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1 Introduction

Clifford algebra, also known as geometric algebra or space-time algebra, has found a
wide variety of applications in physics[1, 2]. Attempts[3, 4, 5] have been made to identify
species of fermions as ideals (idempotent projections of the original spinor) and derive
Standard Model gauge symmetries from various dimensions of Clifford algebras.

Our previous work[6], which proposes a model of gravity and Yang-Mills interactions
in term of Clifford algebra, is based on three premises. Firstly, all idempotent projections
of the original spinor should be realized as fermions of physical world. In other words, no
spinor projection should be casually discarded. Hence, finding the right Clifford algebra
turns out to be a simple process of counting numbers of fermion species. There are 16
Weyl fermions (including right-handed neutrino) with 16 x 4 = 64 real components in
the first generation. Clifford algebra Cl, g, with 2° = 64 degrees of freedom, seems to be a
natural choice.

The second premise is that rotations should be generalized. As well known in Clifford
algebra approaches, a rotation is realized by a rotor, which is an exponential of bivectors.
It rotates a vector into another vector. However, a rotor could be defined to be an exponen-
tial of any multivectors. It could rotate a vector into a multivector, generalizing definition
of rotations. Hence, one can entertain large symmetry groups with lower dimensional
Clifford algebras, whereas the same symmetry groups would otherwise require higher
dimensions within the conventional framework.

The third premise is the generalization of MacDowell/Mansouri[7] gravity in a natu-
ral way to include Yang-Mills interactions as well. The key is to take a page from effec-
tive field theory, where an infinite number of terms allowed by symmetry requirements
should be included in the action and the first few terms of the action are relevant in low-
energy limit. Gravity and Yang-Mills actions are formulated as different order terms in a
generalized action. The first order terms include Einstein-Cartan action with cosmolog-
ical constant. The trace (scalar part of Clifford algebra) of every Yang-Mills-field-related
tirst order term is zero. Yang-Mills fields appear in second order terms only. The co-
efficients of second order terms are much smaller than those of first order terms. Thus
Yang-Mills coupling constants appear to be much larger than that of gravity.

The current paper, targeting the issue of flavor structure, is a continuation of our pre-
vious work. There are 16*3 Weyl fermions with 64 * 3 real components for 3 generations.
The orthogonal Clifford algebra, with 2V degrees of freedom, would not work. We turn
to extensions of Clifford algebra. Along the way, we also consider possible modifications
to gravity.

This paper is structured as follows: Section 2 introduces orthogonal Clifford algebra
and various extensions, with or without supersymmetry. In section 3, a direct product
of binary and ternary Clifford algebras Cly¢ * Clr is defined. Applications in physics,
especially with regard to the flavor structure of Standard Model, are discussed. In section
4, we take gravity into consideration. Modified gravity is suggested. In the last section
we draw our conclusions.



2 Clifford Algebras

2.1 6D Orthogonal Clifford Algebra

We begin with a review of orthogonal Clifford algebra (/. It is defined by anticommu-
tators of orthonormal vector basis (7;,T;;j = 1,2, 3)

{7V mt = %(mk +75) = —0ji, (1)
{Fj, Fk} - —5jk, (2)
{, Tk} =0, 3)

where j, k = 1,2, 3. All basis vectors are space-like. There are (Z) independent k-vectors.
The complete basis for Cly ¢ is given by the set of all k-vectors. Any multivector can be
expressed as a linear combination of 2 = 64 basis elements.

Two trivectors

Yo = 1D, (4)
Lo = 77273 (5)

square to 1, so they are time-like. Orthonormal vector-trivector basis {7y,,a = 0,1,2,3}
defines space-time Clifford algebra C/; 5. The unit pseudoscalar

1= 113717273 = Y717273 = Y0l (6)

squares to —1, anticommutes with odd-grade elements, and commutes with even-grade
elements.

Reversion of a multivector M € /s, denoted M, reverses the order in any prod-
uct of vectors (there is an additional minus sign if both vectors are with Grassmann odd
coefficients). There are algebraic properties (MN) = NM and (MN) = (NM) for any
multivectors M and N, where (- - -) means scalar part of enclosed expression. The mag-
nitude of a multivector M is defined as

|M| =/ (MTM), 7)

where M = iM(—i) is the Hermitian conjugate.
Algebraic spinor ¢ € (/¢ is a multivector (with Grassmann odd coefficients) which
obeys transformation law

v — RyR, (8)

where R and R € (¥ are independent left and right-sided gauge transformations (with
Grassmann even coefficients). Spinor bilinear

(00 ©)
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is invariant if

R’YOR = "o, (10)
RR = 1, (11)

where we restrict our discussion to gauge transformations continuously connected to
identity. General solution of these equations has the form

R = ¢2®, (12)
R = 29 (13)

= Y

where © ~ s0(4,4) is a linear combination of 28 gauge transformation generators
(P}/aa Ya Vb, P)/Orja 1—‘0]:‘]'7 ZT‘]') Fo%rka j7 k= 17 27 3a a, b= Oa 17 27 37 a > b)> (14)

and © ~ sp(8) is a linear combination of 36 gauge transformation generators of all bivec-
tors, trivectors, and 6-vector

(L', Tovys v Tk Y0, 093k Tos Loy e, 45 4, k = 1,2, 3). (15)

The de Sitter algebra (74, 7,7) ~ so(1,4) and weak interaction su(2) algebra {v,I';} are
commuting subalgebras of left-sided gauge transformations.

2.2 2D Symplectic Clifford Algebra

2D symplectic Clifford algebra is defined by anticommutators of symplectic vector basis

(C1c, G2€)

{Cie, ot = GG, (16)
{Gic, Qe = {Gie, (et =0, (17)

where (; and ¢, are Grassmann odd numbers. With multiplications of multiple (,,c and
(nC, there are infinite numbers of independent k-vectors.

We propose an extension of algebraic spinor for symplectic Clifford algebra, which is
a linear combination of all k-vectors (superspinor). Grassmann odd part of a superspinor
behaves like fermions, while Grassmann even part (superpartner) behaves like bosons.
To avoid ambiguity, (- - - ) is defined by the scalar part of a normally ordered multivector.

One can study invariance properties of a superspinor by applying rotation ¢2®. There
could be both grassmann even and odd components in ©. One example of © is gauge
transformation superalgebra osp(1]2) with Bose (Grassmann even) part (2, ¢, 1(c¢ + cc))
and Fermi (Grassmann odd) part (c, ¢).



2.3 6D Mixed Clifford Algebra

In an attempt to connect with physical world, one can consider a Clifford Algebra mixing
Dirac (v,,a = 0,1,2,3) and symplectic vectors ((;c, (2¢) defined by anticommutators of
mixing terms

{Clca /ya} =0, (18)

while other anticommutators remain the same as Dirac algebra and 2D symplectic Clif-
ford algebra. An algebraic superspinor can be constructed along the same line as in the
previous subsection. One example of rotation ez® involves gauge transformation super-
algebra osp(5]2) with Bose part (¢?, ¢, (c¢ + ¢c), Va, Ya75) and Fermi part (¢, ¢, ¢yq, €7a)-

In the same fashion, one can construct other mixed Clifford algebras with N orthonor-
mal vectors and 2 symplectic vectors, and study their gauge transformation superalge-
bras.

2.4 Ternary Clifford Algebra

Superspinors suggest a plethora of fermion species and their superpartners, which have
not been experimentally observed so far. We turn to other extensions of Clifford alge-
bra with finite numbers of independent k-vectors. They involve n -ary communication
relationships[8, 9, 10] rather than the usual binary ones.

Let’s propose a Clifford algebra defined by anticommutators of a binary vector v and
a ternary vector 7

{77} =1, (19)

{n.n.n}=n’=1, (20)
1

{n,m,7} = 5(7727 +nyn +n*) =0, (21)
1

v} = g(?ﬁ +yny +~°n) = 0. (22)

The ternary communication relationships between ~ and 7 introduce some unusual com-
plications. Instead, we are going to focus on a direct product of binary and ternary Clif-
ford algebras, which is the subject of following sections.



3 Flavors

3.1 060’6 * CgT

With the purpose of studying 3 generations of Standard Model fermions, let’s consider a
direct product of CV, ¢ * Cl7, which is defined by

{n,n,n}=n*=1, (23)
7,71 = nv; —vm =0, (24)
,T;] =0, (25)

while the rest anticommutators remain the same as C?;¢. The complete basis for Clj ¢ *
Clr is given by the set of all k-vectors. An algebraic spinor can be expressed as a linear
combination of 2° x 3 = 192 basis elements.

Spinors with right/left chirality correspond to even/odd multivectors

b= (26)
Vs = 30 F i), @7)

A projection operator squares to itself. Idlempotents are a set of projection operators

G = %(1 + " 4 e 0702, (28)
Go = %(1 +e'n+e'n), (29)
Gz = %(1 + e/ 4 e, (30)
Py = ia Vit iyt idy) = 3(1 +id), (31)
P = %(1 T —idy — idy), (32)
j- iu A ids — i), (33)
Py = %(1 — iy —idy + i), (34)
Pq:P1+P2+P3:i(3—iJ), (35)
Py= L(1£D0Ty), (36)

wherer :fijj,J: J1—|—J2+J3,9: 2%[,9, = 2?”2,[: %(2+J>,[2 = —1,G1+G2+G3 =
1, Po+Pi+P,+P; = Py+P, =1, P.+P_ = 1. Here G, and P, are flavor and color projection
operators, respectively. Reversions of flavor projectors are defined as not changing signs
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of # and ¢ inside G, so that G; = G,. The bivectors .J; = ,T'; appearing in the color
projectors P; suggest an interesting duality between 3 space dimensions and 3 colors of
quarks.

Now we are ready to identify idempotent projections of spinor

= (Pp+ P_)(Yy +9_)(Po+ P+ P+ P5) (G + G2 + G3) (37)
with j’th generation left-handed leptons, red, green, and blue quarks

v,; = Py PGy,
el,j == wafpoGj7

38
up; = P+¢_P1Gj + P+w_P2Gj + P_Mp_Png = P+¢_Pqu, ( )
d; =P Y_PG;+ P yY_P,G;+ P y_PG; = P.y_P,G,,
and right-handed leptons, red, green, and blue quarks
vrj = P RyGj,
€rj = P+¢+P0Gj7 (39)

urj =P Y, PIG;+ P- PG+ Py, P3G = Py F,Gy,
d,; = Pryy PG+ Py PGy + Py P3Gy = Py PG

It is understood that e;, and ¢; 3 are regarded as y; and 7;, respectively. Naming conven-
tions for other fermions, which are not listed here, follow similar pattern.

3.2 Symmetries

At unification energy scale, symmetries could be like the ones (i.e. SO(4,4) *« SP(8)) ex-
plored in the earlier section'. In this section, we are interested in symmetry transforma-
tions 1) — e29e2? at intermediate electroweak energy scale (after symmetry breaking at
a higher energy scale). They include Lorentz SO(1, 3) gauge transformations ©,, (which
are part of de Sitter transformations ©ps = (Va4, vaVs))

YW € O, (40)

color SU(3) gauge transformations ©¢

(T2 +m72), (D172 — mTa), (D11 — Tae),
%(F3F1 +Y371), %(F371 —3),

5 (Dal's 4+ 7273), 5 (D2ys — 7203),

ﬁg(rﬂl + Laya — 2T373)

€0, (41)

electroweak SU(2)., * U(1);, double-sided gauge transformations ©; and ©; acting on
left-handed fermions
([oT5, T3, ThT,) € ©, J/3€0, (42)

!If ternary vector 1 and bivector ? are also gauged, the size of symmetries would be tripled.
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and electromagnetic U(1)z synchronized double-sided gauge transformations © and O
acting on right-handed fermions

[T, €0, el/3€6, (43)

where a shared rotation angle € enforces synchronization of the double-sided gauge trans-
formations.

Electric charges are calculated as 0, —1, %, and —% for neutrino, electron, up quarks,
and down quarks, respectively[6]. Because the product of lepton projector F, with any
generator in color algebra is zero, leptons are invariant under color gauge transforma-
tions.

3.3 Gauge Fields, Higgs Fields, and Fermion Actions

Gauge fields are Clifford-valued 1-forms (Clifforms[11, 12]) on 4-dimensional space-time
manifold? (z,, p = 0,1,2,3)

w,(1/e € Opg, (44)
Ac € Oc, (45)
(WE WS, W), B € 05,065, (46)
WS B% € ©Og,Og, (47)

where w is spin connection, e is vierbein, A¢ is strong interaction, and the rest are elec-
troweak interactions. Here W3' = J A, ' \Txda#, BR = ¢ A,Jda*, and A, represents elec-
tromagnetic gauge field. We adopt the summation convention for repeated space-time
indices. In the following, outer products between differential forms are implicitly as-
sumed.

For breaking of gauge symmetries, Higgs fields® ®, ¢ and ¢ are introduced. They are
multivectors obeying transformation rules -

d — 2905 § o 290s (48)
o — e29r 10) e*%QR, (49)
o — ¢~ 3(Or+E0) o e3(©L+6c) (50)

Gauge-covariant derivatives of fermion fields and Higgs fields can be defined accord-
ing to their gauge transformation rules[6]. At electroweak energy scale, de Sitter symme-

try is already broken down to Lorentz symmetry. With replacement of Higgs field ® by

its vacuum expectation value (VEV) ® = Vi, D® reduces to Z/le. The vestigial vierbein

2Additional dimensions will be considered in the sequel.
3We call them Higgs fields in the general sense that they are 0-forms with symmetry-breaking VEVs.
The VEVs should be invariant under Lorentz gauge transformations.



tield e is acting like space-time frame field, which is essential in building actions at all
energy scales. The 4-dimensional space-time manifold is initially without metric. It’s the
vierbein field which gives notion to metric g, = (e e,).

The gauge- and diffeomorphism-invariant action for spinor field is now written down
as

Siimeic = [ (50(DBDY)) / (~i(DD)"), 6

where it’s understood that the 4-form within (D®)” should be canceled by the 4-form of
—i(D®)* before any further outer multiplication (or one can simply replace (D®)” with
i(D®)? and remove —i(D®)* in the denominator). Otherwise it is strictly zero, since no n
-form with n > 4 is allowed on 4-dimensional space-time manifold. The same reasoning
applies to all the following actions. The ubiquitous —i(D®)* could be regarded as related
to Planck’s constant.

For the case of flat space-time, spinor action can be obtained by substituting Higgs
field ® and vierbein (1/l)e with their VEVs ® = Vi and (1/l)e = (1/1)00~,dx*, respec-
tively. Factor —i(D®)* reduces to a constant (Clifford scalar) 4-form, so that we recover
the regular spinor action.

We can write Dirac-type mass terms as

SMass,Lept(m,jk = / <(Vl,j + el,j)WO(Dq))s(b(yl/,jer,k + ye,jker,k)?> / <_Z<D(I))4>7 (52)
Shass,Quark,jk = / <(Ul,j + di.;)70(DP)* P (Yo jktir i + yd,jkdr,k)?> / {(—i(D®)*), (53)

and Majorana-type mass terms for right-handed neutrinos as
SMa]orana jk — / <y7‘]ﬁ)/0 Dq)) (YkeeijIFQFQFB Vrk k> / <_Z D(I) > (54)

where Y, ik, Ye ik Yu ik, Yd.jk, and Yj, are Yukawa coupling constants, e+ are phase fac-
tors, Mj;, are trivectors of unit magnitudes. Majorana-type mass terms are the results of
symmetry breaking above electroweak scale. They are usually assumed as being much
heavier than Dirac-type masses. Thus very small effective masses are generated for neu-
trinos, known as seesaw mechanism.

3.4 Symmetry Breaking

We leave the study of dynamics and self-interactions of electroweak Higgs sector to future
research. We just assume that, after electroweak symmetry breaking, Higgs fields ¢ and
¢ acquire VEVs as

(;3 vl Iy, (55)
¢ = i, (56)



where v and v are magnitudes of VEVs. Since ¢ and ¢ appear in pairs in Dirac-type mass
terms, in the following we set v = 1 by rescaling v. Left-handed electromagnetic inter-
action remains massless and is synchronized with the right-handed counterpart. Interac-
tions of Wi, W3 and Z (characterized by Wy = $Z,I\I'yda*, BY = —37,Jdx*) acquire
masses.

3.5 Flavor Mixing

With electroweak Higgs fields replaced by their VEVs, Dirac-type masses become diag-
onalized in terms of flavors, since G;iG, = i0;;G,;. The only flavor mixing terms are
Majorana-type masses of right-handed neutrinos between 2nd and 3rd generations.

When electroweak Higgs fields fluctuate around their VEVs (specifically when A¢ =
¢ — ¢ does not commute with flavor projection operators G;), Dirac-type masses may
not be diagonalized in terms of flavors of quarks (between 1st and 2nd generations) and
leptons (between 2nd and 3rd generations). Higher order corrections introduce further
mixing between generations. One may potentially couple above effects with appropriate
choices of Yukawa constants to explain the observed CKM and PMNS matrices with quite
different patterns.

3.6 Different Flavor Projectors

Hypothetically, other sets of flavor projectors can be assigned to fermion species. For
example, we can define idempotents

1

Gi = §(1 + ePain 4 e70n?), (57)
1

Gi =301+ e % + P, (58)
1

G§=§(1+77+772)7 (59)

where 0, = #T'T; and G} + G§ + G4 = 1. These quark flavor projection operators are
applied to the left side of quarks, while lepton flavor projection operators remain the same
as in previous sections.

Because of the bivector I';I'; in flavor projection operators G, there is quark flavor
mixing between 1st and 2nd generations via direct weak interactions (W}, W¥). This
kind of flavor projection operators may not be a viable option, since the mixing is too
strong for quarks.
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4 Gravity

4.1 Gauge Actions
We begin by introducing gravity curvature 2-form

1 1 1 1
Fg :d(76+w)+(7e+w)2 :R+7T+l_262’ (60)
where spin connection curvature R and torsion 7" are defined by R = dw + w? and T =
de + we + ew, respectively. Yang-Mills curvature 2-form is denoted as Fy ;.
The generalized formal curvature 2-form is defined as

1 1
F==Fg+=Fyu, (61)
g g

where ¢, ¢/, are dimensionless coupling constants of order 1 (or close to order 1). Different
coupling constants can be assigned to different Yang-Mills interactions. The elements,
which are covariant under left/right-sided gauge transformations © and ©, are formally
assigned to two sets of Clifford algebras. Elements from different sets formally commute
with each other. In the following, (- - -) means scalar part of both sets.

The gauge field action is written as

Stiange = / (DB)°F)) [ (~i(DB)") + / (DD)F)(DD)2F)) / (~i(DB)Y).  (62)

With Higgs field ® acquiring large VEV ® = Vi, the most significant terms are Einstein-
Cartan action

V2
SEinstein—Cartan ~ /l_2 <€2Ri>a (63)
cosmological constant term
VE
SCosmological—Consmnt ~ / l_4 <64l>, (64)
and Yang-Mills action
Svang-arins ~ [ ((€@Fra?) ] {(ie"), (©5)

There is no explicit Hodge dual in Yang-Mills action. Vierbein plays the role of Hodge
dual, when it acquires non-zero VEV é = 4{7,dz" in the case of flat space-time. There is
no CP-violating theta term

STheta ~ /QQCD (€’ Fym)*i) [ {(ie*)). (66)
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4.2 Hierarchies

For comparison’s sake, let’s also rewrite fermion kinetic action

SKinetic ~ / <7;70€3D¢>> (67)
a typical Dirac-type mass term
vV o/~ ,
Shass ™~ / yT <1/}70€41/)Z>7 (68)

and a typical Majorana-type mass term
Yv .,
SMajorana ~ /T <VTP)/064<F2F3)V1”70>7 (69)

where spinor fields are rescaled by a factor of (V/1)*?, v is the VEV magnitude of elec-
troweak Higgs fields, y and Y are typical Yukawa coupling constants for Dirac and Majo-
rana -type mass terms, respectively.

The mass hierarchies are

LV
My ~ G2 ~ T (Planck mass)
Vv
my ~ % ~ (yv)my ~ 1072%m,,, (typical fermion mass)

YV o ()P V o (yv)?

my, ~ (m?c) / (T) Yy T Ty My ~ 10_30mpl, (neutirno mass)
1 1
A~ H ~ T 107%my,, (cosmological constant)

where G is Newton constant, H is Hubble constant, the typical fermion mass m;y is set to
Agep (Dirac-type masses range over many orders of magnitude for different fermions),
and m, is neutrino seesaw mass. Along with Yukawa coupling constants, the parame-
ters involve three VEV magnitudes (V,v,1/l), where 1/ is of mass dimension one. The
dimensionless parameters are estimated as V' ~ 10%, yv ~ 1072°, and Y ~ 1071°.

4.3 8 Dimensions

There are proposals[13, 14, 15, 16] trying to account for origins and/or relationships
amongst mass hierarchies. They usually involve extra dimensions of the underlying
space-time manifold.

In the process of building fermion and gauge actions in earlier sections, we see the pat-
tern of pseudo 8-forms divided by 4-forms. It seems clumsy. The benefit is that standalone
Higgs field ® and 6-vector i can be excluded from pseudo 8-form part of the actions (D®
is allowed). As a consequence, CP-violating theta term is suppressed.
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It strongly suggests that the underlying manifold may be 8-dimensional. The 4 addi-
tional dimensions behave like mirrors (with some constant scaling factor) of 4 space-time
dimensions we live in, so that we don’t notice their existence. Fermion and gauge actions
are real 8-forms, with 8-dimensional diffeomorphism invariance. It may deform gravity
as seen in 4 dimensions, which is the subject of the next subsection.

44 Deformed Gravity

Let’s consider a deformation of 4-dimensional Schwarzschild metric, with units G = 1
and H = 1. The spherically symmetric interval corresponding to Schwarzschild metric
reads
ds* = —f(r)dt* + f(r)"'dr® + r2dSQ, (70)
where f(r) = 1 — 2m/r. Here the widely used signature of space-time is adopted.
The interval can be transformed into (2D conformal) format
ds* = x(p)*(—=dt* +dp*) + (f(r) ™" — g(r))dr? +r*dQ, (71)
where ¢(r) is an arbitrary function, (dp(r)/dr)* = g(r)/f(r), and x(p)* = f(r(p)). After a
de Sitter-like deformation, the new interval reads
ds” = —(d(x(p)t))* + (d(x(p)p))* + (d(x(p)w))* + (f(r) ™" = g(r))dr? +12dQ,  (72)
where —t? + p? + w? = L?, L is a constant. With the help of Kruskal transformations* (in
the quadrant of p < L and w > 0)
t = (L? — p*)2sinh(t'/L), (73)
w = (L* = p*)2cosh(t'/L), (74)
the deformed interval is calculated as
ds” = — x(p)*(1 — p*/L*)dt” + ((dx(p) /dp)*L* + x(p)*L?*/(L* — p*))dp*  (75)
+ (f(r)~" = g(r))dr® + r*dQQ. (76)

With appropriate choices of L and ¢(r) (for example, L ~ 7 ~ mz, g(r) ~ rodf (r) /dr, and
a change of space-time signature for L), one can obtain deformed f(r)p — 1 as

X(p(r)2(1 = p(r)?/L?) — 1 ~m2 (In(r/r0))?, (77)

for r > o ~ m2. The acceleration for a mass in the modified gravitational field is

1

@l ~ Z /o). (78)

Compared with modification of Newtonian dynamics (MONDI17], which is postulated
to explain the non-Keplerian behavior of rotation curves of galaxies without the presence
of dark matter), there is an additional logarithmic correction. It may help resolve the dark
matter issue within and beyond the galaxy scale.

*A different choice of signature would entail trigonometric functions.
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5 Conclusion

We follow the notion that all idempotent projections of an algebraic spinor should be
realized as fermions of physical world. There are 16*3 Weyl fermions with 64 * 3 real com-
ponents for 3 generations. The orthogonal Clifford algebra, with 2 degrees of freedom,
would not work.

Amongst various extensions of Clifford algebras, with or without supersymmetry, a
direct product of binary and ternary Clifford algebras C/;¢ * Cl1 seems to be physically
relevant. By applying flavor and color projectors, one can identify idempotent projections
of an algebraic spinor with 3 generations of leptons and quarks.

With electroweak Higgs fields replaced by their VEVs, the only flavor mixing terms
are Majorana-type masses of right-handed neutrinos. When Higgs fields fluctuate around
their VEVs, Dirac-type masses may not be diagonalized in terms of flavors. This causes
turther mixing of all fermion species.

We propose a general gauge action, which includes both gravity and Yang-Mills gauge
tields. The most significant terms are Einstein-Cartan, cosmological constant, and Yang-
Mills actions. There is no CP-violating theta term. Along with Yukawa coupling con-
stants, the parameters involve three VEV magnitudes (1/[,V,v) of vierbein and Higgs
tields. They are essential in determining mass hierarchies.

Possible extra dimensions of the underlying space-time manifold may deform grav-
ity as seen in 4 dimensions. We consider a specific deformation of Schwarzschild metric,
which leads to modified gravity. Compared with MOND, there is an additional logarith-
mic correction. It may help resolve issues facing MOND beyond galaxy scale.
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