations and what Beckwith [1, 2] did (in terms of Fig. 1):
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It would also mean having:

Ḣ =V−3H↔ Ḣ ∼=
2m
a4 (21)

The left-hand sides of Eq. (20) and Eq. (21) are Yurov’s [5], and the right-hand sides
of Eq. (20) and Eq. (21) above are Beckwith’s adaptation of a modification of brane
theory work by Maartens [3] which was used in part to obtain the results given in Fig.
1, i.e. the behavior of massive gravitons one billion years ago to mimic DE in terms
of the re-acceleration parameter. Filling in the details for Eq. (14) to Eq. (21) would,
if confirmed and linked to Fig. 1, be a way to come up with a more comprehensive
cosmological picture of the linkage of geometry and space-time evolution than what
exists today. Making the relationships work between the Friedman equation choices of
Yurov [5] and Fig. 1 involves making the following assumption which may be falsified
by experiment:
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In other words, the potential energy, V, of the initial inflation is overshadowed by the
contributions of the Friedman equation, H, at the onset of inflation. If this Eq. (22) is
false, or falsified, then the form of creating relationships between the components of Eq.
(20) and Eq. (21) probably should be reconsidered.

CONCLUSION

The end result of a massive graviton may also lead to information exchange between a
prior and our present universe as has been commented upon by Beckwith [1, 2]. Note
that Beckwith [1, 2] used Ng’s counting algorithm [11] with regard to entropy, and non-
zero mass (massive) gravitons, where
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(
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[
V
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Furthermore, we can make an initial count of gravitons withS≈ N∙ ∼ 107 gravitons
[7] with Lloyd’s equation [12]:

I = Stotal/kB ln2= [#operations]3/4∼ 107 (24)

as implying at least one operation per unit graviton, with gravitons being one unit of
information, per produced graviton [7]. Note that Smoot [6] gave initial values of the
operations as

[#operations]initially ∼ 1010 (25)

It would be useful to determine if there were connections between the parameter space
defined by Eq. (9) above, in terms of input variables, and optimal conditions as well for
both Eq. (24) and Eq. (25), to be confirmed experimentally. In addition, it would be
good to understand optimal space time geometric conditions for the development of KK



particle physics allowing for implementation of Eq. (24) above, which assumes stable
giant gravitons are possible. The number of operations, if tied into bits of information,
may allow for space-time linkages of the value of the fine structure constant, as given
in Eq. (26) below, between a prior and the present universe, once initial conditions
of inflation may be examined experimentally, i.e., looking at inputs into the following
equation [1, 2]

α̃ ≡ e2/h̄∙c≡
e2
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×
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After this is done, then the next step would be to look at inputs into the near-present
time value for a Friedman equation, leading to a fuller understanding of Eq. (12) above.
All this is possible if a non-brane theory version of stability of the graviton is obtained,
if an extension of the frequency-based criteria as to giant graviton stability according to
Kim [9] is confirmed experimentally. It would also confirm the energy flux expression
for GW by Alcubierre [13], also used for the present paper. Filling in the steps to give
exact representations of Eq. (14) to Eq. (21) can hopefully commence in the future.

Finally, also desirable would be to understand more on how to apply Valev’s graviton
wave length calculations [14], as given by
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Equation (28) below gives the relationship of that wavelength calculation with the
gravity wave energy flux of Alcubierre [13].
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Key to making better use of a relationship between Eq. (27) and Eq. (28) would be
a better understanding of the observationally based Friedman equation by Sanders [15],
as given below [16], namely:
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Kolb and Turner [17] expressed the electro-weak boundary of the number of degrees
of freedom as:

N(Ttemp)
∣
∣
electro−weak∼ 102 (30)

In contrast, early universe, near the Big Bang values, may haveN(Ttemp) ∼ 103. Ob-
viously, obtaining better values of the degrees of freedom, as Beckwith [16] attempted,
for early-to-later universe conditions would be of crucial importance toward that goal.
Note also, that if Eq. (6) had graviton speed as the speed of light, none of the graviton
stability considerations would apply, and the above analysis would be moot.
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