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In the framework of covariant theory of gravitation the Euler-Lagrange equations are written and 

equations of motion are determined by using the Lagrange  function, in the case of small test particle 

and in the case of continuously distributed matter. From the Lagrangian transition to the 

Hamiltonian was done, which is expressed through three-dimensional generalized momentum in 

explicit form, and also is defined by the 4-velocity, scalar potentials and strengths of gravitational 

and electromagnetic fields, taking into account the metric. The definition of generalized 4-velocity, 

and the description of its application to the principle of least action and to Hamiltonian is done. The 

existence of a 4-vector of the Hamiltonian is assumed and the problem of mass is investigated. To 

characterize the properties of mass we introduce three different masses, one of which is connected 

with the rest energy according to the Einstein formula, another is the observed mass, and the third 

mass is determined from the condition when the energy of macroscopic fields in substance is absent. 

It is shown that the action function has the physical meaning of the function describing the change of 

such intrinsic properties as the rate of proper time and rate of rise of phase angle in periodic 

processes. 

Keywords: Euler-Lagrange equations; Lagrangian; Hamiltonian; generalized momentum; 

generalized 4-velocity; equations of motion; covariant theory of gravitation. 

 

In [1] derivation of equations of the covariant theory of gravitation (CTG) was carried out from 

the principle of least action. Based on the resulting form of the Lagrangian now it is possible to make 

the next step and go to the Hamiltonian corresponding to the CTG theory. 

After a brief presentation of the Euler-Lagrange equations we use them to describe the motion of 

a small test particle, as well as in the case of continuously distributed matter. Then we find the 

Hamiltonian in its two forms, with the help of 4-velocity and the generalized momentum, and 

substitute the Hamiltonian into Hamilton equations to verify the motion equations. At the end of this 

paper we introduce for consideration the four-dimensional generalized velocity to simplify the 

expressions for the Lagrangian and Hamiltonian. The transition was done from the 4-vector of the 

generalized velocity to a new 4-vector of the Hamiltonian, specifying the energy and the momentum 

of substance in fundamental fields. The comparison with the Lagrangian approach is made, in which 

the energy and the momentum are calculated through energy-momentum tensors. In the last part, we 

describe the action function as a function having an independent meaning in physics – it can help to 

determine the effects of time dilation, arising from the change of velocity of bodies’ motion or under 

the influence of fields. 
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The principle of least action 

In this section we shall write down known relations for the Lagrange function and the principle of 

least action for the covariant theory of gravitation (CTG). According to the latter, the equations of 

motion of substance and fields can be found by varying the action function S L dt= ∫ . In the 

coordinates ( , , , )x ct x y zµ =  the Lagrangian depends on the coordinates xµ , from the 4-velocity of 

substance motion 
cdxu

ds

µ
µ =  (where c  – the speed of light, ds  indicates the interval for the 

moving substance unit), on 4-potential Dµ  of gravitational field and 4-potential Aµ  of 

electromagnetic field and on metric tensor gµν  of the reference frame. If to move on from xµ  and 

uµ  to the three-dimensional coordinates, time and velocity, then the Lagrangian function with these 

variables can be written in the form: ( , , , , , , , , , )L L t x y z x y z D A gµ µ µν= . Here the quantities 

dxx
dt

= , 
dyy
dt

= , 
dzz
dt

=  are the components of 3-vector of coordinate velocity ( , , )x y z=v . 

When moving along a certain trajectory the current coordinates , ,x y z  of a substance unit, and its 

velocities , ,x y z  are functions of coordinate time t . In general 4-potentials Dµ  and Aµ , which act 

on the substance, and the metric tensor gµν  depend on the coordinates and time. If we take the 

coordinates of the substance along the trajectory as a function of time, then Dµ  , Aµ  and gµν  at the 

trajectory can be considered as functions of time too. This allows us to consider the Lagrange 

function as a function of time, and the integral 
2

1

S Ldt= ∫  between the space-time points 1 and 2 – as 

a number. Theoretically, under variations of the coordinates we can understand small in magnitude 

functions of time, due to adding of which the shape of trajectory of the substance motion change, and 

respectively, change the value of the action function. From the principle of least action it follows, 

that the action S  on the true trajectory has to be extreme (usually S  has a minimum). 

Variation of the action function along the trajectory, when all the variables are varying except the 

time, gives the following: 

 
2 2

1 1

0.

L L L L L LS Ldt x y z x y z
x y z x y z

L L LD A g dt
D A gµ µ µν

µ µ µν

δ δ δ δ δ δ δ δ

δ δ δ

⎛ ∂ ∂ ∂ ∂ ∂ ∂= = + + + + + +⎜ ∂ ∂ ∂ ∂ ∂ ∂⎝
⎞∂ ∂ ∂+ + + =⎟⎟∂ ∂ ∂ ⎠

∫ ∫
 

 

The term with the variation of the velocity xδ  can be integrated by parts: 
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( )
22 2 2 2 2

11 1 1 1 1

L L dx L L L d Lx dt dt d x x x d x dt
x x dt x x x dt x

δ δ δ δ δ δ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫ ∫ ∫ ∫ . 

 

It was considered that the variation xδ  at the initial time point 1 and in the final time point 2 is 

zero according to the condition of varying trajectory. Integrating by parts also for terms with yδ  

and zδ , for the variation of the action we obtain: 

 
2

1

2

1

0.

L d L L d L L d LS x y z dt
x dt x y dt y z dt z

L L LD A g dt
D A gµ µ µν

µ µ µν

δ δ δ δ

δ δ δ

⎛ ⎞⎡ ⎤⎛ ⎞⎡∂ ∂ ⎤ ∂ ∂ ⎡∂ ∂ ⎤⎛ ⎞ ⎛ ⎞= − + − + − +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦⎝ ⎠
⎛ ⎞∂ ∂ ∂+ + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

∫

∫
           (1) 

 

Variations xδ , yδ , zδ , Dµδ , Aµδ  and gµνδ  in (1) are independent from each other and are 

not equal to zero on the true path, except for the initial and final points of the trajectory. From this 

we obtain the following Euler-Lagrange equations: 

 

d L L
dt x x

∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
,            

d L L
dt y y
⎛ ⎞∂ ∂=⎜ ⎟∂ ∂⎝ ⎠

,            
d L L
dt z z

∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
.                          (2) 

 

0L
Dµ

∂ =
∂

,                0L
Aµ

∂ =
∂

,                 0L
gµν

∂ =
∂

.                                   (3) 

 

We shall remind that the principle of least action is usually applied to conservative systems for 

which precise potential functions are given, from which acting forces can be found. We shall 

consider physical systems with substance and the fundamental fields, which include the gravitational 

and electromagnetic fields. These systems are conservative, and for them the law of conservation of 

energy-momentum can be found, which has the same form in all frames of reference. If the reference 

frame is fixed, the total energy and total momentum remain separately for each moment of time, with 

the possible exchange of energy and momentum between substance and field. 

 

Lagrange function and equations of motion 

In the case of continuously distributed substance throughout the entire volume of space in the 

gravitational and electromagnetic fields, we shall use the Lagrangian function L , which in the 

covariant theory of gravitation (CTG) has the form [1]: 
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2

1 2 3

0

( 2 ) ,
16 4

c Φ Φ F F
L kc R c J J D J A j g dx dx dx

µν µν
µν µνµ µ µ

µ µ µπ γ µ
⎛ ⎞

= − Λ − − + − − −⎜ ⎟⎜ ⎟
⎝ ⎠
∫  

(4) 

 

where 
3

16
ck
π γ β

= −  – proportionality factor, β  – low coefficient of order of unity that depends 

on the properties of the reference frame,γ  – gravitational constant, 

c  – speed of light, as the measure of velocity of electromagnetic and gravitational interactions 

propagation, 

R  – scalar curvature, 

Λ  – constant for the system (in the case when (4) is applied to cosmology, the constant Λ  is 

called the cosmological constant), 

,D
cµ

ψ⎛ ⎞= −⎜ ⎟
⎝ ⎠

D  – 4-potential of gravitational field which is described through scalar potential 

ψ  and vector potential D  of this field, 

0J uµ µρ=  – 4-vector of mass current density, 

0ρ  – density of substance mass in reference frame in which the substance is at rest, 

uµ  – 4-velocity of the substance unit, 

Φ D D D Dµν µ ν ν µ µ ν ν µ= ∇ − ∇ = ∂ − ∂  – gravitational tensor (gravitational field strength 

tensor), 

Φ g g Φα β α µ ν β
µν=  – definition of the gravitational tensor with contravariant indices by means 

of the metric tensor gα µ , 

,A
cµ
ϕ⎛ ⎞= −⎜ ⎟
⎝ ⎠

A  – 4-potential of electromagnetic field, set by scalar potential ϕ  and vector 

potential A  of the field, 

0qj uµ µρ=  – 4-vector of electric current density, 

0qρ  – charge density of substance in reference frame in which the charge is at rest, 

0µ  – vacuum permeability, 

F A A A Aµν µ ν ν µ µ ν ν µ= ∇ − ∇ = ∂ − ∂  – electromagnetic tensor (electromagnetic field strength 

tensor), 

g−  – the square root of determinant g  of metric tensor, taken with the negative sign, 
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1 2 3dx dx dx  – product of differentials of spatial coordinates, which can be viewed as a spatial 

coordinate volume of the moving substance unit in the used reference frame.  

 

Further we shall use international system of units, basic coordinates in the form of coordinates 

with contravariant indices 0 1 2 3( , , , )x x x x , metric signature (+, –, –, –), metric tensor gµν . The 

presence of repeated indices in formulas implies Einstein summation convention, which is a separate 

summation for each repeated index. The symbol µ∇  denotes covariant derivative with respect to 

coordinates (in this case the coordinates xµ ). Similarly, 
xµ µ
∂∂ =

∂
 is an operator of partial 

derivative with respect to coordinates, or 4-gradient. 

We can assume that the quantities R , 0ρ , Dµ , Φµν , 0qρ , Aµ , Fµ ν  in the location of the 

substance unit are functions of its coordinates xµ , as well as the functions of the coordinates and 

velocities of other substance units. However, the specified quantities in the first approximation are 

independent from the 4-velocity of the substance unit. This is possible if the substance unit is so 

small that the propagation delay of its own field within the volume of the substance unit can be 

neglected even at relativistic speeds. The smallness of the volume, mass and charge of the substance 

unit leads to the fact that the motion of this substance unit is determined only by the gradients of the 

external fields (in the form of superposition of fields from all the external substance units), and the 

substance unit itself does not contribute to the average gradient of the field inside the unit. With 

these assumptions in (4) only 4-velosity uµ , as a part of J µ  and jµ , will depend on the 3-velocity 

of the substance unit. 

If we consider that the tensor of gravitational field depends on the 4-potential Dµ  under the 

definition Φ D D D Dµν µ ν ν µ µ ν ν µ= ∇ − ∇ = ∂ − ∂ , then the relation 0L
Dµ

∂ =
∂

 of (3) for the 

Lagrangian (4) provides: 

 

2

4Φ J
c

α β β
α

π γ∇ = − ,        or        2

4Φ J
c

µν µ
ν

π γ∇ = .                                  (5) 

 

Similarly, we obtain for the relation 0L
Aµ

∂ =
∂

 in (3): 

 

2
0

1F j
c

α β β
α ε

∇ = ,      or        02
0

1F j j
c

µ ν µ µ
ν µ

ε
∇ = − = − ,                       (6) 
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The relations (5) and (6) set the equations of gravitational and electromagnetic fields, 

respectively, carrying out the connection between the 4-potentials of fields and the sources of fields 

in the form of 4-currents of mass and charge. According to (5) and (6), the larger 4-currents are, the 

higher are the covariant derivatives of the variables Φα β  and Fα β  (these values are 4-rotors of the 

4-potentials of field). 

As was shown in [1], the relation 0L
gµν

∂ =
∂

 in (3) leads to the following: 

 

( )4

1 8 ,
2

R g R U W
c

α β α β α β α β α βπ γ β φ− = + +                                       (7) 

 

provided that: 

 
4

2
0 0 0 08q

cc u u D u A u cµ µ µ
µ µ µρ ρ ρ ρ

π γ β
Λ ′+ + = = .                               (8) 

 

In the equation for the metric (7) the quantity Rα β  is Ricci tensor, so that the left side of (7) gives 

the Hilbert-Einstein tensor. The right side of (7) contains the stress-energy tensor of substance α βφ , 

the stress-energy tensor of gravitational field U α β , as well as the stress-energy tensor of 

electromagnetic field W α β . The tensor U α β  is expressed through the tensor of gravitational field by 

the formula: 

 
2 21 1

4 4 4 4
c cU g Φ Φ g Φ Φ Φ Φ g Φ Φα β αν κ β α β µν α κ β α β µν

κν µν κ µνπ γ π γ
⎛ ⎞ ⎛ ⎞= − = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.     (9) 

 

Equation (8) states that there is a connection between the cosmological constant Λ  and energy 

density 2
0 cρ′  of the system’s substance when the substance is dispersed to infinity and there it is 

still. In this case, the 4-potentials Dµ  and Aµ  in (8) are equal to zero. As a result of further 

interaction the substance merges into a smaller size system, and the substance density varies from 

0ρ′  to 0ρ  , and there is the potential energy of interaction between the substance and the field due to 

the 4-potentials of the field. In the interpretation of the constant Λ  two approaches are possible. In 

the first, the difference between 0ρ  and 0ρ′  arises from the macroscopic gravitational and 

electromagnetic fields. In the second case we can assume that to the 4-potentials of fields Dµ  and 

Aµ  the strong gravitation and electromagnetic fields make contribution which act at the level of 



7 
 

elementary particles and alter the mass of the particles [2]. In this case, the density 0ρ′  should be 

substituted by the density 0ρ′′ , and the mass of bodies is described as a characteristic that defines the 

interaction of substance with field quanta – gravitons and electromagnetic quanta, acting at all levels 

of matter. It should be noted that since the 4-potentials Dµ  and Aµ  of fields are defined up to gauge 

transformation, the cosmological constant Λ  will be determined with the same precision. 

Now we shall turn to the relations (2). We shall preselect in the Lagrangian (4) only those terms 

which directly depend on the coordinates and the velocities, and substitute the relation 0J uµ µρ=  

and 0qj uµ µρ= : 

 

( ) 1 2 3
0 0 0qL c u u D u A u g dx dx dxµ µ µ

µ µ µρ ρ ρ′ = − − − −∫ ,                      (10) 

2
1 2 3

0

( 2 )
16 4

c Φ Φ F F
L L kc R g dx dx dx

µν µν
µν µν

π γ µ
⎛ ⎞

′= + − Λ + − −⎜ ⎟⎜ ⎟
⎝ ⎠
∫ . 

 

We shall integrate (10) for the three-dimensional volume, assuming that 0dx cdt= , taking into 

account the following relations [3]: 

 

00g bg− = ,          
0

00 00
dxd g dt g
c

τ = = ,         00
dg bg b
dt
τ− = = ,         (11) 

 

where g  – determinant of the metric tensor gµν ,  

dτ  – differential of the proper time at the point of reference frame, through which the substance 

unit passes,  

dt  – differential of the coordinate time of the used reference frame,  

b  – determinant of the three-dimensional metric tensor i kb , with components  

0 0

00

i k
i k ik

g g
b g

g
= − + ,  ik ikb g= − ,   , 1, 2,3i k = . 

 

The invariant of three-dimensional volume is the product 1 2 3b dx dx dx , and the factor b  

provides transition from a moving coordinate volume 1 2 3dx dx dx  to moving local volume in terms 

of the local observer at the point in space, through which at the moment τ  of its proper (local) time 

the substance unit passes. This gives 1 2 3 1 2 3
00

d dg dx dx dx b dx dx dx dV g dV
dt dt
τ τ− = = = , 
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where dV  is the differential of the moving local volume. For the moving substance unit 4-velocity 

equals to 
cdxu

ds

µ
µ = , as well as: 

 

1 2 3 0
0 0 0 0

g dcd cdtdV g dx dx dx dm dV dV
ds ds ds

ρτ ρ ρ ρ ρ− Σ
= − = = = = , 

01 2 3
0 0 0 0

q
q q q q

g dcd cdtdV g dx dx dx dq dV dV
ds ds ds

ρτ ρ ρ ρ ρ
− Σ

= − = = = = , 

 

where 0dV  is the differential of volume of substance unit in the accompanying reference frame, 

1 2 3g d g cdt dx dx dx− Σ = −  – an invariant of moving 4-volume, provided 0dx cdt= . 

 

This implies the expression for the mass density ρ  and charge density qρ  of the moving 

substance: 

 

0 0
cd ds
ds ds

τρ ρ ρ′
= = ,                     0 0q q q

cd ds
ds ds

τρ ρ ρ′
= = , 

 

where ds  denotes the interval for the moving substance unit, and ds′  is an interval for a 

stationary observer, by which the substance passes. 

 

With the formulas for dm  and dq , L′  in (10) will equal to: 

 

.

dx dx dx dxL c g D dm A dq
dt dt dt dt

dx dx dx dxmc g mD q A
dt dt dt dt

µ ν µ µ

µν µ µ

µ ν µ µ

µν µ µ

⎛ ⎞
′ = − − − =⎜ ⎟⎜ ⎟

⎝ ⎠

= − − −

∫ ∫
                        (12) 

 

In (12) m  and q  are the mass and the charge of a small substance unit, moving as a whole with 

the coordinate velocity 
dx
dt

µ

, and this velocity is not a 4-vector. 4-potentials Dµ  and Aµ  in the 

result of integrating by volume are considered to be effective averaged by volume potentials acting 

on the substance unit. In the coordinates ( , , , )x ct x y zµ =  the quantity ( , , , ) ( , )dx c x y z c
dt

µ

= = v , 
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hence the product is , ( , )dxD c
dt c

µ

µ
ψ ψ⎛ ⎞= − = − ⋅⎜ ⎟
⎝ ⎠

v vD D . Similarly for the electromagnetic 

potential is: , ( , )dxA c
dt c

µ

µ
ϕ ϕ⎛ ⎞= − = − ⋅⎜ ⎟
⎝ ⎠

A Av v . We shall note that the coordinate velocity 

d
dt

= rv  is different from the velocity of the substance unit, which is measured by the local 

observer. This is due to the fact that the local observer's proper time τ  does not coincide with the 

coordinate time t  (the coordinate time t  is common for the reference frame as a whole, and the 

proper time τ  is measured by stationary electromagnetic clocks in each specific point of reference 

frame, or by the clock associated with the moving substance, and depends on the actions on the 

clocks of existing gravitational and electromagnetic fields at the time of measurement). 

Three-dimensional vector potential of gravitational field has its components along the spatial axes 

of the coordinate system: ( , , )x y zD D D=D , as well for the vector potential of electromagnetic 

field it can be written down: ( , , )x y zA A A=A . 

Taking it into account for (12) we have: 

 

[
]

00 01 02 03 10 11 12 13

1
2

20 21 22 23 30 31 32 33

( ) ( )

( ) ( )
( ) ( ) .x y z x y z

L mc c g c g x g y g z x g c g x g y g z

y g c g x g y g z z g c g x g y g z
m xD yD zD q x A y A z Aψ ϕ

′ = − + + + + + + + +

+ + + + + + + + −
− − − − − − − −

               (13) 

 

In the simplest case, we can assume that for an arbitrary reference frame the velocities , ,x y z  do 

not depend explicitly on the coordinates , ,x y z , and are time-dependent; the mass m  and the charge 

q  can be dependent on , , ,t x y z  and independent on , ,x y z ; the scalar potentials ψ  and ϕ , the 

vector potentials D  and A , the metric tensor gµν  do not depend directly on , ,x y z , but depend on 

, , ,t x y z . The assumption of independence , ,x y z  in an explicit form on the coordinates , ,x y z  

means that the velocity field is free, and not the bound vector field. An example of the bound field is 

the velocity field in the liquid flowing in the volume bounded by a surface. Due to the interaction of 

the liquid with the surface and the liquid particles with each other there is a clear dependence of the 

velocity field on the coordinates. If we consider quasi-free motion of continuously distributed 

substance with weak gravitational and electromagnetic fields, the velocity will depend weakly on the 

spatial coordinates. 

Under these conditions from (12) and (13) we find: 
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10 11 12 13 1( ) x x x x
L L mc g c g x g y g z m D q A m g u m D q A
x x dx dxg

dt dt

µ
µµ ν

µν

′∂ ∂= = − + + + + + = − + +
∂ ∂

. 

(14) 

 

In (14) it was taken into account that 
dx dx dsg
dt dt dt

µ ν

µν = , where ds  is the interval, and the 

relation ( , , , )cdt dx cdt cdxc x y z u
ds dt ds ds

µ µ
µ= = =  was used. We shall note that from the definition of 

4-velocity 
cdxu

ds

µ
µ =  and of the interval ds g dx dxµ ν

µν=  follows the standard relation 

2u u cµ
µ = . 

The full time derivative of (14) gives: 

 

1( ) x x
x x

d m g u dD dAd L d L dm dqD m A q
dt x dt x dt dt dt dt dt

µ
µ′∂ ∂⎛ ⎞ ⎛ ⎞= = − + + + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

.            (15) 

 

The first spatial component of the gradient from L′  will be equal to: 

 

( )
2

( ) .

x y z

y yx xz z
x y z

gL ds m mu dx mc xD yD zD
x dt x dt x x

D AD AD Aqm x y z xA y A z A q x y z
x x x x x x x x x

µ ν
µν ψ

ψ ϕϕ

∂′∂ ∂ ∂= − − − − − − −
∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂∂ ∂ ∂− − − − − − − − − − − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 

 

In view of (10) we have: 

 

2
1 2 3

0

( 2 )
16 4

c Φ Φ F FL L kc R g dx dx dx
x x x

µν µν
µν µν

π γ µ
⎛ ⎞′∂ ∂ ∂= + − Λ + − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠
∫ .             (16) 

 

The Euler-Lagrange equation 
d L L
dt x x

∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
 from (2) requires that the equations (15) and (16) 

should be equal to each other: 
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1( )

( )
2

( )

( 2 )

x x
x x

x y z

y yx xz z
x y z

d m g u dD dAdm dqD m A q
dt dt dt dt dt

gds m mu dx mc xD yD zD
dt x dt x x

D AD AD Aqm x y z x A y A z A q x y z
x x x x x x x x x

kc R
x

µ
µ

µ ν
µν ψ

ψ ϕϕ

− + + + + =

∂∂ ∂= − − − − − − −
∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂∂ ∂ ∂− − − − − − − − − − − − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂+ − Λ
∂

2
1 2 3

0

.
16 4

c Φ Φ F F
g dx dx dx

µν µν
µν µν

π γ µ
⎛ ⎞

+ − −⎜ ⎟⎜ ⎟
⎝ ⎠
∫

(17) 

 

With the help of 3-vector 1 2 3( , , )g u g u g uµ µ µ
µ µ µ= −u  we shall introduce the 3-vector of 

generalized momentum with the following components: 

 

1 2 3( , , )

( , , ).
x x y y z z

x x x y y y z z z

m g u mD q A m g u mD q A m g u mD q A

mu mD q A mu mD q A mu mD q A

µ µ µ
µ µ µ= − + + − + + − + + =

= + + + + + +

P
        (18) 

 

In view of (18) instead of (17) it can be written in the 3-vector form: 

 

2
1 2 3

0

( 2 ) .
16 4

d dsmc m m q q
dt dt

c Φ Φ F F
kc R g dx dx dx

µν µν
µν µν

ψ ϕ

π γ µ

⎛ ⎞= −∇ + − ⋅ + − ⋅ +⎜ ⎟
⎝ ⎠
⎛ ⎞

+ ∇ − Λ + − −⎜ ⎟⎜ ⎟
⎝ ⎠
∫

P D Av v
                  (19) 

 

According to (19) for continuously distributed matter the rate of change of the generalized 

momentum of substance and the field is determined by gradients from the following quantities: the 

energy of the substance unit in gravitational and electromagnetic fields that can be found through the 

velocity v  and the scalar and vector potentials; the integral by volume of the term with scalar 

spacetime curvature; the integral by volume of energy invariants of the gravitational and 

electromagnetic fields, which are in the volume of the substance unit, as well as those of their proper 

fields, which are generated by this substance and interact with it. We shall remind that deriving (17) 

and (19), we assumed that the velocity of the substance does not depend on spatial coordinates. In 

this regard, in (17) and (19) there are no gradients of the velocity components that appear in the case 

of the velocity field in some way connected with the points in space. 
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The case of a small test particle outside a massive charged body 

The equation of motion (17) can be simplified by using the operator equality: 
d
dt t

∂= + ⋅∇
∂

v . 

This gives the following: 

 

x x x x xdD D D D Dx y z
dt t x y z

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

,              x x x x xdA A A A Ax y z
dt t x y z

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

, 

dm m m m mx y z
dt t x y z

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

,                   
dq q q q qx y z
dt t x y z

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

. 

 

Next, we shall introduce the vector of gravitational acceleration strength G  and the vector of 

torsion field intensity Ω  (gravitomagnetic field) according to the formulas: 

 

t
ψ ∂= −∇ −

∂
DG ,                    = ∇× DΩ . 

 

It is seen that these definitions of G  and Ω  are written in generally covariant form, since these 

quantities with accuracy up to a constant factor, constitute the components of the gravitational tensor 

Φ D D D Dµν µ ν ν µ µ ν ν µ= ∇ − ∇ = ∂ − ∂ . Similarly the strength of the electric field E  and the 

induction of the magnetic field B  are defined: 

 

t
ϕ ∂= −∇ −

∂
AE ,                    = ∇× AΒ . 

 

As far as [ ]x z ym m y mzΩ Ω× = −v Ω ,  [ ]x z yq q y qzΒ Β× = −v Β ,  then using the previous 

equations for (17) we find: 

 

[ ] [ ]

1

2
1 2 3

0

( )
2

[ ] [ ] [ ] [ ]

( 2 ) .
16 4

x x

x x x xx x

gd m g u mu dx m q ds m m qD A c
dt dt x t t dt x x x

m m mG m qE q

c Φ Φ F F
kc R g dx dx dx

x

µ µ ν
µνµ

µν µν
µν µν

ψ ϕ

π γ µ

∂ ∂ ∂ ∂ ∂ ∂− + = − − − − − +
∂ ∂ ∂ ∂ ∂ ∂

+ × ∇ × + × ∇ × + + × + + × +

⎛ ⎞∂+ − Λ + − −⎜ ⎟⎜ ⎟∂ ⎝ ⎠
∫

D Av v v vΩ Β        (20) 

 

Equation (20) is the equation of motion of the substance unit in the direction of the first spatial 

axis of the reference system, and it corresponds to the equation 
d L L
dt x x

∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
 in (2). For other 
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spatial axes the equations of motion will differ only by replacing the indices in the derivatives and 

the components of vectors. If we enter the 3-vector 1 2 3( , , )g u g u g uµ µ µ
µ µ µ= −u , then instead of 

(20) we can write the equation of motion in 3-vector form: 

 

[ ] [ ]
2

1 2 3

0

( )
2

[ ] [ ] [ ] [ ]

( 2 ) .
16 4

d m mu dx m q dsg c m m q
dt dt t t dt

m q m m q q

c Φ Φ F F
kc R g dx dx dx

µ ν

µν

µν µν
µν µν

ψ ϕ

π γ µ

∂ ∂+ ∇ = − − − ∇ − ∇ − ∇ +
∂ ∂

+ × ∇ × + × ∇ × + + × + + × +

⎛ ⎞
+∇ − Λ + − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫

u D A

D A G Ev v v vΩ Β              (21) 

 

3-vector gµν∇  in the left side of (21) plays the same role as the Christoffel symbol in the 

equations of motion in Riemannian space in the four-dimensional notation (in the general theory of 

relativity and in the covariant theory of gravitation).  

Since we consider a small test particle outside a massive charged body, then the contribution to 

the curvature R  and the constant Λ  is made only by the test particle itself. The terms 
2

16
c Φ Φµν

µν

π γ
 

and 
04

F F µν
µν

µ
 in (21) are associated with the energy density of gravitational and electromagnetic 

fields, respectively. If the test particle is small enough and has low density of mass and charge, then 

the main contribution to the energy density of the fields in the volume of the particle will be made by 

the external fields of the massive charged body. In addition, in (21) the gradient of the integral over 

the volume is taken, which in some cases can be close to zero due to symmetry and homogeneity of 

the distribution of field energy within the test particle. One of such cases is the approximate spatial 

homogeneity of the external field. 

In Minkowski space we have: 
2 21 c−

u = vv ,   0gµν∇ = . If we also assume the constancy of 

the mass and charge with the time, zero gradients of the mass, charge, curvature and zero gradients 

in the distribution of field energy within the volume of the particle, then (21) takes the form of the 

equations of motion of the test particle in gravitational and electromagnetic fields in Lorentz-

invariant theory of gravitation [2]: 

 

2 2
[ ] [ ]

1
d m m m q q
dt c

⎛ ⎞
⎜ ⎟ = + × + + ×
⎜ ⎟−⎝ ⎠

v v vv G EΩ Β .                             (22) 
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The left side of (22) is the rate of change with the time of the relativistic particle momentum, 

while in the right side there is the two-component gravitational force and similar to it the two-

component electromagnetic Lorentz force. Thus, from the variation of action (1) with the Lagrangian 

(4) in the framework of the covariant theory of gravitation (CTG), we can obtain the equation of 

motion of a particle (22), which is valid in the special theory of relativity (SRT). This means that the 

equations of CTG and SRT are linked by the correspondence principle, when after the aspiration of 

the curvature of spacetime to zero the equations of CTG turn into the equations of special relativity. 

In contrast, the equations of general relativity do not have such a direct transition to the equations 

of special relativity. Indeed, in general relativity Lagrangian differs from (4) by the absence of 

gravitational terms of the form:
2

0 16
c Φ Φ

D u
µν

µνµ
µρ

π γ
− + . As a result, in (21) there are no 

gravitational terms, only the following remains: 

 

[ ]

1 2 3

0

( ) [ ] [ ]
2

( 2 ) .
4

d m mu dx q dsg c m q q q q
dt dt t dt

F F
kc R g dx dx dx

µ ν

µν

µν
µν

ϕ

µ

∂+ ∇ = − − ∇ − ∇ + × ∇ × + + × +
∂

⎛ ⎞
+∇ − Λ − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫

u A A Ev v Β
   (23) 

 

In order that gravitation could appear in general relativity as an effective force of gravitation in 

the weak field limit, in (23) the decomposition of gµν∇  should be carried out, and the appearing 

terms should be transferred to the right side are considered as a gravitational force. The difference 

between the positions of the general relativity and CTG is due to the fact that in general relativity 

gravitation is simply the curvature of spacetime (without specifying the reasons for this curvature), 

and in CTG gravitation is a real physical force which is substantiated by the mechanism of Le Sage 

gravitation [4]. In this case the scalar potential ψ  of the gravitational field in CTG is the 

characteristic of scalar field associated with the flow of gravitons, and is proportional to the 

difference between the energy density of the graviton flux at the point where the potential is 

determined, and the energy density of the graviton flux at infinity. The gradients of the energy 

density of graviton flux in this case can be considered as gravitational field strengths. In the 

assumption that some gravitons are tiny charged particles, in [5] the scheme of appearance the 

electromagnetic force and the electric potential ϕ  is derived. If scalar potentials are known in a 

fixed frame of reference, then after conversion into a moving frame of reference vector potentials of 

gravitational D  and electromagnetic A  of fields appear, as a consequence of field retardation 

effects due to the limited speed of their propagation. Thus we can understand why the fields are 

described by 4-potentials ,D
cµ

ψ⎛ ⎞= −⎜ ⎟
⎝ ⎠

D  and ,A
cµ
ϕ⎛ ⎞= −⎜ ⎟
⎝ ⎠

A . 
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The relation between the Lagrange and Hamilton functions 

Describing the principle of least action, we recorded the Lagrange function in the general form: 

( , , , , , , , , , )L L t x y z x y z D A gµ µ µν= , where the quantities 
dxx
dt

= , 
dyy
dt

= , 
dzz
dt

=  are the 

components of 3-vector of coordinate velocity ( , , )x y z=v  of the substance unit motion. Variation 

of the action function leads to the Euler-Lagrange equations (2) and (3) and requires variation of the 

Lagrangian, which has the form: 

 

.

L L L L L LL x y z x y z
x y z x y z

L L LD A g
D A gµ µ µν

µ µ µν

δ δ δ δ δ δ δ

δ δ δ

∂ ∂ ∂ ∂ ∂ ∂= + + + + + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂+ + +
∂ ∂ ∂

                 (24) 

 

We shall introduce the Hamiltonian ( , , , , , , , , , )x y zH H t x y z P P P D A gµ µ µν= , where the 

quantities , ,x y zP P P  are the components of the 3-vector of the so-called conjugate generalized 

momentum ( , , )x y zP P P=P  (conjugate with respect to the coordinates , ,x y z ). The Hamiltonian in 

the simplest case is determined by the Legendre transformation through the components of the 

conjugate momentum, the velocity components of the substance unit and the Lagrange function: 

 

x y zH P x P y P z L L= + + − = ⋅ −P v .                                            (25) 

 

With the vanishing of the variation in time, as it is required for the Lagrange function in the 

principle of least action, for the variation of the Hamiltonian we have: 

 

.

x y z
x y z

H H H H H HH x y z P P P
x y z P P P

H H HD A g
D A gµ µ µν

µ µ µν

δ δ δ δ δ δ δ

δ δ δ

∂ ∂ ∂ ∂ ∂ ∂= + + + + + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂+ + +
∂ ∂ ∂

                 (26) 

 

The result of the variation (25) is: 

 

x x y y z zH P x P x P y P y P z P z Lδ δ δ δ δ δ δ δ= + + + + + − .                            (27) 

 

Substituting (24) and (26) in (27) gives the following relations: 
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H L
x x

∂ ∂= −
∂ ∂

,                  
H L
y y

∂ ∂= −
∂ ∂

,                  
H L
z z

∂ ∂= −
∂ ∂

,                       (28) 

H L
D Dµ µ

∂ ∂= −
∂ ∂

,              
H L
A Aµ µ

∂ ∂= −
∂ ∂

,             
H L

g gµν µν

∂ ∂= −
∂ ∂

,                    (29) 

x

Hx
P

∂=
∂

,      
y

Hy
P

∂=
∂

,      
z

Hz
P

∂=
∂

,      x
LP
x

∂=
∂

,      y
LP
y

∂=
∂

,      z
LP
z

∂=
∂

.             (30) 

 

After determining 
L
x

∂
∂

 through xP  in accordance with (30), and substituting in (2), taking into 

account (28) we have: xd P L H
dt x x

∂ ∂= = −
∂ ∂

. In general, we can write down: 

 

d L H
dt

= ∇ = −∇P
.                                                         (31) 

 

We shall find the components of the generalized momentum from (30), given that the velocity 

components , ,x y z  are directly included in the Lagrangian (4) according to (12) and (13) only in 

three terms, forming part of the Lagrangian L′ . From (14) and analogous relations with the help of 

(30) can be obtained the same as in (18): 

 

( , , )x y zP P P=P ,               1x x x
L LP m g u m D q A
x x

µ
µ

′∂ ∂= = = − + +
∂ ∂

,                      (32) 

 

2y y y
L LP m g u m D q A
y y

µ
µ

′∂ ∂= = = − + +
∂ ∂

,       3z z z
L LP m g u m D q A
z z

µ
µ

′∂ ∂= = = − + +
∂ ∂

. 

 

The scalar product of the generalized momentum P  and the velocity v , taking into account the 

relation ( , , , )cdt dx cdt cdxc x y z u
ds dt ds ds

µ µ
µ= = = , gives: 

 

1 2 3

0 .

x y zP x P y P z m g u x m g u y m g u z m q

dsmc g u mc m q
dt

µ µ µ
µ µ µ

µ
µ

⋅ = + + = − − − + ⋅ + ⋅

− + ⋅ + ⋅

P D A =

= D A

v v vv v        (33) 

 

Substituting this expression into (25) in view of (4), (10), (12), (13) allows us to find the 

Hamiltonian for the solid-state motion of the substance unit with the mass m  and the charge q : 
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2
1 2 3

0
0

( 2 )
16 4

c Φ Φ F F
H mc g u m q kc R g dx dx dx

µν µν
µν µνµ

µ ψ ϕ
π γ µ

⎛ ⎞
= + + − − Λ + − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫ .    (34) 

 

In mechanics the Hamiltonian is usually associated with the energy of a body (a substance unit). 

The first term in (34) is connected with the rest energy and kinetic energy of substance. Products 

mψ  and qϕ  give the potential energy of mass and charge in the gravitational and electromagnetic 

fields associated with scalar potentials. The volume integral in (34) defines the additional energies, 

depending on the curvature of spacetime R , the constant Λ , and the field strengths. If the volume of 

the test particle is small, the volume integral in (34) can be neglected compared to the first three 

terms. In this case the energy of the test particle includes the relativistic energy of motion and energy 

of the particle in field potentials. 

If we consider the formulas for dm  and dq , given before the relation (12), then the mass and the 

charge can be expressed in terms of the volume integral of the density of mass and charge: 

 

1 2 3
0

c dtm g dx dx dx
ds

ρ= −∫ ,                    1 2 3
0q

c dtq g dx dx dx
ds

ρ= −∫ , 

 

where 0ρ  – the substance density in the reference frame at rest relative to the substance unit;  

ds  – the interval;  

0qρ  – the charge density in the reference frame at rest relative to the substance unit. 

 

In view of this the Hamiltonian for a continuously distributed matter would have the following 

form: 

 

2
1 2 3

0 0 0 0
0

( ) ( 2 ) .
16 4q

c Φ Φ F FcdtH c g u kc R g dx dx dx
ds

µν µν
µν µνµ

µρ ρ ψ ρ ϕ
π γ µ

⎛ ⎞
= + + − − Λ − + −⎜ ⎟⎜ ⎟

⎝ ⎠
∫  

(35)
  

In Minkowski space we have the following relations: 

 
2

0 2 21
mcmc g u

c
µ

µ =
−v ,                        ( )

2
2 2 21

16 8
c Φ Φ

G c
µν

µν Ω
π γ π γ

= − − , 

2 2 20

0

( )
4 2

F F
E c Β

µν
µν ε

µ
= − − , 
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where G  – the gravitational acceleration, 

Ω  – the vector of torsion field intensity, 

E  – the electric field intensity, 

B  – the magnetic induction, 

0ε  – the vacuum permittivity. 

 

Substituting these relations into (34) for the case of a small test particle, when one can neglect the 

term with the scalar curvature R : 

 

( )
2

2 2 2 2 2 2 1 2 30
2 2

1 ( )
8 21

mcH m q G c E c Β dx dx dx const
c

εψ ϕ Ω
π γ

⎛ ⎞
= + + + − − − +⎜ ⎟

− ⎝ ⎠
∫v . 

(36) 

 

For external fields it is necessary in (36) to integrate over the volume of the particle, and for the 

fields generated by the substance of the particle, it is necessary to integrate over the volume both 

inside and outside the particle. The Hamiltonian (36) as the energy of a small test particle is 

determined up to a constant, which arises from integration over the volume of constant Λ  (for the 

meaning of this constant see our discussion after relation (9)). In the Minkowski space metric does 

not depend on the coordinates and time, and therefore the term with the constant Λ  in variation of 

Lagrangian disappears and does not contribute to the equations of motion. However, due to the 

definition of the Hamiltonian (25), where the Lagrange function L  is included as a whole, the 

constant Λ  appears in (36) as additional constant. 

 

The expression of the Hamiltonian through the generalized momentum 

In (34) and (35) the Hamiltonian is expressed through the 4-velocity uµ , depending on the 3-

vector of velocity ( , , )x y z=v . However, in the canonical form the Hamiltonian is defined by the 

components of generalized momentum: ( , , , , , , , , , )x y zH H t x y z P P P D A gµ µ µν= . We express the 

components of the 3-velocity through components of the generalized momentum ( , , )x y zP P P=P , 

for which, taking into account the expressions ( , , , )cdt dx cdt cdxc x y z u
ds dt ds ds

µ µ
µ= = = , we rewrite 

(32) in another form: 

 

11 12 13 10
x x xP m D q A dsg x g y g z g c

m cdt
− −+ + = − − .                                (37) 
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21 22 23 20
y y yP m D q A dsg x g y g z g c

m cdt
− −

+ + = − − .                               (38) 

31 32 33 30
z z zP m D q A dsg x g y g z g c

m cdt
− −+ + = − − .                                (39) 

 

In view of (32), we introduce the following notation: 

 

1
x x x

x
P m D q A C g u

m
µ

µ
− − = = − ,              2

y y y
y

P m D qA
C g u

m
µ

µ

− −
= = − , 

3
z z z

z
P m D q A C g u

m
µ

µ
− − = = − ,                                               (40) 

 

as components of a 3-vector, normalized to unit mass. 

 

We also need the following minors: 

Mα β  – minors of the matrix of the components of the metric tensor gα β , where 

, 0 ,1, 2 ,3α β = ; 

i km  – minors of the spatial submatrix of the components of the metric tensor i kg , where 

, 1, 2 ,3i k = . As the examples of such minors, taking into account the symmetry of the metric tensor 

gα β  we can write down: 

 

01 10 22 33 23 32 20 12 33 13 32 30 12 23 13 22( ) ( ) ( )M g g g g g g g g g g g g g g g= − − − + − ,            (41) 

02 01 21 33 23 31 02 11 33 13 31 03 11 23 13 21( ) ( ) ( )M g g g g g g g g g g g g g g g= − − − + − , 

03 01 21 32 22 31 02 11 32 12 31 03 11 22 12 21( ) ( ) ( )M g g g g g g g g g g g g g g g= − − − + − , 

11 22 33 23 32m g g g g= − ,      12 21 33 23 31m g g g g= − ,      13 21 32 22 31m g g g g= − . 

 

We shall also use the following relations: 

 

12 21 13 31 11 11 00

12 12 23 32 22 22 00

13 13 23 23 33 33 00

.
.

.

g m g m g m M
g m g m g m M

g m g m g m M

− − = −
+ − = −

− + − = −

                                          (42) 

13 12 23 22 33 32 0g m g m g m− + = ,            12 23 13 33 11 13 0g m g m g m− − = , 
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12 11 23 31 22 21 0g m g m g m− − + = ,           12 13 23 33 22 23 0g m g m g m− − + = , 

13 11 23 21 33 31 0g m g m g m− + − = ,           12 22 13 32 11 12 0g m g m g m− + + = . 

 

With these notations from (37), (38) and (39) we have: 

 

( )00 11 12 13 01x y z
dsM x m C m C m C M c
cdt

= − + − − .                                 (43) 

( )00 21 22 23 02x y z
dsM y m C m C m C M c
cdt

= − + + .                                   (44) 

( )00 31 32 33 03x y z
dsM z m C m C m C M c
cdt

= − + − − .                                 (45) 

 

Dividing (44) and (45) by (43), y  and z  can be expressed by x : 

 

( )
( )

00 01 21 22 23 02

0000 11 12 13

( ) x y z

x y z

M x M c m C m C m C M cy
MM m C m C m C

+ − +
= +

− + −
.                           (46) 

( )
( )

00 01 31 32 33 03

0000 11 12 13

( ) x y z

x y z

M x M c m C m C m C M cz
MM m C m C m C

+ − + −
= −

− + −
.                          (47) 

 

From (43) we find: 

 

( )
2

2 00 01
2

11 12 13

( )

x y z

M x M cds
cdt m C m C m C

⎛ ⎞ +=⎜ ⎟
⎝ ⎠ − + −

.                                           (48) 

 

On the other hand, ( , , , )dx c x y z
dt

µ

= , and for the square of the interval 2( )ds g dx dxα β
α β= . In 

view of this, we have: 

 

2 2
00 01 02 032 2

2 2 2
12 13 23 11 22 33

1 ( 2 2 2

2 2 2 ).

gds dx dx g c g cx g c y g cz
cdt c dt dt c

g x y g x z g y z g x g y g z

α β
α β⎛ ⎞

= = + + + +⎜ ⎟
⎝ ⎠

+ + + + + +
                    (49) 

 

From equations (48) and (49) it follows: 
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( )
2 2

200 01
00 01 02 032

11 12 13

2 2 2
12 13 23 11 22 33

( ) 2 2 2

2 2 2 .
x y z

c M x M c g c g cx g c y g cz
m C m C m C

g x y g x z g y z g x g y g z

+ = + + + +
− + −

+ + + + + +

    (50) 

 

If we substitute y  and z  from (46) and (47) in (50), we obtain a quadratic equation for the 

velocity component x . However, this equation is too cumbersome to write. Equation (50) can be 

simplified by introducing a new variable: 

 

00 01

11 12 13x y z

M x M c X
m C m C m C

+ =
− + −

,          11 12 13 01

00

( )x y zX m C m C m C M c
x

M
− + − −

= .         (51) 

 

Using in (50) relations (46), (47) and (51), after lengthy calculations we find: 

 
2

2 ( )c gX
Z
−= .                                                              (52) 

 

where g  is the determinant of the metric tensor gα β , and g  is negative: 

 

00 00 01 01 02 02 03 03g g M g M g M g M= − + − , 

 

and the following abbreviation is used: 

 

( )2
00 11 12 13 21 22 23

31 32 33

( )

( ).
x x y z y x y z

z x y z

Z M c C m C m C m C C m C m C m C

C m C m C m C

= − − − + − − − + −

− − + −
         (53) 

 

From (52) and (51) we find x , and then from (46) and (47) define y  and z : 

 

11 12 13 01

00

( )x y zc g m C m C m C Z M c
x

Z M

− − + − −
= ,                                (54) 

( )21 22 23 02

00

x y zc g m C m C m C Z M c
y

Z M

− − + +
= , 

( )31 32 33 03

00

x y zc g m C m C m C Z M c
z

Z M

− − + − −
= . 
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From (54) and (43) we derive the quantity 
ds
cdt

: 

 

c gds
cdt Z

−
= .                                                             (55) 

 

We can calculate 0g uµ
µ  using (54), (55) and the expression 

( , , , )cdt dx cdt cdxc x y z u
ds dt ds ds

µ µ
µ= = = : 

 

0 0 00 01 02 03

01 02 03

00 00

( , , , ) ( )

.x y z

cdt cdtg u g c x y z g c g x g y g z
ds ds

C M C M C M Z g
M M

µ
µ µ= = + + + =

− + − −
= −

               (56) 

 

In (56) using the previously introduced in (40) notations x x x
x

P m D q A C
m

− − = ,  

y y y
y

P m D q A
C

m
− −

= , z z z
z

P m D q A C
m

− − =   , we can move from xC ,  yC  and  zC  to the 

generalized momenta xP , yP  and zP . After multiplying (56) by mc  the result will be equal to: 

 

01 02 03
0

00

00

( ) ( ) ( )

.

x x x y y y z z zcM P m D q A cM P m D q A cM P m D q A
mc g u

M

mc Z g
M

µ
µ

− − − + − − − − −
= −

−
−

 

 

Let us substitute this into the formula for the Hamiltonian (34): 

 

01 02 03

00

2
1 2 3

00 0

( ) ( ) ( )

( 2 ) .
16 4

x x x y y y z z zcM P m D q A cM P m D q A cM P m D q A
H

M

c Φ Φ F Fmc Z g
m q kc R g dx dx dx

M

µν µν
µν µνψ ϕ
π γ µ

− − − + − − − − −
= −

⎛ ⎞−
− + + − − Λ + − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫  

(57) 
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In Minkowski space, i.e. in the special theory of relativity when the curvature of spacetime is 

absent, 00 1M = − , 01 02 03 0M M M= = = , 1g− = , and taking into account the expressions (53) 

for Z  and (40) for xC ,  yC  and  zC ,  the Hamiltonian will be expressed through the 3-vector of the 

generalized momentum P , through the scalar potentials ψ , ϕ ,  and vector potentials D , A : 

 

2
2 2 2 1 2 3

0

( ) .
16 4

c Φ Φ F F
H c m c m q m q dx dx dx const

µν µν
µν µνψ ϕ
π γ µ

⎛ ⎞
= + − − + + − − +⎜ ⎟⎜ ⎟

⎝ ⎠
∫P D A  

 

Similarly to (36) in the expression for the Hamiltonian there is some constant. In this case the 

gravitational tensor Φµν  and electromagnetic tensor Fµν  are differential functions of the potentials 

of fields in the form of derivatives of coordinates and time. The resulting expression for H , but 

without taking into account the gravitational field, that is, without terms with the potentials ψ  and 

D , and without taking into account the integral with the tensors Φµν  and Fµν , we can find in [3]. 

Hamilton's equations according to (30) and (31), with the components of 3-vector coordinate 

velocity ( , , )x y z=v , and the components of 3-vector of the generalized momentum 

( , , )x y zP P P=P  (32) have the following form: 

 

x

Hx
P

∂=
∂

,            
y

Hy
P

∂=
∂

,            
z

Hz
P

∂=
∂

,     or      
H∂=

∂
v

P
.                             (58) 

 

d L H
dt

= ∇ = −∇P
.                                                          (59) 

 

In order to verify the validity of equations (58) the quantity Z  of (53) should be substituted into 

(57), and the quantities xC , yC  and zC  should be expressed in terms of generalized momenta xP , 

yP  and zP , using (40). If we then take the partial derivatives from the Hamiltonian H  according to 

(58) we shall obtain expressions (54) for the components of velocity. The physical meaning of 

equation (59) lies in the fact that the gradient of the Hamiltonian as the energy of the system, taken 

with opposite sign, is equal to the rate of change of the generalized momentum with time. 

Now we shall write (57) in four-dimensional form, for which we shall use the following 

expressions: 
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00
00 00

1g g
M M g g g

−
− = =

− −
,                  00

00M g g= ,                         (60) 

 
01

01 01
00 00

00

M M g
M g g g

− = − = ,          
02

02 02
00 00

00

M M g
M g g g

= = ,            
03

03 03
00 00

00

M M g
M g g g

− = − = . 

 

For the first term in (57) with the help of (32) it gives: 

 

01 02 03

00

01 02 03
1 2 3

00

( ) ( ) ( )x x x y y y z z zcM P m D q A cM P m D q A cM P m D qA
M

mcg g u mcg g u mcg g u
g

µ µ µ
µ µ µ

− − − + − − − − −
=

− − −
= =

 

00 01 02 03 0
0 1 2 3

0 000 00

( )
.

mcu g g g g g g g g mcumcg u mcg u
g g

µ
µ µ µ µ µ µ

µ µ

− + + + −= + = +       (61) 

 

We shall make further transformations of the following auxiliary quantities with the help of (41) 

and (42): 

 
0

11 1 12 2 13 3 11 10 12 20 13 30

1 0 1
11 11 12 21 13 31 01 00

( ) ( )

( ) .

u m g m g m g u m g m g m g

u m g m g m g u M u M

µ
µ µ µ− + = − + +

+ − + = +
 

 

( ) 0 2
21 1 22 2 23 3 02 00u m g m g m g u M u Mµ

µ µ µ− + − = − + . 

0 3
31 1 32 2 33 3 03 00( )u m g m g m g u M u Mµ

µ µ µ− + = + .                                 (62) 

 

From (40) it follows that 1xC g uµ
µ= − ,  2yC g uµ

µ= − , 3zC g uµ
µ= − . Then, using (62) and the 

equality 2g u u cµ ν
νµ =  the expression (53) for Z  can be transformed as follows: 

 

( )

( )

2
00 11 12 13 21 22 23

31 32 33

2
00 1 11 1 12 2 13 3 2 21 1 22 2 23 3

3 31 1 32 2 33 3

( )

( )

( )

( )

x x y z y x y z

z x y z

Z M c C m C m C m C C m C m C m C

C m C m C m C

M c g u u m g m g m g g u u m g m g m g

g u u m g m g m g

µ µ µ µ
µ µ µ µ µ µ µ µ

µ µ
µ µ µ µ

= − − − + − − − + −

− − + − =

= − + − + + − + − +

+ − + =
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2 0 1 0 2 0 3
00 1 01 00 2 02 00 3 03 00

2 0 0 0 0
00 1 01 2 02 3 03 00 0 00

0 0 0 0
1 01 2 02 3 03 0 00

( ) ( ) ( )

.

M c g u u M u M g u u M u M g u u M u M

M c g u u M g u u M g u u M g u u M g u u M

g u u M g u u M g u u M g u u M

µ µ µ
µ µ µ

µ µ µ µ ν µ
µ µ µ νµ µ

µ µ µ µ
µ µ µ µ

= − + + + − + + + =

= − + − + + − =

= − + −

 

 

Now we shall use (60): 

 
0 0 0 0

1 01 2 02 3 03 0 00

01 02 03 00
0 0 0 000 00 00 00

1 2 3 000 00 00 00

0 01 02 03 00 0 0 0 0 0 000 00 00
1 2 3 000 00 00( ) .

Z g u u M g u u M g u u M g u u M

g M g M g M g Mg u u g u u g u u g u u
g g g g

M M Mu u g g g g g g g g u u u u g u u
g g g

µ µ µ µ
µ µ µ µ

µ µ µ µ
µ µ µ µ

µ µ
µ µ µ µ µδ

= − + − =

= − − − − =

= − + + + = − = − = −

 

(63) 

 

In (63) we used Kronecker delta 
1,
0,

ν
µ

µ ν
δ

µ ν
=⎧ ⎫

= ⎨ ⎬≠⎩ ⎭
. In view of (63) for the second term in (57) 

we find: 

 

0 0 0

0000 00
00

mc Z g mc g u umc Z mcu
M gg g g g

− −
− = = =

− −
. 

 

We substitute this expression and the result from (61) into (57): 

 

2
1 2 3

0
0

( 2 )
16 4

c Φ Φ F F
H mc g u m q kc R g dx dx dx

µν µν
µν µνµ

µ ψ ϕ
π γ µ

⎛ ⎞
= + + − − Λ + − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫ .     (64) 

 

The Hamiltonian (64) coincides with the expression for the Hamiltonian (34). Thus, we made a 

circle: first, by introducing the generalized momentum P  (32) we made the transition from (34) to 

the Hamiltonian in the form of (57), and then by other way, we got back to (34). 

To check the validity of equations (59) for the Hamiltonian in the form of (64), we find the 

quantity 
H
x

∂−
∂

: 
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0

2
1 2 3

0

( ) ( ) ( )

( 2 ) .
16 4

H mc g u m q
x x x x

c Φ Φ F F
kc R g dx dx dx

x

µ
µ

µν µν
µν µν

ψ ϕ

π γ µ

∂ ∂ ∂ ∂− = − − − +
∂ ∂ ∂ ∂

⎛ ⎞∂+ − Λ + − −⎜ ⎟⎜ ⎟∂ ⎝ ⎠
∫

 

 

From (59) it follows:  

 

1( ).x
x x

d PH d m g u m D q A
x dt dt

µ
µ

∂− = = − + +
∂

 

 

From the last two equations we obtain: 

 

1 0

2
1 2 3

0

( ) ( ) ( ) ( )

( 2 ) .
16 4

x x
d m g u m D q A mc g u m q
dt x x x

c Φ Φ F F
kc R g dx dx dx

x

µ µ
µ µ

µν µν
µν µν

ψ ϕ

π γ µ

∂ ∂ ∂− + + = − − − +
∂ ∂ ∂

⎛ ⎞∂+ − Λ + − −⎜ ⎟⎜ ⎟∂ ⎝ ⎠
∫

               (65) 

 

In Minkowski space: 1 2 21
m xm g u

c
µ

µ− =
−v , 

2

0 2 21
mcmc g u

c
µ

µ =
−v . If we consider the 

situation for a small test particle outside the massive charged body and apply the relation: 

 

x x x x xdD D D D Dx y z
dt t x y z

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

,              x x x x xdA A A A Ax y z
dt t x y z

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

, 

t
ψ ∂= −∇ −

∂
DG ,                    = ∇× DΩ , 

t
ϕ ∂= −∇ −

∂
AE ,                    = ∇× AΒ , 

 

then with constant mass m  and charge q  of the particle, and assuming that the velocity v  and 

the scalar products ⋅ Dv  and ⋅ Av  do not directly depend on the coordinates, the equation (65) 

turns into (22) for the component of the momentum 
2 21

m x
c−v . 

 

The four-dimensional generalized velocity 

We shall introduce 4-vector of the generalized velocity with the covariant index: 
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0

0

qc J
s D A

J J
µ

µ µ µλ
λ

ρ
ρ

= + + .                                                  (66) 

 

where ,D
cµ

ψ⎛ ⎞= −⎜ ⎟
⎝ ⎠

D  – 4-potential of gravitational field, 

,A
cµ
ϕ⎛ ⎞= −⎜ ⎟
⎝ ⎠

A  – 4-potential of electromagnetic field. 

 

The ratio 0

0

qρ
ρ

 in (66) is the ratio of the densities of charge and mass of the substance unit in the 

reference frame in which the substance is at rest. The scalar s J µ
µ  will be equal to: 

 

0

0

qc J J
s J D J A J c J J D J A j

J J

µ
µµ µ µ µ µ µ

µ µ µ µ µ µλ
λ

ρ
ρ

= + + = + + ,                  (67) 

 

where 0qj uµ µρ=  is the 4-vector of electric current density. 

 

Taking it into account we can rewrite the Lagrangian (4) as follows: 

 

2
1 2 3

0

( 2 )
16 4

c Φ Φ F F
L kc R s J g dx dx dx

µν µν
µν µνµ

µ π γ µ
⎛ ⎞

= − Λ − + − −⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ,                  (68) 

 

and S L dt= ∫  is the function of the action, and 1 2 3g d g cdt dx dx dx− Σ = −  – an invariant 

4-volume, provided that 0dx cdt= . With the help of (11) and the subsequent relations we can write 

down: 

 

1 2 3
0

dg d b c dt dx dx dx c d dV ds dV ds dV
dt
τ τ ′− Σ = = = = . 

 

Thus, the invariance of the 4-volume g d− Σ  with respect to the change of coordinates is 

expressed in the invariance of the interval ds  of the moving substance unit, and in the invariance of 

the three-dimensional volume 0dV  of the substance unit in the co-moving frame of reference. 
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We shall designate ( ) 1 2 3
2L s J g dx dx dxµ

µ= − −∫  in (68) and find the variation 2Lδ , 

associated with variation of part the action function 2 2S L dt= ∫ : 

 

2 2S L dtδ δ= ∫ ,               ( ) 1 2 3
2L s J g dx dx dxµ

µδ δ= − −∫ .                        (69) 

 

( ) ( )
0

0

.q

s J g s J g J g s

c J
s g J s J g J g D A

J J

µ µ µ
µ µ µ

µµ µ µ
µ µ µ µλ

λ

δ δ δ

ρ
δ δ δ

ρ

− − = − − − − =

⎛ ⎞
⎜ ⎟= − − − − − − + +
⎜ ⎟
⎝ ⎠

              (70) 

 

We shall use the following standard formulas: 

 

2
g

g g gµν
µνδ δ−

− = ,                   J J g J Jµ µ ν
µ µν= , 

( ) ( )1J J J g J J
g

µ σ µ µ σ σ µ µ σ
σ σδ ξ ξ ξ ξ⎡ ⎤= ∇ − = ∂ − −⎣ ⎦−

,                     (71) 

( ) 0
0 0 2 u u

c
σ ν σ

σ σ ν
ρδ ρ ρ ξ ξ= −∇ + ∇ ,        ( ) 0

0 0 2
q

q q u u
c

σ ν σ
σ σ ν

ρ
δ ρ ρ ξ ξ= −∇ + ∇ , 

 

where the variations J µδ , 0δ ρ , 0qδ ρ  are taken from [6], [7], and displacement µξ  are 

variations of the coordinates, due to of which arise the variation of mass 4-current J µδ , the 

variation of mass density 0δ ρ  and variation of the charge density 0qδ ρ . 

 

We shall transform the first term in (70) in view of (71): 

 

( )
( ) ( ) .

s g J s g J J

s g J J g J J s

µ σ µ µ σ
µ µ σ

σ µ µ σ σ µ µ σ
σ µ σ µ

δ ξ ξ

ξ ξ ξ ξ

⎡ ⎤− − = − ∂ − − =⎣ ⎦
⎡ ⎤= −∂ − − + − − ∂⎣ ⎦

 

 

In this expression the term with the total divergence in the integration over the 4-volume in the 

function of the action will not make any contribution. The remaining term will be transformed 

further: 

 

( ) ( )g J J s s s J gσ µ µ σ σ µ
σ µ σ µ µ σξ ξ ξ− − ∂ = ∂ − ∂ − , 
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where the value s sσ µ µ σ∂ − ∂  is the rotor of 4-vector of generalized velocities sµ . 

 

We shall transform the expression in the third term in (70): 

 

2

2

2

k
k

k k k k
k k k k

k k
k k

g Jc J
J g c J g

J J g J J

g J J g g J g J J g J J J g
c J g

g J J g J J g J J g J J

J g J J J g g J J J J g
c g

g J J g J J g J J

µµµ µ

λ σ λ
λ σ λ

α β α β
µ µ µ α β µ α βµ

σ λ σ λ σ λ σ λ
σ λ σ λ σ λ σ λ

µ µ α β α β
µ µ α β α β

σ λ σ λ σ λ
σ λ σ λ σ λ

δ δ

δ δ δ δ

δ δ δ δ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− − = − − =

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞+ +⎜ ⎟= − − − =
⎜ ⎟
⎝ ⎠

⎛ +
= − − − − .

2

c g J J g

g J J

α β
α β

σ λ
σ λ

δ⎞ −⎜ ⎟ = −
⎜ ⎟
⎝ ⎠

 

 

With the help of (71) we shall find the variation 0

0

qρ
δ

ρ
⎛ ⎞
⎜ ⎟
⎝ ⎠

: 

 

0 0 0 0 0 0
2

0 00)( )
q q q qσ

σ

ρ ρ δρ ρ δρ ρ
δ ξ

ρ ρρ
−⎛ ⎞ ⎛ ⎞

= = − ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 

Substitution in (70) and (69) of the obtained above expressions gives: 

 

( ) 1 2 3
2

0 1 2 3

0

q

S s J g dx dx dx dt

c J
s g J s J g J g D A dx dx dx dt

J J

µ
µ

µµ µ µ
µ µ µ µν

ν

δ δ

ρ
δ δ δ

ρ

= − − =

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − − − − − + + =

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫

∫
 

( )

0 1 2 3

0

2

.q

g c J Js s J s J g J D
g J J

j A J A g dx dx dx dt

µ ν
µνσ µ α µν µ

σ µ µ σ α µσ λ
σ λ

µ σ µ
µ σ µ

δ
ξ δ

ρ
δ ξ

ρ

⎡ ⎛ ⎞
⎢ ⎜ ⎟= ∂ − ∂ − + − −
⎢ ⎜ ⎟

⎝ ⎠⎣
⎤⎛ ⎞

− + ∇ −⎥⎜ ⎟
⎝ ⎠⎦

∫

 
(72) 
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We shall designate 
2

1 2 3
1

0

( 2 )
16 4

c Φ Φ F F
L kc R g dx dx dx

µν µν
µν µνµ

π γ µ
⎛ ⎞

= − Λ + − −⎜ ⎟⎜ ⎟
⎝ ⎠
∫  in (68) 

and take in [1] the variation 1Lδ , associated with the variation of the action function 1 1S L dt= ∫ . 

This gives the following: 

 

1 1S L dtδ δ= ∫ ,      
2

1 2 3
1

0

( 2 )
16 4

c Φ Φ g F F g
L kc R g dx dx dx

µν µν
µν µνδ δ

π γ µ

⎛ ⎞− −
⎜ ⎟= − Λ − + −
⎜ ⎟
⎝ ⎠

∫ . 

 
2

1

1 2 3

0

1
2 4 2

1 ,
2

c US kc R g R g g Φ D g

WF A g g dx dx dx dt

µν
µν µν µν α µ

µν α µ µν

µν
α µ

α µ µν

δ δ δ δ
π γ

δ δ
µ

⎡ ⎛ ⎞= − + − Λ − ∇ − +⎜ ⎟⎢
⎝ ⎠⎣

⎤
+ ∇ − −⎥

⎥⎦

∫
       (73) 

 

where U µν  is the stress-energy tensor of gravitational field (9), and the stress-energy tensor 

W µν  of electromagnetic field has the form: 

 

2 2
0 0

1 1
4 4

W c g F F g F F c F F g F Fα β αν κ β α β µν α κ β α β µν
κν µν κ µνε ε⎛ ⎞ ⎛ ⎞= − + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.         (74) 

 

By the principle of least action, the variation of the action must be equal to zero: 

1 2 0S L dt S Sδ δ δ δ= = + =∫ . We shall substitute here (73) and (72), and equate to zero all the 

terms inside the integrals, placed before the variations gµνδ , Dµδ , Aµδ , µξ : 

 

gµνδ :  
1 1 0
2 2 2 2

W c J JUkc R g R g s J g
g J J

µν µ νµν
µν µν µν α µν

α σ λ
σ λ

⎛ ⎞⎛ ⎞ ⎜ ⎟− + − Λ − − − + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
,     (75) 

Dµδ :   
2

0
4
c Φ Jα µ µ

απ γ
− ∇ − = ,                       Aµδ :  

0

1 0F jα µ µ
αµ

∇ − = ,                          (76) 

µξ :   ( ) 0

0

0qs s J J Aσ σ
σ µ µ σ σ µ

ρ
ρ

⎛ ⎞
∂ − ∂ + ∇ =⎜ ⎟

⎝ ⎠
.                                                                         (77) 
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Equations (76) are equivalent to the gravitational (5) and electromagnetic (6) field equations. The 

first term in equation (77) can be expanded by using the operator of proper-time-derivative and the 

4-vector of generalized velocity (66): 

 

( ) 0 0

0
0

0

.q

D s
s s J u s J s J s

D

D s c J
J J D J A j A

D J J

µσ σ σ σ
σ µ µ σ σ µ µ σ µ σ

µ σ σ σ σσ
µ µ σ σ µ µ σλ

λ

ρ ρ
τ

ρ
ρ

τ ρ

∂ − ∂ = ∇ − ∇ = − ∇ =

⎛ ⎞ ⎛ ⎞
⎜ ⎟= − ∇ − ∇ − ∇ − ∇⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 

Taking into account (77) it follows: 

 

0

D s c J
J J D j A

D J J
µ σ σ σσ

µ µ σ µ σλ
λ

ρ
τ

⎛ ⎞
⎜ ⎟= ∇ + ∇ + ∇
⎜ ⎟
⎝ ⎠

.                    (78)  

 

As far as according to (66): 

 

0
0 0

0

qD s c J
u s J J D j A J A

D J J
µ µσ σ σ σ σ

σ µ σ σ µ σ µ µ σλ
λ

ρ
ρ ρ

τ ρ

⎛ ⎞ ⎛ ⎞
⎜ ⎟= ∇ = ∇ + ∇ + ∇ + ∇ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, 

 

so comparing with (78) we find: 

 

0

0

.

qc J
J J D j A J A

J J

c J
J J D j A

J J

µσ σ σ σ
σ σ µ σ µ µ σλ

λ

σ σ σσ
µ µ σ µ σλ

λ

ρ
ρ

⎛ ⎞ ⎛ ⎞
⎜ ⎟∇ + ∇ + ∇ + ∇ =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟= ∇ + ∇ + ∇
⎜ ⎟
⎝ ⎠

               (79) 

 

We shall apply the following relations: 

 

( )J D J D J D D J Φσ σ σ σ
µ σ σ µ µ σ σ µ µσ∇ − ∇ = ∇ − ∇ = , J A J A J Fσ σ σ

µ σ σ µ µσ∇ − ∇ = ,  

0 0

c J Du
J u u

DJ J
µ µσ σ

σ σ µλ
λ

ρ ρ
τ

⎛ ⎞
⎜ ⎟∇ = ∇ =
⎜ ⎟
⎝ ⎠

,           0 0
c J

J u u
J J

σ σσ
µ µ σλ

λ

ρ
⎛ ⎞
⎜ ⎟∇ = ∇ =
⎜ ⎟
⎝ ⎠

. 

 

This gives in (79): 
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0
0

0

qDu
J Φ j F J A

D
µ σ σ σ

µσ µσ µ σ

ρ
ρ

τ ρ
⎛ ⎞

= + − ∇ ⎜ ⎟
⎝ ⎠

.                                   (80) 

 

Above it was assumed that the mass and the charge of substance unit in the variation does not 

change. In this case, the density ratio 0

0

qρ
ρ

 will be unchanged, the covariant derivative 0

0

q
σ

ρ
ρ

⎛ ⎞
∇ ⎜ ⎟

⎝ ⎠
 is 

zero, and (80) turns into the equation of motion of substance in gravitational and electromagnetic 

fields, taken in the covariant theory of gravitation under these conditions. 

Now we shall consider the equation for the metric (75). If we separate out the terms gµνΛ  and 

s J gα µν
α , then with condition 

3

16
ck
π γ β

= −  (75) is divided into two equations: 

 

4

81
2

c J JR g R U W
c g J J

µ ν
µν µν µν µν

σ λ
σ λ

π γ β ⎛ ⎞
⎜ ⎟− = + +
⎜ ⎟
⎝ ⎠

,                              (81) 

4

8
c s J α

απγ β
Λ = .                                                             (82) 

 

In view of (67), expression (82) coincides with (8). As for (81), from the comparison with (7) it 

follows that it should equal to: 

 

c J J

g J J

µ ν
µν

σ λ
σ λ

φ = .                                                      (83) 

 

We shall remind that the variations J µδ , 0δ ρ , 0qδ ρ  in (70) found in [6], [7], were determined 

from the condition that the mass and charge of substance unit are constants during variation. This 

leads to the equation of motion of the type (80), in which instead of the proposed total derivative 

0( )D u
D

µρ
τ

 (the rate of change of mass 4-current) the quantity 0

Du
D

µρ
τ

 appears as the product of the 

mass density and the 4-acceleration. 
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The Hamiltonian and the problem of mass  

The Hamiltonian (64) can be represented in another form by using the generalized 4-velocity 

(66). If we assume that 0

0

qρ
ρ

 sets in (66) the charge to the mass ratio, and considering that 

0 0g s sµ
µ = , for the Hamiltonian we have: 

 

2
1 2 3

0
0

( 2 )
16 4

c Φ Φ F F
H mcs kc R g dx dx dx

µν µν
µν µν

π γ µ
⎛ ⎞

= − − Λ + − −⎜ ⎟⎜ ⎟
⎝ ⎠
∫ .               (84) 

 

From here it follows that the contribution to the energy of substance unit with mass m  is made 

by the time component of 4-vector of generalized velocity with the covariant index 0s , and the 

energy of fields, found by the integral over the volume of space. In addition, the amount of energy is 

corrected by the curvature of spacetime (the term with curvature R ), and is determined up to a 

constant (the term with Λ ). Hamiltonian H  sets the energy in such a way that the energy in each 

reference frame is different. This applies to the value of the generalized 4-velocity of the substance 

unit, and the total momentum of the substance and fields. So it should be, because in the theory of 

relativity only a definite combination of energy and momentum can be maintained invariant and 

preserved in each reference frame. 

The Hamiltonian (84) looks like it should be the time component of a 4-vector of energy-

momentum Hµ  , written with a lower (covariant) index. In this case, the time component of this 4-

vector is associated with the energy and the spatial component should be connected with the 

momentum of substance unit. We shall make the notation: 

 

2
1 2 3

0
0

( 2 )
16 4

c Φ Φ F F Nkc R g dx dx dx u
c

µν µν
µν µν

π γ µ
⎛ ⎞

− Λ + − − =⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ,                     (85) 

 

where N  is an invariant associated with the energy of fields and with amendments to the energy 

arising from the curvature R  and from the constant Λ , 

0u
c

 – the time component of the dimensionless 4-velocity 
u
c

µ ; this velocity is a simple 4-vector 

of unit length. 

 

With this definition, the integral (85) is assumed to be equal to the time component of a 4-vector. 

Then, taking into account (66) we have: 
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0
0 0 0 0 0 0 0

0

qN N NH H mcs u mc u mcD mc A mc u m q
c c c

ρ
ψ ϕ

ρ
⎛ ⎞ ⎛ ⎞= = − = − + + = − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.    (86) 

 

Equation (86) in view of (85) coincides with the expression for the Hamiltonian (34). Now we 

shall write the 4-vector of the Hamiltonian in the contravariant form: 

 

N NH mcs u mc u mcg D qcg A
c c

µ µ µ µ µν µν
ν ν

⎛ ⎞= − = − + +⎜ ⎟
⎝ ⎠

.                        (87) 

 

As there is the 4-vector of generalized velocity sµ  in (87), the 4-vector of the Hamiltonian 

contains the 4-vector of the generalized momentum in the form m sµ .The time component of the 4-

vector H µ  must specify the relativistic energy E , and the spatial components – multiplied by the 

speed of light momentum p . This follows from the conventional expression of the 4-vector energy-

momentum of a free particle without taking into account of the action of fields on it: p mcuµ µ= . 

This vector in the flat Minkowski space, i.e., in the special theory of relativity, is expressed as 

follows: ( )
2

2 2 2 2
, ,

1 1
mc mcp mсu E c

c c
µ µ

⎛ ⎞
⎜ ⎟= = =
⎜ ⎟− −⎝ ⎠v vv p . Fields and interactions with other 

particles can vary quantities E  and p , but when the particle becomes free, from to the invariance of 

the mass m , the speed of light c  and the equality 2 2 2 2 2 2
2

1 p p m u u m c E c p
c

µ µ
µ µ= = = −  

should follow the well-known formula for the relationship between mass, energy and momentum for 

a particle in relativistic physics. According to this formula, one can find the momentum of the 

particle at certain energy and rest mass of the particle, or determine the rest mass and the type of the 

particle by its momentum and energy. 

By analogy with the 4-vector energy-momentum ( ),p E cµ = p  from the components of the 4-

vector H µ  (87) we obtain: 

 

0 0 0NE mc u mcg D qcg A
c

ν ν
ν ν

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

.          1 1 1
2x

Np m u m g D qg A
c

ν ν
ν ν

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

, 

2 2 2
2y

Np m u m g D qg A
c

ν ν
ν ν

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

,            3 3 3
2z

Np m u mg D qg A
c

ν ν
ν ν

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

. 

 

For the case of substance without its direct interaction with another substance (other bodies), 

located only in its own gravitational and electromagnetic fields, energy E  and momentum p  of the 
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substance unit at constant mass and charge can not change, and must be equal to some constant for 

the energy and constant vector for the momentum. This can be represented by the equation 

H constµ = , describing the conservation laws of energy and momentum of a closed system. 

If in (85) we neglect the term with the curvature R  and determine the constant equal to zero 

needed for the energy calibration, which arises due to the constant Λ , then in the weak field limit, at 

the transition to the special theory of relativity, for the energy and the momentum from the previous 

equations we obtain: 

 

( )
2

2 2 2 2 2 2 1 2 30
2 2

1 ( )
8 21

mcE m q G c E c Β dx dx dx
c

εψ ϕ Ω
π γ

⎛ ⎞
= + + + − − −⎜ ⎟

− ⎝ ⎠
∫v .        (88) 

( )2 2 2 2 2 2 1 2 30
22 2

1 ( )
8 21

m m q G c E c Β dx dx dx
cc

εΩ
π γ

⎛ ⎞
= + + − − −⎜ ⎟

− ⎝ ⎠
∫D A+v vp v . 

 

From (88) it is seen that the term 
2

2 21
mc

c−v  plays the role of kinetic energy, and other terms 

belong to the potential energy. In this case the potential energy includes not only the energy of the 

field intensities, but also the energy associated with the scalar field potentials. 

From the substance unit we can proceed to a separate moving body, for which in case of straight-

line motion with constant velocity in the absence of external fields, the relations 2c
ψ=D v , 

2c
ϕ=A v  are valid. In this case for the momentum we have: 

 

( )2 2 2 2 2 2 1 2 30
2 2 2 22 2

1 ( ) .
8 21

m m q EG c E c Β dx dx dx
c c c cc

εψ ϕ Ω
π γ

⎛ ⎞
= + + − − − =⎜ ⎟

− ⎝ ⎠
∫+v vp v v vv  

(89) 

 

Here the gravitational scalar potential ψ  and the electromagnetic scalar potential ϕ  are 

understood as the averaged potentials inside the body, arising from its own fields. To find the rest 

mass of the body, taking into account the fields we should write the ratio 2

EM
c

=  with 0=v . We 

shall use (88) to determine the rest mass with the help of volume integral: 
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( )

( )

2 2 2 2 2 20
02 2 22 2

2
2 2 2 2 2 20 0

0 0 02 2 2

1 1 1 1 ( )
8 21

1 1 ( ) .
8 21

q

mM m q G c E c Β dV
c c cc

c G c E c Β dV
c c

εψ ϕ Ω
π γ

ρ ερ ψ ρ ϕ Ω
π γ

⎛ ⎞
= + + + − − − =⎜ ⎟

′− ⎝ ⎠

⎛ ⎞
⎜ ⎟= + + + − − −
⎜ ⎟′−⎝ ⎠

∫

∫

v
v  

(90) 

 

The rest mass M  of the body differs from the mass m  of its substance due to the contribution 

from the field energies and energy of internal motion. If the body as a whole is at rest, but its 

substance is in some internal motion with speed ′v , it contributes to the overall mass due to the 

kinetic energy, as well as due to the emerging field of gravitational torsion Ω , and due to the 

magnetic field Β . Determining the mass the terms with field strengths should be integrated over 

volume both inside and outside the body. 

Now we shall use the relation (8) and apply it to (90) in case of stationary and not rotating solid 

body: 

 

2 2 2 2 20 0
0 0 0 02 2

1 1 1 1
8 2 8 2

M c G E dV m G E dV
c c

ε ερ
π γ π γ

⎛ ⎞ ⎛ ⎞′ ′= + − = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫ ,         (91) 

 

where 0ρ′  is constant mass density associated with the cosmological constant Λ . The density 

0ρ′  is obtained by excluding all the fields in the substance. For example, if the body is divided into 

pieces and spread to infinity with zero velocity, then the normal field of gravitation and the 

electromagnetic field will not be making large contribution to the density of the substance parts, and 

the total mass of these parts will be equal to m′ . 

 

According to (91), the mass of the whole body becomes greater than the total mass of its parts, 

due to the contribution of the gravitational energy with density 21
8

G
π γ

. Simultaneously, the 

electrical energy of the body reduces its mass. These findings are consistent with results obtained by 

another way in [1], [8], [9]. In the cosmic bodies the gravitational energy is generally higher than the 

electromagnetic energy, so as we move from small to large bodies the body mass should increase, as 

well due to the potential energy of gravitation. 

We shall note that instead of using the 4-vector of Hamiltonian (87) to estimate the energy, 

momentum and mass, we can use another approach based on integration over volume of the time 

components of the stress-energy tensors of substance α βφ  (83), the gravitational field U α β  (9), as 
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well as the electromagnetic field W α β  (74). From the properties of the left side of the equation for 

the metric (81) it follows that the covariant derivative of the right side is equal to zero: 

 

( ) 0U Wµν µν µν µν µν µ αν β µα
ν ν ν ν α β αφ τ τ τ τ∇ + + = ∇ = ∂ + Γ + Γ = .                      (92) 

 

This equation is equivalent to the equation of motion of substance in the gravitational and 

electromagnetic fields (80), in which it is considered that 0

0

0q
σ

ρ
ρ

⎛ ⎞
∇ =⎜ ⎟

⎝ ⎠
. 

If we introduce a frame of reference relative to which the substance unit at a given time is moving 

like it should move according to the special theory of relativity, in this reference frame the 

Christoffel symbols µ
ν αΓ  and β

βαΓ  in (92) are equal to zero. Then the covariant derivative ν∇  of the 

tensor U Wµν µν µν µντ φ= + +  is equal to the ordinary derivative ν∂ , which is the 4-divergence of 

the tensor µντ  due to minimizing by the index ν . Instead of (92) we obtain the equality 0µν
ν τ∂ = , 

the left part of which can be integrated over the 4-volume, taking into account the Gauss theorem, 

and in this case 1g− = : 

 
1 2 3P c dt dx dx dx dSµ µν µν

ν ντ τ= ∂ =∫ ∫ , 

 

where dSν  is the element of an infinite hypersurface surrounding the 4-volume. The projection 

of this hypersurface at the hyperplane 0x const=  gives a three-dimensional volume element 
1 2 3

0dS dx dx dx dV= = , and for the 4-vector energy-momentum we can write down: 

 
0 0 0 0 0

0 ( )P dS dV U W dVµ µ µ µ µ µτ τ φ= = = + +∫ ∫ ∫ .                    (93) 

 

In contrast to (87), the expression (93) does not contain the energy of substance in its proper 

field, that is, the energy associated with scalar potentials ψ  and ϕ . Despite this, for a stationary 

homogeneous ball in its proper gravitational field the mass-energies of this field according to (90) 

and (93) coincide: 

 

2 0 0 2
0 0 0 02 2 2 2

1 1 1 1 1 1
8 8bdV G dV U dV G dV

c c c c
ρ ψ

π γ π γ
⎛ ⎞ ⎛ ⎞

+ = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫ ,       (94) 
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where bdV  is the differential of volume of the ball, 0dV  – the differential of volume of space 

inside and outside of the ball. 

 

According to (94), the potential energy of the ball in its proper gravitational field associated with 

the scalar potential is two times greater than the potential energy associated with the field strengths. 

The same is true for the electromagnetic field, as in case of uniform arrangement of charges in the 

volume of the ball, and at their location only on the surface. Equation (94) in its meaning resembles 

the virial theorem for a stationary system of particles bound by its proper gravitational field – in this 

system the module of the total potential energy is approximately equal to double kinetic energy of all 

particles. 

For the relativistic energy of substance from (88), and respectively, from (93) we also obtain the 

equality: 

 
2

2 21
sub

mcE
c

=
−v ,          

2 2
0 0 2 20

02 2 2 2
1

1 1
sub

c mcE dV c dV
c c

ρφ= = − =
− −∫ ∫ vv v . 

 

One aspect of the application (93) is the discrepancy between the mass-energy field of the 

moving bodies that are found either through the field intensities in the potential energy, or through 

the energy flux density and the momentum of the field (the so-called problem of 4/3). An attempt to 

solve this problem was made in [8] on the basis of the contribution of the field mass-energy into the 

total body mass. At the same time taking into account (94) we obtain the equality of the momentum 

in (89) and the total momentum of substance and field contained in (93) in the spatial components of 

4-vector Pµ . 

We now turn our attention to the mass ratio of the substance unit contained in (90) and (91), for 

the case when the contribution to the mass of the mass-energy of the electromagnetic field in 

comparison with the mass-energy of the gravitational field is small. Taking into account (94), then 

for the masses of rest substance the relation must be valid: m M m′ < < , where the mass m  is a part 

of the rest energy 2mc ;  the mass M  determines the total mass of substance together with the field; 

the mass m′ , as it follows from (8), is the substance mass scattered to infinity, where all fields are 

set to zero. Which of these masses determine proper potentials and strengths of the gravitational field 

of the considered substance unit? In our opinion, the observed mass is the mass M , it must specify 

both the inert and the gravitational properties of the mass. This mass should be included in the 

formulas for the potential and field strength, and in the potential energy. Then for a homogeneous 

stationary ball we can write down: 
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2
20

02 2 2 2

1 1 6 2
5 2

Mm m dM dq m E dV
c c Rc c

εγψ ϕ ⎛ ⎞′ = + + = − + ⎜ ⎟
⎝ ⎠∫ ∫ ∫ . 

2
2 2 20 0

0 02 2 2 2

2
20

02 2

1 1 3 1 1
8 2 5 2

3 1 .
5 2

MM m G E dV m dq E dV
c Rc c c

Mm E dV
Rc c

ε εγ ϕ
π γ

εγ

⎛ ⎞ ⎛ ⎞′= + − = − + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

∫ ∫ ∫

∫
 

 

Since the observed mass is M , then the mass m  can be determined from the last equation, and 

then the mass m′  can be calculated from the first equation. The mass density of substance 0ρ  

through the 4-vector of mass current density 0J uµ µρ=  is included in the Lagrangian (4) for a 

substance unit, and is also included in the Hamiltonian (35). In the integration over three-

dimensional volume of the term 0 0
cdt c g u
ds

µ
µρ  in (35), the mass m  appears, and the integration 

over the volume of the term 0
cdt
ds

ρ ψ  leads in the result of the integration to appearing of the mass 

M . The difference between the masses m  and M  is due to the fact that at the addition of substance 

units into a coherent body the 4-velocity uµ  is assumed constant, whereas the scalar potential ψ  in 

itself is a function of mass (more precisely, at the constant density of the substance the potential ψ  

within the body depends on the characteristic size of the body, or the amount of mass). Changing of 

the potential ψ  while the summation of the substance units into a single body in the course of 

integration over volume instead of m  gives the mass M , which is used to calculate the energy of 

the field. 

The stated above reveals the difference of forms of writing, and complementarity of Hamiltonian 

and Lagrangian approaches in finding the mass, energy and momentum of the moving substance. 

 

Action as the function to determine the effect of time dilation 

In view of (10) and (12), we shall write the differential of the action function for a substance unit 

with the mass m  and the charge q : 

 

2
1 2 3

0

( 2 ) .
16 4

dS Ldt mc g dx dx mD dx q A dx

c Φ Φ F F
dt k c R g dx dx dx

µ ν µ µ
µν µ µ

µν µν
µν µν

π γ µ

= = − − − +

⎛ ⎞
+ − Λ + − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫

              (95) 
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From (95) it is seen that the action is a scalar quantity. In addition, the differential of the action 

can be decomposed by the differentials of the interval ds g dx dxµ ν
µν=  , the 4-vector of 

displacement dxµ , and the coordinate (global) time dt , taken with the relevant factors. 

Now we shall turn to the results obtained in [5]. It was shown there that the expression 

d D dxµ
µη =  contains a specific gauge function of gravitational field, which equals to 

( )D dx dtµ
µη ψ= = − ⋅∫ ∫ D v , provided d d t=r v . A similar specific calibration function for 

electromagnetic field is equal to ( )A dx dtµ
µϑ ϕ= = − ⋅∫ ∫ A v . We shall remind that the 

fundamental field potentials are defined up to the coordinate and time derivatives from an arbitrary 

gauge function. If we replace the 4-potentials for the gravitational field as follows: 

 

D D Fµ µ µ′ = − ,                                                             (96) 

 

where we introduce the 4-vector 
1 ,F
c tµ µ

ηη η⎛ ⎞∂= ∂ = ∇⎜ ⎟∂⎝ ⎠
, then the intensities of the 

gravitational field and the equations of motion of substance in the field will not change. The same is 

true for the electromagnetic field and its specific gauge function ϑ . The gauge transformation (96) 

in the case where the specific gauge function is selected in the form 

( )D dx dtµ
µη ψ= = − ⋅∫ ∫ D v , actually clears the existing potentials of the gravitational field. 

Although it seems that the system has not changed, it is not so. In fact, it turns out that when 

comparing two systems, in one of which some gauge transformation is made by changing the 

potentials, there are different rates of time flow. For gravitational and electromagnetic fields the 

difference of a clock indications in the special theory of relativity is described by the following 

formulas: 

 
2

1 2 2
1

m D dx
mc

µ
µτ τ− = ∫ ,                    

2

1 2 2
1

q A dx
mc

µ
µτ τ− = ∫ .                          (97) 

 

The clock 2, which measures the time 2τ , is check one and the clock 1 measures the time 1τ  and 

is under the influence of additional 4-field potentials Dµ  or Aµ . Time points 1 and 2 within the 

integrals indicate the beginning and the end of the field action. From the time difference (97) we can 

move to the phase shift for the same type of processes in different points of the field. To do this, in 

(97) in the denominators it is necessary to replace 2mc  by the value of the characteristic angular 

momentum. In quantum mechanics this value is the Dirac constant  (this value is equal to Planck 
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constant h , divided by 2π ), which allows to take into account the appropriate phase shift which is 

inversely proportional to this constant: 

 
2

1 2
1

m D dxµ
µθ θ− = ∫ ,                    

2

1 2
1

q A dxµ
µθ θ− = ∫ .                          (98) 

 

If we divide the first part in (95) by 2mc  and take the integral, we can obtain the standard time 

dilation effect due to the clock motion with the speed v : 

 

2 2
1 2 2 2 00 002

0 0 0 0

1 1
t t t tmc g dx dx d s g c dt g dt

mc c
µ ν

µντ τ τ τ− = − = − = − −∫ ∫ ∫ ∫v ,          (99) 

 

here the clock speed v  is measured by the local observer at the point with the time component of 

the metric 00g ;  the moving clock measures time 1τ , and the fixed clock – the time 2 00
0

t

g d tτ = ∫  

of the local observer, expressed by the coordinate time t . 

 

In (95), there is one more, the last term in the integral form, which in our opinion should also 

influence the effect of time dilation. Any gauge transformation of 4-potentials does not affect the 

values of field strengths, which are part of the tensors Φµν  and Fµν . The energy of fields associated 

with the substance mass m , depends not only on the absolute value of the 4-potentials, but also on 

the rates of their changes in spacetime, that is, the field strengths. Each additional energy must affect 

the intrinsic properties of substance, including the flow rate of proper time. From this we deduce: 

 

2
1 2 3

1 2 2
00

1 ( 2 )
16 4

t c Φ Φ F F
k c R g dx dx dx dt

mc

µν µν
µν µντ τ
π γ µ

⎡ ⎤⎛ ⎞
− = − − Λ + − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫ . 

 

From the stated above it follows that the action is not only a function by which from the principle 

of least action the equations of motion are obtained, through the Legendre transformation the 

Hamiltonian, or the Hamilton-Jacobi equations are defined. The action function has also a direct 

physical meaning as the function describing the change in some intrinsic properties of physical 

bodies. These include the intrinsic properties of the rate of the time flow, and consequently the rate 

of increase of the phase angle of periodic processes depending on time. The special role of time in 

relation to spatial size as a characteristic property of physical bodies is due to the fact that the time 
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shift during motion and in the fundamental fields is an absolute effect, whereas the change of the 

observed size is only relative. 
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