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In the framework of covariant theory of gravitation the Euler-Lagrange equations are written and
equations of motion are determined by using the Lagrange function, in the case of small test particle
and in the case of continuously distributed matter. From the Lagrangian transition to the
Hamiltonian was done, which is expressed through three-dimensional generalized momentum in
explicit form, and also is defined by the 4-velocity, scalar potentials and strengths of gravitational
and electromagnetic fields, taking into account the metric. The definition of generalized 4-velocity,
and the description of its application to the principle of least action and to Hamiltonian is done. The
existence of a 4-vector of the Hamiltonian is assumed and the problem of mass is investigated. To
characterize the properties of mass we introduce three different masses, one of which is connected
with the rest energy according to the Einstein formula, another is the observed mass, and the third
mass is determined from the condition when the energy of macroscopic fields in substance is absent.
1t is shown that the action function has the physical meaning of the function describing the change of
such intrinsic properties as the rate of proper time and rate of rise of phase angle in periodic
processes.
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In [1] derivation of equations of the covariant theory of gravitation (CTG) was carried out from
the principle of least action. Based on the resulting form of the Lagrangian now it is possible to make
the next step and go to the Hamiltonian corresponding to the CTG theory.

After abrief presentation of the Euler-Lagrange equations we use them to describe the motion of
a small test particle, as well as in the case of continuously distributed matter. Then we find the
Hamiltonian in its two forms, with the help of 4-velocity and the generalized momentum, and
substitute the Hamiltonian into Hamilton equations to verify the motion equations. At the end of this
paper we introduce for consideration the four-dimensional generalized velocity to simplify the
expressions for the Lagrangian and Hamiltonian. The transition was done from the 4-vector of the
generalized velocity to a new 4-vector of the Hamiltonian, specifying the energy and the momentum
of substance in fundamental fields. The comparison with the Lagrangian approach is made, in which
the energy and the momentum are calculated through energy-momentum tensors. In the last part, we
describe the action function as a function having an independent meaning in physics — it can help to
determine the effects of time dilation, arising from the change of velocity of bodies’ motion or under

the influence of fields.



Theprinciple of least action
In this section we shall write down known relations for the Lagrange function and the principle of

least action for the covariant theory of gravitation (CTG). According to the latter, the equations of

motion of substance and fields can be found by varying the action function § :det. In the

coordinates x* =(ct, x, y,z) the Lagrangian depends on the coordinates x* , from the 4-velocity of

u
substance motion u* =

(where ¢ — the speed of light, ds indicates the interval for the
s

moving substance unit), on 4-potential D, of gravitational field and 4-potential 4, of
electromagnetic field and on metric tensor g, of the reference frame. If to move on from x* and

u” to the three-dimensional coordinates, time and velocity, then the Lagrangian function with these
variables can be written in the form:L:L(t,x,y,z,)'c,y,z',Dﬂ,Aﬂ,gﬂv). Here the quantities
d. d d : . Co.
:—x, y :—y, ;=% ae the components of 3-vector of coordinate velocity v = (x,y,2).
dt dt dt
When moving along a certain trgjectory the current coordinates x, y,z of a substance unit, and its

velocities x, y,z arefunctions of coordinate time ¢. In general 4-potentials Dﬂ and Aﬂ , which act
on the substance, and the metric tensor g v depend on the coordinates and time. If we take the

coordinates of the substance along the trgjectory as a function of time, then D, , 4, and g, a the

trgectory can be considered as functions of time too. This allows us to consider the Lagrange

2
function as afunction of time, and the integral S = .[L dt between the space-time points 1 and 2 — as
1

a number. Theoretically, under variations of the coordinates we can understand small in magnitude
functions of time, due to adding of which the shape of tragjectory of the substance motion change, and
respectively, change the value of the action function. From the principle of least action it follows,
that the action .S on the true trgjectory has to be extreme (usually S has a minimum).

Variation of the action function along the tragjectory, when all the variables are varying except the

time, gives the following:
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The term with the variation of the velocity 0x can be integrated by parts:
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It was considered that the variation dx at the initial time point 1 and in the final time point 2 is

zero according to the condition of varying trajectory. Integrating by parts also for terms with dy

and Oz, for the variation of the action we obtain:
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Variations 6x, dy, 0z, 6D,, 64, and dg,, in (1) areindependent from each other and are

not equal to zero on the true path, except for the initial and final points of the trgjectory. From this

we obtain the following Euler-Lagrange equations:
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We shall remind that the principle of least action is usualy applied to conservative systems for
which precise potential functions are given, from which acting forces can be found. We shall
consider physical systems with substance and the fundamental fields, which include the gravitational
and electromagnetic fields. These systems are conservative, and for them the law of conservation of
energy-momentum can be found, which has the same form in all frames of reference. If the reference
frame isfixed, the total energy and total momentum remain separately for each moment of time, with

the possible exchange of energy and momentum between substance and field.

L agrange function and equations of motion
In the case of continuoudly distributed substance throughout the entire volume of space in the
gravitational and electromagnetic fields, we shall use the Lagrangian function L, which in the
covariant theory of gravitation (CTG) hasthe form [1]:



L F_F*
L=l kc(R=2A)—cJ J* —D JH+_—" 4 j_ "2 —g dxtdx?dx?,
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(4)

where k=—

— proportionality factor, 5 — low coefficient of order of unity that depends

16z yp3

on the properties of the reference frame, ¥ — gravitational constant,

c — speed of light, as the measure of velocity of electromagnetic and gravitational interactions
propagation,

R —scalar curvature,

A — constant for the system (in the case when (4) is applied to cosmology, the constant A is
called the cosmological constant),

D, = (—,— Dj — 4-potential of gravitational field which is described through scalar potential
C

y and vector potential D of thisfield,

J* = p,u" —4-vector of mass current density,

P, —density of substance massin reference frame in which the substance is at rest,

u” — 4-velocity of the substance unit,

®¢,=V,D,-V,D,=0d,D,-d,D, — gravitationa tensor (gravitationa field strength
tensor),

@ = gt g"P &, — definition of the gravitational tensor with contravariant indices by means

of the metric tensor g**,

4, :[—,—Aj — 4-potential of electromagnetic field, set by scalar potential ¢ and vector
C

potential A of thefield,

J* = po,u" —4-vector of electric current density,

Po, —charge density of substance in reference frame in which the charge is at ret,

M, —vacuum permeability,

F,=V,4,-V, 4,=0,4,-0,4, — electromagnetic tensor (electromagnetic field strength
tensor),

\/—g —thesquareroot of determinant g of metric tensor, taken with the negative sign,



dxtdx®dx® — product of differentials of spatial coordinates, which can be viewed as a spatia

coordinate volume of the moving substance unit in the used reference frame.

Further we shall use international system of units, basic coordinates in the form of coordinates
with contravariant indices (xo,xl,xz,x3), metric signature (+, —, —, —), metric tensor v - The

presence of repeated indices in formulas implies Einstein summation convention, which is a separate

summation for each repeated index. The symbol V ., denotes covariant derivative with respect to

coordinates (in this case the coordinates x“ ). Similarly, 0 B :aiﬂ is an operator of partial
X

derivative with respect to coordinates, or 4-gradient.

We can assume that the quantities R, p,, Dﬂ, dﬁw, Poy Aﬂ, FW in the location of the

substance unit are functions of its coordinates x*, as well as the functions of the coordinates and
velocities of other substance units. However, the specified quantities in the first approximation are
independent from the 4-velocity of the substance unit. This is possible if the substance unit is so
small that the propagation delay of its own field within the volume of the substance unit can be
neglected even at relativistic speeds. The smallness of the volume, mass and charge of the substance
unit leads to the fact that the motion of this substance unit is determined only by the gradients of the
external fields (in the form of superposition of fields from all the external substance units), and the

substance unit itself does not contribute to the average gradient of the field inside the unit. With
these assumptions in (4) only 4-velosity u“, asapart of J“ and j*, will depend on the 3-velocity
of the substance unit.

If we consider that the tensor of gravitational field depends on the 4-potential D, under the

L
definition &, =V D, -V D, =9d,D,-0d,D,, then the relation a—:0 of (3) for the
aD,

Lagrangian (4) provides:
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Similarly, we obtain for the relation 87 =0in(3):
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The relations (5) and (6) set the equations of gravitational and electromagnetic fields,
respectively, carrying out the connection between the 4-potentials of fields and the sources of fields

in the form of 4-currents of mass and charge. According to (5) and (6), the larger 4-currents are, the

higher are the covariant derivatives of the variables @* and F** (these values are 4-rotors of the
4-potentials of field).

L =0 in (3) leads to the following:

MV

Aswas shown in [1], the relation

R 2R =SB (gen sy ) ™
2 c
provided that:
I\
CPo\JU, U + po D, u’ + po A, u" = 8775 = pic?. (8)

In the equation for the metric (7) the quantity R“? isRicci tensor, so that the | eft side of (7) gives
the Hilbert-Einstein tensor. The right side of (7) contains the stress-energy tensor of substance ¢“ﬁ :

the stress-energy tensor of gravitational field U*?, as well as the stress-energy tensor of

electromagnetic field W *” . Thetensor U*” is expressed through the tensor of gravitational field by

the formula:
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Equation (8) states that there is a connection between the cosmological constant A and energy

density ,o(’)c2 of the system’s substance when the substance is dispersed to infinity and there it is
still. In this case, the 4-potentials D, and A, in (8) are equal to zero. As a result of further

interaction the substance merges into a smaller size system, and the substance density varies from

p(; to p, , and there is the potential energy of interaction between the substance and the field due to

the 4-potentials of the field. In the interpretation of the constant A two approaches are possible. In

the first, the difference between p, and p) arises from the macroscopic gravitational and
electromagnetic fields. In the second case we can assume that to the 4-potentials of fields D, and

A, the strong gravitation and electromagnetic fields make contribution which act at the level of

6



elementary particles and alter the mass of the particles [2]. In this case, the density p(', should be

substituted by the density pc',' , and the mass of bodies is described as a characteristic that defines the

interaction of substance with field quanta — gravitons and electromagnetic quanta, acting at al levels

of matter. It should be noted that since the 4-potentials D, and 4, of fields are defined up to gauge

transformation, the cosmological constant A will be determined with the same precision.

Now we shall turn to the relations (2). We shall preselect in the Lagrangian (4) only those terms

which directly depend on the coordinates and the velocities, and substitute the relation J* = p,u*

and j“ = po,u”:

L = I(_Cpo /u# u” —pOD# u” ~Po, Aﬂ u” )\/%a’xla’xzdx3 , (10)

c’d, " F, F"
L=L'+I kc(R—2A)+ —F—— & J—g dx*dx*dx® .
167y 4u,

We shall integrate (10) for the three-dimensional volume, assuming that dx° = cdt , taking into

account the following relations [3]:

dx° d
g=bgw,  dr="eg=dizy, g=\bgo=""Vb. ()

where g —determinant of the metric tensor g,
dt —differentia of the proper time at the point of reference frame, through which the substance
unit passes,

dt —differential of the coordinate time of the used reference frame,

b — determinant of the three-dimensional metric tensor b,, with components
b =gy #2250 =g k=123,
8w

The invariant of three-dimensional volume is the product \/3 dx'dx*dx®, and the factor \/3

. .. . . 1 2 . .
provides transition from a moving coordinate volume dx dx dx® to moving local volume in terms

of the local observer at the point in space, through which at the moment 7 of its proper (local) time

the substance unit passes. This gives /—g dx'dx®dx® :g\/ga’xla’xzaix3 :%dV =gwdV ,



where dV isthe differential of the moving local volume. For the moving substance unit 4-velocity

u
equalsto u” = cdx
ds

, aswell as;

J—gds
C:;—TpodV =Cd—‘”pm/—g A di?dx® =p°d—g = dm = p,dV, = pdV
S S S

Cd—Tp \/_dx dx?dx® = poq\/_ >

0 =dq = po,dVo=p,dV.

where dV}, is the differential of volume of substance unit in the accompanying reference frame,

J—-g dZ =./—g cdtdx'dx?dx® —an invariant of moving 4-volume, provided dx° = cdt .

This implies the expression for the mass density p and charge density p, of the moving

substance:

cdt ds’ cdt ds’

s Po gpo’ P, s Pog gpow

where ds denotes the interval for the moving substance unit, and ds” is an interval for a
stationary observer, by which the substance passes.

With the formulas for dm and dg, L” in (10) will equal to:

dx* dx dx” dx*
L -D d A —d =
J-(V”thdt ”dt}mj. 1=
dx* dx” dx* dx*
=TSy P AT

In (12) m and g are the mass and the charge of a small substance unit, moving as a whole with

(12)

u
the coordinate velocity % and this velocity is not a 4-vector. 4-potentials D, and 4, in the
result of integrating by volume are considered to be effective averaged by volume potentials acting

U
on the substance unit. In the coordinates x* = (ct,x, y,z) the quantity dit =(c,x,5,z)=(c,v)



d H
hence the product is D, %:(Z,— Dj (c,v)=w—-v-D. Similarly for the electromagnetic
c
_— " (@ . .
potentia is: Aﬂ?: —,—A|(c,v)=¢p—-v-A. We shal note that the coordinate velocity
c

14 :cfi_r is different from the velocity of the substance unit, which is measured by the local
t

observer. This is due to the fact that the local observer's proper time 7 does not coincide with the
coordinate time ¢ (the coordinate time ¢ is common for the reference frame as a whole, and the
proper time 7 is measured by stationary electromagnetic clocks in each specific point of reference
frame, or by the clock associated with the moving substance, and depends on the actions on the
clocks of existing gravitational and electromagnetic fields at the time of measurement).
Three-dimensional vector potential of gravitational field has its components along the spatial axes

of the coordinate system: D = (D, D, ,D.), as well for the vector potential of electromagnetic

field it can be written down: A= (4, ,Ay VA).

Taking it into account for (12) we have:

L'= —mc[c (800C + oiX + 80V + 8oaZ) + X (groC + X + g1,V + 8132) +

+7(8nCt X+ 80y +8xi)+ Z(g300+g31X+g32)>+g332)]% - (13)
—-m(y —xD, —)'/Dy —zD.)—q(p—xA, —j/Ay —zA).

In the simplest case, we can assume that for an arbitrary reference frame the velocities x, y,z do
not depend explicitly on the coordinates x, y, z, and are time-dependent; the mass m and the charge
g can be dependent on ¢,x,y,z and independent on x, y,z; the scalar potentials  and ¢, the
vector potentials D and A, the metric tensor g do not depend directly on x, y, z, but depend on

t,x,y,z. The assumption of independence x,y,Z in an explicit form on the coordinates x, y,z

means that the velocity field is free, and not the bound vector field. An example of the bound field is
the velocity field in the liquid flowing in the volume bounded by a surface. Due to the interaction of
the liquid with the surface and the liquid particles with each other there is a clear dependence of the
velocity field on the coordinates. If we consider quasi-free motion of continuously distributed
substance with weak gravitational and electromagnetic fields, the velocity will depend weakly on the
gpatial coordinates.

Under these conditions from (12) and (13) we find:



L oL
a—— J S (81C+ guX+ 8y +&2) +mD, +q A4, :—mglﬂu” +mD, +q4,.

0% 0ox dic”
Euv dt dt
(14)
u
In (14) it was taken into account that ,f g —— " dx” :é where ds is the interval, and the
dt dt  dt’
u u
relation cdt v =C—Ch(c,5c,j/,2') =y" = cdx was used. We shall note that from the definition of
ds dt ds ds
u
4-velocity u and of the interval ds=./g, dx“dx’ follows the standard relation
y s Euv
u u" =c?

The full time derivative of (14) gives:

’ u
(aL] (asz_d(mgl,,u)er_m dp,  dq ,  dd. 15

D +m—=+ L +q
ox ox dt dt dt dt

The first spatial component of the gradient from L’ will be equal to:

ox dt ox 2 dt ox ox

dy oD, 9D, 9D\ oq . . . dp .04, .04, .94
_ _ X _ z |21 _ A _ A _ A _ —_r X _ Yy Z .
m(ax xax yax Zax] ax((p A7) )4 ox * Y :

In view of (10) we have:

oL oL 9 ‘e, " F,F"
—=—+— || ke(R-2A)+—& J—g dxtdx®dx® 16
ox ox axJ‘L ( ) 167y (10
oL\ oL
The Euler-Lagrange equation E = :8_ from (2) requires that the equations (15) and (16)
X X

should be equal to each other:
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_M_Fd_ml)x +mﬂ+@Ax+q dA“ =
dt dt dt dt dt

ds om mu” dx" ag,“, om

0 o, " F, F*"
+— | ke(R-2A)+—2—- —g
ox

16z y 4u,
(17)

With the help of 3-vector u=—(g,,u",g,,u", g;,u") we shal introduce the 3-vector of

generalized momentum with the following components:

P=(—mg1ﬂu”+me+qAx,—mg2ﬂu”+mDy+qu,—mg3#u”+sz+qAZ):

(18)
=(mu,+mD,+qA,, mu,+mD, +qA, mu +mD, +qA.).
In view of (18) instead of (17) it can be written in the 3-vector form:
dP ds
—=-V|\mc—+my-mv-D+qp—qv-A |+
i [ i 4 99—q ]
(19)

o, " F, F"
+VI kc(R-2A)+—= o
16z y 4u,

]\/—g dx*dx®dx®.

According to (19) for continuously distributed matter the rate of change of the generalized
momentum of substance and the field is determined by gradients from the following quantities: the
energy of the substance unit in gravitational and electromagnetic fields that can be found through the
velocity v and the scalar and vector potentials; the integral by volume of the term with scalar
gpacetime curvature; the integral by volume of energy invariants of the gravitational and
electromagnetic fields, which are in the volume of the substance unit, as well as those of their proper
fields, which are generated by this substance and interact with it. We shall remind that deriving (17)
and (19), we assumed that the velocity of the substance does not depend on spatial coordinates. In
thisregard, in (17) and (19) there are no gradients of the velocity components that appear in the case

of the velacity field in some way connected with the points in space.

11



The case of a small test particle outside a massive charged body

The equation of motion (17) can be simplified by using the operator equality: di=§+V-V.
t ot

This gives the following:

dD. oD, .9D. 9D, oD, dA. 04, _0A. .04 .0A
— = +Xx +y +z , — = +Xx +y +z s
dt ot ox dy 0z dt ot ox ady 0z
dm—a_m+xa_m+)}a_m+z'a_m, @ aq+xa_q+ya_q+za_q

dr o ox Ty ez dt o ox "y oz

Next, we shall introduce the vector of gravitational acceleration strength G and the vector of

torsion field intensity €2 (gravitomagnetic field) according to the formulas:

G=—Vz//—a—D, 2=VxD.
ot

It is seen that these definitions of G and £2 are written in generally covariant form, since these
guantities with accuracy up to a constant factor, constitute the components of the gravitational tensor

®,=V,D,-V,D,=d,D,-d,D,. Smilaly the strength of the electric field E and the

induction of the magnetic field B are defined:

E:—Vgo—a—A, B=VxA.
ot

Asfaras mvx Q2] =my2 -mz80,, q[vxB], =qyB.—qzB,, then using the previous
equations for (17) we find:
_d(mgl/(u#) N mu* dx" 98, __dm dq ds om om g

= D -4 =22 ——Lp+
dt 2 dt ox o * ot ° Cdtax ax'” ax(”

+[vx[VmxD] | +[vx[VmxA]] +mG, +m[vx2], +qE, +q[vxB],+ (20

]«/—g dx*dx®dx®.

‘p, O F, F"
+ij ke(R—2A)+ v Tw
ox 167y 4u,

Equation (20) is the equation of motion of the substance unit in the direction of the first spatial

axis of the reference system, and it corresponds to the equation di(z—Lj :3—L in (2). For other
1\ ox X
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spatial axes the equations of motion will differ only by replacing the indices in the derivatives and

the components of vectors. If we enter the 3-vector u=—(g,,u", g, u",gs,u"), then instead of

(20) we can write the equation of motion in 3-vector form:

d(mu) mu" dx" om oq ds
+ =——D-—A-c—Vm-yVm—-¢Vq +
dt 2 @ T T o g TV

+[vx[Vmx D] |+[vX[Vgx A] |+ mG +m[vx Q2]+ qE +g[vxB]+ (21)

‘o " F, F"
+VI kc(R—ZA)+c £ e =g dxtdx? dx®.
16z y 4u,

3-vector ng in the left side of (21) plays the same role as the Christoffel symbol in the

equations of motion in Riemannian space in the four-dimensional notation (in the general theory of
relativity and in the covariant theory of gravitation).

Since we consider a small test particle outside a massive charged body, then the contribution to

2
c-d, D
the curvature R and the constant A is made only by the test particle itself. The terms 1 6‘”
Ty
uv
and ——— in (21) are associated with the energy density of gravitational and electromagnetic

Ho
fields, respectively. If the test particle is small enough and has low density of mass and charge, then
the main contribution to the energy density of the fieldsin the volume of the particle will be made by
the external fields of the massive charged body. In addition, in (21) the gradient of the integral over
the volume is taken, which in some cases can be close to zero due to symmetry and homogeneity of
the distribution of field energy within the test particle. One of such cases is the approximate spatial
homogeneity of the external field.

In Minkowski space we have: U = , ng =0. If we also assume the constancy of

14
J1-v?/c?
the mass and charge with the time, zero gradients of the mass, charge, curvature and zero gradients
in the distribution of field energy within the volume of the particle, then (21) takes the form of the
equations of motion of the test particle in gravitational and electromagnetic fields in Lorentz-

invariant theory of gravitation [2]:

d mv
| ————— |=mG+m[rxR2]+gE +¢g[vxB]. 22
dt[ 1—V2/CZJ mG +m| 1+qE +4( ] (22)
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The left side of (22) is the rate of change with the time of the relativistic particle momentum,
while in the right side there is the two-component gravitational force and similar to it the two-
component electromagnetic Lorentz force. Thus, from the variation of action (1) with the Lagrangian
(4) in the framework of the covariant theory of gravitation (CTG), we can obtain the equation of
motion of a particle (22), which isvalid in the special theory of relativity (SRT). This means that the
equations of CTG and SRT are linked by the correspondence principle, when after the aspiration of
the curvature of spacetime to zero the equations of CTG turn into the equations of special relativity.

In contrast, the equations of general relativity do not have such a direct transition to the equations

of specia relativity. Indeed, in general relativity Lagrangian differs from (4) by the absence of
2 v
D, D

gravitational terms of the form:—p,D, u”+16L. As a result, in (21) there are no
Ty

gravitational terms, only the following remains:

d(mu) mu” dx" _dq
+ 8w =
dt 2 dt ot

A— c—Vm oVq +[vX[Vgx Al |+ gE +q[vx B]+

]rdx dx?dx®.

(23)

+vj(kc(R 2A

In order that gravitation could appear in general relativity as an effective force of gravitation in

the weak field limit, in (23) the decomposition of Vgﬂv should be carried out, and the appearing

terms should be transferred to the right side are considered as a gravitational force. The difference
between the positions of the general relativity and CTG is due to the fact that in general relativity
gravitation is simply the curvature of spacetime (without specifying the reasons for this curvature),
and in CTG gravitation is areal physical force which is substantiated by the mechanism of Le Sage
gravitation [4]. In this case the scalar potential y of the gravitationa field in CTG is the

characteristic of scalar field associated with the flow of gravitons, and is proportiona to the
difference between the energy density of the graviton flux at the point where the potentia is
determined, and the energy density of the graviton flux at infinity. The gradients of the energy
density of graviton flux in this case can be considered as gravitational field strengths. In the
assumption that some gravitons are tiny charged particles, in [5] the scheme of appearance the

electromagnetic force and the electric potential ¢ is derived. If scalar potentials are known in a

fixed frame of reference, then after conversion into a moving frame of reference vector potentials of
gravitational D and electromagnetic A of fields appear, as a consequence of field retardation
effects due to the limited speed of their propagation. Thus we can understand why the fields are

described by 4-potentials D, [W Dj and 4, :(2,— Aj.
C C
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Therelation between the L agrange and Hamilton functions
Describing the principle of least action, we recorded the Lagrange function in the general form:

L:L(t,x,y,z,x,y,z',Dﬂ,Aﬂ,gw), where the quantities x:%, y:‘;—y, z'=§ are the
t t t

components of 3-vector of coordinate velocity v = (x, ,2) of the substance unit motion. Variation

of the action function leads to the Euler-Lagrange equations (2) and (3) and requires variation of the

Lagrangian, which has the form:

o1 =2L 5+ 5y L 5,4+ L 57 9L 550 9L 524
ox ay 0z ox ay 0z
oL oL oL (29
+——0D, + 04, + 0g,, -
oD, " aa, T T og, OB

u u

We shall introduce the Hamiltonian H:H(t,x,y,z,Px,Py,PZ,Dﬂ,Aﬂ,gﬂv), where the
quantities P, P, P, are the components of the 3-vector of the so-called conjugate generalized
momentum P = (Px,Py,PZ ) (conjugate with respect to the coordinates x, y, z ). The Hamiltonian in

the simplest case is determined by the Legendre transformation through the components of the

conjugate momentum, the velocity components of the substance unit and the Lagrange function:
H=Px+Py+Pz-L=P-v-L. (25)

With the vanishing of the variation in time, as it is required for the Lagrange function in the

principle of least action, for the variation of the Hamiltonian we have:

5H:aﬂ5x+a—H5y+a—H52+aﬁ5ﬂ +a—H5P +a—H5PZ +

dx Jy oz oP, P, P,
OH . OH . oH <0
+——0D,+——04,+ 0g,, -
BDﬂ 8Aﬂ Bg/w
Theresult of the variation (25) is:
5H=5Px)'c+Px§)'c+5Pyy+Py5y+5Pzz'+PZ52'—5L. 27)

Substituting (24) and (26) in (27) gives the following relations:
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OH _ oL oOH _ L OH _ L

o _ oL o _ oL on__% (28)
ox ox ay ay 0z 0z
o __ oL oH __dL oH __ oL (29)
oD, dD, 04, 04, g, 98,

j20d o _oH o, dL o, L, L (30)

v YEa5 f ' x o =50 ==
oP. oP, oP. ox Yody oz

After determining g—L through P. in accordance with (30), and substituting in (2), taking into
X

X

dP. dL  OH ,
* =—=———_Ingeneral, we can write down:

account (28) we have:
ox ox

S =VL=-VH. (31)

We shall find the components of the generalized momentum from (30), given that the velocity
components x, y,z are directly included in the Lagrangian (4) according to (12) and (13) only in
three terms, forming part of the Lagrangian L’ . From (14) and analogous relations with the help of
(30) can be obtained the same asin (18):

P=(P.,P ,P), Px:—alf:—alf =-mg u'+mD, +qA,, (32)
Y ox ox
oL odL oL oL’
P=—=—=-mg, u"+mD, +qA,, P=—=—=-mg,u"+mD_+qA..
y ay ay g2/l ¥ q y z aZ aZ g3/1 . T 44,

The scalar product of the generalized momentum P and the velocity v, taking into account the

u u
relation C_dtdi :C_dt(c1x’j)’z') = u’u = cdx
ds dt ds

, gives:

Pv=Px+Py+Pzi=-mg u'i—mg, u'y-—mg,u‘z+mv-D+qv-A=

_ p ds (33)
=mcgy,u —mcE+mV- D+gqv-A.

Substituting this expression into (25) in view of (4), (10), (12), (13) alows us to find the

Hamiltonian for the solid-state motion of the substance unit with the mass m and the charge ¢ :
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‘P, " F,F"
H:ngO,,u”+ml//+q(/)—'[£kc(R—2A)+c 1(;””/ }/ dxtdx’dx® . (34)

In mechanics the Hamiltonian is usually associated with the energy of a body (a substance unit).
The first term in (34) is connected with the rest energy and kinetic energy of substance. Products
my and g@ give the potential energy of mass and charge in the gravitational and electromagnetic
fields associated with scalar potentials. The volume integral in (34) defines the additional energies,
depending on the curvature of spacetime R , the constant A, and the field strengths. If the volume of
the test particle is small, the volume integral in (34) can be neglected compared to the first three

terms. In this case the energy of the test particle includes the relativistic energy of motion and energy
of the particlein field potentials.

If we consider the formulasfor dm and dgq , given before the relation (12), then the mass and the

charge can be expressed in terms of the volume integral of the density of mass and charge:
cdt 1,2 cdt 1,23
= _Pm/ dxtdx*dx® qzjd—poq«/—gdx dx“dx” ,
s

where p, —the substance density in the reference frame at rest relative to the substance unit;
ds —theinterval;

P,, —the charge density in the reference frame at rest relative to the substance unit.

In view of this the Hamiltonian for a continuously distributed matter would have the following
form:

cdt c @ VQj#V F F/tv
H:J(—(pocgoﬂu + oW+ Po, ) —kc(R-2A)— 1g7r7 ]«/ ditdx?dx®.

(35

In Minkowski space we have the following relations:

mc? o, D 1
ngO/l = —, H - _ <G2_CZQZ),
1-v?/c 167y 8ty
L = %o (g7 ¢2B?)
4u, 2 '
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where G —the gravitational acceleration,
L2 —the vector of torsion field intensity,
E —theé€lectric field intensity,

B —the magnetic induction,

&, —the vacuum permittivity.

Substituting these relations into (34) for the case of a small test particle, when one can neglect the

term with the scalar curvature R :

2
H=—+ml//+q(p+_[ i(GZ—CZ.QZ)—E—O(EZ—CZBZ) dx*dx? dx® + const .
8y 2

J1-v?/c?

(36)

For external fields it is necessary in (36) to integrate over the volume of the particle, and for the
fields generated by the substance of the particle, it is necessary to integrate over the volume both
inside and outside the particle. The Hamiltonian (36) as the energy of a small test particle is
determined up to a constant, which arises from integration over the volume of constant A (for the
meaning of this constant see our discussion after relation (9)). In the Minkowski space metric does
not depend on the coordinates and time, and therefore the term with the constant A in variation of
Lagrangian disappears and does not contribute to the equations of motion. However, due to the
definition of the Hamiltonian (25), where the Lagrange function L is included as a whole, the

constant A appearsin (36) as additional constant.

The expression of the Hamiltonian through the generalized momentum
In (34) and (35) the Hamiltonian is expressed through the 4-velocity u*, depending on the 3-

vector of velocity v = (x, y,Z) . However, in the canonical form the Hamiltonian is defined by the
components of generalized momentum: H:H(t,x,y,z,I?Y,RV,PZ,Dﬂ,Aﬂ,gW). We express the

components of the 3-velocity through components of the generalized momentum P = (P. P, P, ),

. . . dt dx* cdt, . . . dx" .
for which, taking into account the expressions catax :C—(c,x,y,z) =y = cax , We rewrite
ds dt ds
(32) in another form:
: : . P -mD —qA, ds
EuX+8pY+8pz=—— i — —81C - (37)

m cdt
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EnX+8nVt8ni=—— . — - 78%C- (38)
m cdt
. . . P-mD_—qA, ds
Xt 8pY+8ypz=— ——&3C- (39)
m cdt
In view of (32), we introduce the following notation:
P—-mD —agd P-mD —qgA
X m X q x:Cx:_glﬂull’ Yy Yy q y:Cy:_gzﬂuﬂ,
m m
P-mD_.—-qgA
R 20 =gy (40)
m
as components of a 3-vector, normalized to unit mass.
We also need the following minors:
M,; — minors of the matrix of the components of the metric tensor g,,, where
«,=0,1,2,3;

m,, — minors of the spatial submatrix of the components of the metric tensor g, , where
i,k=1,2,3. Asthe examples of such minors, taking into account the symmetry of the metric tensor

g, We can write down:

My = 810(22283 — €2383) — 820(€12835 — 81383) + 830(812823~ 813€22) (41)
My =8y (g21g33 - g23g31) — 8w (g11g33 - g13g31) + 8w (gngzs - g13g21) )
Mg = 20 (818% — 82082) — 8 (81182 — 8128x) + 80a (81182 — &12821) »

My = 822833 ~ 82383 My = 82183 8238310 M3 = 8083 ~ 82283+

We shall also use the following relations:

1My — 1aMMay — Guylyy =—M -
1My + Zoalay — oMy =—M . (42)

—g13My3 + ZoaMMo — CagMMaz = —M .

813y — ozMyy + 33y =0, 8oy — 1aMzy — &1y =0,
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—81oMMyy— oaMagy + &My =0, =812z~ €oaMazt 8oty =0,

=13y + o3y — &azMay =0, —g1oMyy + 13, + gy, = 0.

With these notations from (37), (38) and (39) we have:

My i = E(_mﬂc" +my,C, —my,C,)~Myc. (43)
. ds

OOy:E(mZICx m22Cy+m23Cz)+M02c- (44)
ds

MOOZ—E(—m31CX+m32Cy —m33CZ)—M030. (45)

Dividing (44) and (45) by (43), y and z can be expressed by x:

. (MOOX+MOlC)(m21Cx —myC, +m23Cz) L Mye (46)
MOO(_m11Cx+m12Cy _ml3Cz) My,
. (M00x+M01c)(—m31CX+m32Cy—m33CZ)_MOSC )
My, (_mllcx +my,C, _m13Cz) My,
From (43) we find:
(ﬂ]ZZ (MOOX+M01C)2 | (48)
cd (_mllcx +my, C, _m13Cz)

u
On the other hand, d% = (¢, x,y,2), and for the square of the interval (ds)2 = gaﬂa’x“dxﬂ. In
t

view of this, we have:

ds \, &updx®dx” 1 ) . : :
— = ——=—(gpC” +2g8ycXx+2g8,cy+2gcz2+
(cdtj ¢ dt dt c° (8o Sou Be €y £ (49)

+28,Xy+2g, X2+ 2g23)'/Z'+g11562 +g22y2 +g3322)-

From equations (48) and (49) it follows:
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c?(M g5+ My )’

5= gooc2 +2gycx+2g,cy+2g,cz2+
(_mllcx +my,C, _m13Cz) (50)

+28,Xy+2g,Xz2+ 2g23)"2'+g115‘2 +g22)'/2 +g3322-

If we substitute y and z from (46) and (47) in (50), we obtain a quadratic equation for the

velocity component x . However, this equation is too cumbersome to write. Equation (50) can be

simplified by introducing a new variable:

Myx+Mgc _x. x:X(—mlle+m12Cy—mlsCZ)—Mmc. (51)
—my, C, +my, Cy —my,C, My,
Using in (50) relations (46), (47) and (51), after lengthy cal culations we find:
2 —
Z
where g isthe determinant of the metric tensor g, ,, and g isnegative:
8 =80Myp —8uMu + 8xMup — 8osMos
and the following abbreviation is used:
Z= —M0002 =C,.(=myC, +my, Cy -mC.)— Cy (m21Cx — My Cy +myC, ) - (53)
—C.(-myC, + m32Cy —mgC).
From (52) and (51) we find x, and then from (46) and (47) define y and Z :
5= c\/_g(_mllcx +m12Cy _mlBCz) _\/EMOlC (54)

JZMy,
. NTE (m21Cx — My C, + My C, ) + \/EMoz ¢
y = 1
JZMy,

CE (_m3le +1m5, €, =g C, ) - \/EMoa ¢
JZM,, '

z=
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From (54) and (43) we derive the quantity d—; :
cat

ds c\/; . (55)

cdt Z
We can calculate oy u” using (59, (55) and the expression
cdt dx*  cdt, . . . u _ cdx”
——=_(cax1y12):u = :
ds dt ds ds

“_ c_dt( ...):c_dt( I
o = 8ou s CX, 1,z s Bl TEnX T80V T 802

56
__CxM01+CyM02_CzM03_\/E\/_g (0)
MOO MOO
P-mD —qgA
In (56) using the previousy introduced in (40) notations Sl e =C,,
m
P-mD —qgA _ _
z y 4 ~=C,, £ —mbD, qAZ:CZ , we can move from C,, C, and C. to the
m m

generalized momenta £, P, and F,. After multiplying (56) by mc the result will be equal to:

—cMy (P, —mD, _qAx)"'CMoz(Py -mD, _qu)_CMos(Pz -mD, —q4.)
M

‘ll=

melZ e

M

me g, u
00

00
Let us substitute thisinto the formulafor the Hamiltonian (34):

—cM (P, —mD, _qAx)+CM02(Py -mD, _‘]Ay)_CMos(Pz -mD_, —qA.)
= "
7 |-
mNZ g

My

2 14 v
e, " F,F"
4u,

J—g dxtdx®dx’.

(57)

l//+q(0—J(kc(R—2A)+
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In Minkowski space, i.e. in the specia theory of relativity when the curvature of spacetime is
absent, My, =-1, M, =M, =M, =0, \/—g =1, and taking into account the expressions (53)
for Z and (40) for C_, C, and C., the Hamiltonian will be expressed through the 3-vector of the

generalized momentum P, through the scalar potentials 7, ¢, and vector potentials D, A:

2 v v
D, D _FWF“
167y 4y,

H= c\/mzc2 +(P-mD-gA)? +ml//+qq0—j( deldxzdx3+const.

Similarly to (36) in the expression for the Hamiltonian there is some constant. In this case the

gravitational tensor @, and electromagnetic tensor £, are differential functions of the potentials

of fields in the form of derivatives of coordinates and time. The resulting expression for H , but

without taking into account the gravitational field, that is, without terms with the potentials ¥ and

D, and without taking into account the integral with the tensors @, and £, , we can findin [3].

Hamilton's equations according to (30) and (31), with the components of 3-vector coordinate

velocity v =(x,y,z), and the components of 3-vector of the generalized momentum

P=(P,,P,,P,) (32) havethefollowing form:

. OH . OH . OH oH
xX=—), y=—, z=—m7V o Vv=—. (58)
oP. aP, P P
E =VL=-VH. (59)
dt

In order to verify the validity of equations (58) the quantity Z of (53) should be substituted into
(57), and the quantities C,, C, and C._ should be expressed in terms of generalized momenta F,,

P, and P, using (40). If we then take the partial derivatives from the Hamiltonian H according to

(58) we shall obtain expressions (54) for the components of velocity. The physical meaning of
equation (59) lies in the fact that the gradient of the Hamiltonian as the energy of the system, taken
with opposite sign, is equal to the rate of change of the generalized momentum with time.

Now we shal write (57) in four-dimensional form, for which we shall use the following

expressions:
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V=& g 1 00
Mo, M-8 gOO\/_g
_M01:_M01 :gm M02:M02 :g02 _M03:_M03 :goal
My, g’g g% My, g%g g% My, g’g g%

For the first term in (57) with the help of (32) it gives:

—cMy (P, —mD, _‘]Ax)"'CMoz(Py -mD, _C]Ay)_CMos(Pz -mD, —qA.)

MOO
01 u 02 u 03 u
—mcg glﬂu —mcg gzﬂu —mcg g3ﬂ1/l
= o =
g
U 00 01 02 03 0
—mcu (g g0y+g gl/l+g g2y+g g3;1) u _ —mcu

= 0 +mcg0ﬂu =

+mecgy, u”.  (61)
g

00

We shall make further transformations of the following auxiliary quantities with the help of (41)
and (42):

u _ .0
U (mllgly_m12g2ﬂ+ml3g3y)_u (M1 810— 1My, G0+ 138 59) +

1 _ 0 1
+u (Mg gy — Moy 8oy +Mys8ay) =t My +1uM .

u _ 0 2
u (_m21gl,u+m22g2,u_m23g3y)__u My +uMy,.

u” (m3lglﬂ_m32g2y+m33g3,u) = ”OMos +”3M00- (62)

From (40) it followsthat C, =—g, u”, C, =—g,,u", C.=—g,,u". Then, using (62) and the

equality g, u“u" = ¢? the expression (53) for Z can be transformed as follows:

Z= _A/[ooc2 —C . (=m,C + leCy —my,C.) - Cy (leCx - mZZCy +myC, ) -
—C.(-my,C, + m32cy —mgC.)=
= _*Mooc2 + gl,uuﬂuﬂ (mllgl,u_ m,8&,,+ m13g3/1) + gzy”#”ﬂ (_m21g1ﬂ+ My 85, =My 83, ) +

1 -
+g5,u U (m3lgly —My8,,+ m33g3y) =
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_ 2 u(, 0 1 u 0 2 u(. 0 3 _
=—Myc” + gy, u (u'My+u Moo)+g2ﬂu (—u"My,+u MOO)+g3ﬂu (u'Myg+u’My)=
2 0 0 0 0

=—Myc” + gy u'u" My — g, u "My + g u'u" My + g, u“u" My — g, uu"My, =

= gly”ﬂqum - gzy“ﬂ“OMoz + g3y“ﬂuOM03 — 8oy uﬂquoo .
Now we shall use (60):

_ u,,0 0 0 0 _
Z—glﬂu u MOl—gzﬂu u M02+g3ﬂu u MO3_g0ﬂu uMy,=

03 00
_ u#uog Moo_ uﬂuog Moo_ u#uog Moo_ uﬂuog Moo_
= 8w goo 8ou 00 83u 00 Eou 0o

_MOO 0,0

M M
40 o1 02 03 00y _ 00 . 4, 050 _ 00 _ 0.0
——o 44U (glyg +gZ,ug +g3/1g +g0/1g )__Tu u é‘lu ST uuU =—guu.

(63)

In (63) we used Kronecker delta 5; :{O )
NTERY

Lu=v i .
. In view of (63) for the second term in (57)

we find:

_mcﬁq—g _ I’I’IC\/E _mc«/—guouo _mCUO

My, ¢®J-g g% -g¢ g%

We substitute this expression and the result from (61) into (57):

p o, " F, F"
H=mcg,,u +ml//+qga—j kc(R—2A)+ 1677 - an
0

J\/deldxzdx3 . (64)

The Hamiltonian (64) coincides with the expression for the Hamiltonian (34). Thus, we made a
circle: first, by introducing the generalized momentum P (32) we made the transition from (34) to
the Hamiltonian in the form of (57), and then by other way, we got back to (34).

To check the validity of equations (59) for the Hamiltonian in the form of (64), we find the

. oH
quantity ——:
ox
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aH

. (mcgo,, “)——(mw)——(q(p)+
X

) 2D P _F, S
+— || kc(R-2A) +— J—g dxtdx®dx®.
axj( cR=2M)+ ey } T

From (59) it follows:

aH dP. d
o dt

(—mglﬂu” +mD_+qA).
From the last two equations we obtain:

d._ “ __9 wy_ 9 ¢y O
dt( mg u’+mD +qA,)= ax(ngO“”) x(ml//) ax(qco)+

\/—dx dx?dx®.

(65)

) cquvqw F, F*
+—I kc(R—2A)+—=~
ox 167 y

In Minkowski space: —m g, ,u" = If we consider the

_mE e e M
J-v?/c? > J1-v?/c?

situation for asmall test particle outside the massive charged body and apply the relation:

dD, oD, 90D, .dD. .dD, dA, 04, .04, .04 .0A,
= +x +y +z , = +x—=+y +z ,
dt ot ox dy 0z dt ot ox ady 0z
oD
G=—Vy-——, N2=VxD,
v ot
E=- (p—a—A, B=VxA,
ot

then with constant mass m and charge ¢ of the particle, and assuming that the velocity v and
the scalar products v-D and v- A do not directly depend on the coordinates, the equation (65)
. mx
turnsinto (22) for the component of the momentum 2/ -
1-v/c

The four-dimensional generalized velocity

We shall introduce 4-vector of the generalized velocity with the covariant index:
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s, = +D,+—A4,. (66)

where D, = (Z,— Dj _ 4-potential of gravitational field,
C

(o . .
4,= [:— Aj —4-potential of electromagnetic field.

Theratio Po in (66) isthe ratio of the densities of charge and mass of the substance unit in the
Po

reference frame in which the substance is at rest. The scalar sﬂJ” will be equal to:

cJ J*
2 0

where j* = p,, u”

is the 4-vector of electric current density.

Taking it into account we can rewrite the Lagrangian (4) as follows:

2 v v
D, " _FWF”
167y 4u,

L=j£kc(R—2A)—sﬂJ”+

]\/—g dx*dx*dx®, (68)

and S =_[Ldt is the function of the action, and /—g dX = \/—g cdtdx‘dx’dx® — an invariant

4-volume, provided that dx° = cdt . With the help of (11) and the subsequent relations we can write

down:

-gdX =%\/Ecdtdxldx2dx3 =cdtdV =ds’dV =dsdV,.

Thus, the invariance of the 4-volume /—g dX with respect to the change of coordinates is
expressed in the invariance of theinterval ds of the moving substance unit, and in the invariance of

the three-dimensional volume dV, of the substance unit in the co-moving frame of reference.
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We shall designate L, = j (—sﬂJ/x/—g)alxldxzarx3 in (68) and find the variation JL,,

associated with variation of part the action function S, = jLZ dt -
oS, :I5L2dt, oL, =J.5<—sﬂJ”w/—g)dxldx2dx3. (69)

é‘(—sﬂJ”\/%):—sﬂé'( J”\/;)—J”\/%é'sﬂ =

cJ 2o (70)

=—5 g O0J" =5 J"O-g —J"\J-g & £ +D,+—~4, |

Sy g Sy g 8 {W u 0 y}

We shall use the following standard formulas:
N :—“;gg’”é‘gw, JJ =g, J" T,
1
0J" =V _(JO&E —JHE% )=——=—0 | —g(J & =T E7) |, (72)
( et )

5p0 = _Va (poéza)-i_%uﬂuvvvém’ 5'004 = _VO' (poq§0)+%uauvvvfg,

where the variations 6J*, 0p,, op,, ae taken from [6], [7], and displacement &4 are

variations of the coordinates, due to of which arise the variation of mass 4-current 6J*, the

variation of mass density 0, and variation of the charge density 8 p, .

We shall transform the first termin (70) in view of (71):

s, 87" ==5,0,[ =g (/7 & =" &) | =
=0, | s,\-g (7"~ &) [+ =g (17 & ~ T £7) a5,

In this expression the term with the total divergence in the integration over the 4-volume in the
function of the action will not make any contribution. The remaining term will be transformed

further:

\/%(Jafﬂ _J#fﬂ)aasﬂ :(aasﬂ —aﬂSG)Jgfﬂ\/%,
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where thevalue d s, —d s, istherotor of 4-vector of generalized velocities s, .

We shall transform the expression in the third term in (70):

cJ gl
_J/u\[_g5 £ _—CJ‘u4[ 5 ,ll =
[«/Jlﬂ g, J° T
= —cJ”\/E gﬂkajk +Jk5gﬂk _ 28 uk Jkgaﬁ‘]aé“]ﬂ * 8k JkJaJﬂ5gaﬁ
\[ga'l‘]a‘]l 2\/go'ﬂ,‘]0‘]}L \/ga'/l‘]a‘]/1 \/go%‘]g‘]}L

Jg 0" +J T 8g,, gaﬂJ“(SJﬂ J I 88,y | cN-gJ I 8g,,

e

With the help of (71) we shall find the variation 5(&] :
Po

5[poq j _ PPy = Po oy (&}
Po (;%))2 7 Po

Substitution in (70) and (69) of the obtained above expressions gives:
oS, = J.5(—sﬂJ”\/—g ) dxtdx’ dn® dt =

j{s\/*&/”—s JS\-g - J”ré[

+D, +,00q J]dxldxzdfdt:

NV Po

S, u
(9,5, ~9,5,)J7&" - s Jog+— T T | gusp
2 H

\, go‘l‘]a‘]ﬂ
—j*04,+J°4,6V, (&ﬂ J—gdxtdx*dx’ dt.
Po

(72)
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o, " F F*
We shall designate L, = j {kc(R—ZA)” + 1&” —~ ’Z J—g dxtdx?dx® in (68)
Ty Ho

and take in [1] the variation JL,, associated with the variation of the action function S, = le dt .

This gives the following:

F F:“V 1 2 3
oS, =[ oL, dt, §L1—J‘5[kc(R—2A)\/—g+ 167[7V 4ﬂ0“ de dx?dx® .
4% 1 uv uv 2 au Uﬂv
5S1:J ke (—R +Eg R-Ag j5gw—4ﬂyva¢ oD, - og,, +
(73)

u
+iV F* 64 —W2 é‘gﬂv}l—gdxldxzdxgdt,
My

where U*" is the stress-energy tensor of gravitational field (9), and the stress-energy tensor

W of electromagnetic field has the form:
WP =g | —g™F FPilgetp pu g 2| pe s Loar g pu 74
=&C g KV Zg uv =&C K Zg uv : ( )

By the principle of least action, the variation of the action must be equal to zero:

oS = I5L dt =08, +08S, =0. We shall substitute here (73) and (72), and equate to zero al the

termsinside the integrals, placed before the variations 5gw, 5Dﬂ, 5Aﬂ el

1 v w1 cJ'J"
og k| -R"+=g"R-Ag" |-—— | s J" +——=1|=0, (75
g C( 58 g j > T R W (75)
c? 1
5Dﬂ: - vV, o -J" =0, 5A#: —V _ F*—j*=0, (76)
dry My
& (aasﬂ—aﬂsa)J”+J"AGVﬂ[&J=O. (77)
Po
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Equations (76) are equivalent to the gravitational (5) and electromagnetic (6) field equations. The
first term in equation (77) can be expanded by using the operator of proper-time-derivative and the

4-vector of generalized velocity (66):

o o o DS,” o
(aasﬂ—aﬂso)J =pou’Vys, =J°V 5, =p, D7 ~-JV 5, =

DS p CJO' o o pO .o
= po—tm] V/{ J—J V,D,—J Agvﬂ(—qJ—] v, A4

Dr NIE Po o

Taking into account (77) it follows:

Osu oy | e |, jov p 4 v 4 (79)
pO DT u JlJ}“ u-_o J uo:

Asfar as according to (66):

DS/I - P CJ/I P .o o qu
pOE=p0u Vasy:'] VG — |+ J VO,D/I‘FJ VGA/I‘FJ AHVO. — |

NUvs Po

so comparing with (78) we find:

J
J°V [C—”] +JV, D, + j°V, A, +I° 4V, (@J =

\/_]/1_]1 Po

(79)

—J"V#( “Jo }J"V D, +j°V A4,

We shall apply the following relations:

J°V,D,-J°V,D,=J°(V,D, -V ,D,)=J°®,,,J°V A4, ~JV A4, =JF

uo uo

Jo cJﬂ v Duﬂ Jo cJ, - 0
NI, ot Vot =0y sWINE T

Thisgivesin (79):
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Du P
L-J°®, +j°F, —J°ANV | =L 80
pO DT uo J uo y2) U[pOJ ( )

Above it was assumed that the mass and the charge of substance unit in the variation does not
change. In this case, the density ratio Po will be unchanged, the covariant derivative V (&j is
Po Po

zero, and (80) turns into the equation of motion of substance in gravitational and electromagnetic

fields, taken in the covariant theory of gravitation under these conditions.

Now we shall consider the equation for the metric (75). If we separate out the terms A g*" and

3

s, J%g"" , then with condition k = ——°
‘ 16

(75) is divided into two equations:
nyp

1 ”VR=87Z7/'B cJ*J"

R" —= +U" + W, 81
2g o W (81)

4
SC Aﬂ =5,J°. 82)

Y.

In view of (67), expression (82) coincides with (8). As for (81), from the comparison with (7) it
follows that it should egual to:

cJ*JY

A — 83)
A\ 8524 JG J;L

We shall remind that the variations 8J*, 6p,, & Po, In (70) found in [6], [7], were determined
from the condition that the mass and charge of substance unit are constants during variation. This

leads to the equation of motion of the type (80), in which instead of the proposed total derivative

D(p,u,) _ Du
D—# (the rate of change of mass 4-current) the quantity o, I £ appears as the product of the
T T

mass density and the 4-acceleration.
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The Hamiltonian and the problem of mass

The Hamiltonian (64) can be represented in another form by using the generalized 4-velocity

Pog

(66). If we assume that sets in (66) the charge to the mass ratio, and considering that

Po

8o, 8" = s,, for the Hamiltonian we have:

czqﬁwcpﬂv
167z

F, LY
H=mcs0—j[kc(R—2A)+ J\/_dx dx*dx® . (84)

From here it follows that the contribution to the energy of substance unit with mass m is made
by the time component of 4-vector of generalized velocity with the covariant index s,, and the

energy of fields, found by the integral over the volume of space. In addition, the amount of energy is
corrected by the curvature of spacetime (the term with curvature R), and is determined up to a
constant (the term with A ). Hamiltonian H sets the energy in such a way that the energy in each
reference frame is different. This applies to the value of the generalized 4-velocity of the substance
unit, and the total momentum of the substance and fields. So it should be, because in the theory of
relativity only a definite combination of energy and momentum can be maintained invariant and
preserved in each reference frame.

The Hamiltonian (84) looks like it should be the time component of a 4-vector of energy-

momentum H , , written with alower (covariant) index. In this case, the time component of this 4-

vector is associated with the energy and the spatial component should be connected with the

momentum of substance unit. We shall make the notation:

g dx*dx? dx® luo, (85)

‘e, " F,F"
[| ke(R—2A)+—*

where N isan invariant associated with the energy of fields and with amendments to the energy
arising from the curvature R and from the constant A ,
u
Yo _ the time component of the dimensionless 4-velocity —=; this velocity is a simple 4-vector
C C

of unit length.

With this definition, the integral (85) is assumed to be equal to the time component of a 4-vector.

Then, taking into account (66) we have:
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H=H0=mcso—£u0 [mc—ﬁjuoﬁ—mcD +mc A0 (mc—ﬁju0+ml//+qq0. (86)
c c c

Equation (86) in view of (85) coincides with the expression for the Hamiltonian (34). Now we

shall write the 4-vector of the Hamiltonian in the contravariant form:

H" =mes” —%u” :(mc—gju” +mcg""' D, +qcg" A, . (87)

As there is the 4-vector of generalized velocity s* in (87), the 4-vector of the Hamiltonian
contains the 4-vector of the generalized momentum in the form m s .The time component of the 4-
vector H* must specify the relativistic energy £, and the spatial components — multiplied by the
speed of light momentum p . This follows from the conventional expression of the 4-vector energy-
momentum of a free particle without taking into account of the action of fields on it: p* =mcu” .

This vector in the flat Minkowski space, i.e., in the special theory of relativity, is expressed as

2
mcv

[\/1 V2 \1-v?/

particles can vary quantities £ and p , but when the particle becomes free, from to the invariance of

follows: p* =mcu” =

J (E,cp). Fields and interactions with other

1
the mass m, the speed of light ¢ and the equality Zpﬂp =m*u,u" =m*c® = E*—¢* p*

should follow the well-known formula for the relationship between mass, energy and momentum for
a particle in relativistic physics. According to this formula, one can find the momentum of the
particle at certain energy and rest mass of the particle, or determine the rest mass and the type of the

particle by its momentum and energy.

By analogy with the 4-vector energy-momentum p* = (E ,C p) from the components of the 4-

vector H* (87) we obtain:

E :(mc—ﬂjuo +mecg” D, +qcg™ A, . p,.= (m —lzjul'i'mglva +qg" 4,,
C C

p,= (m_ﬁz}f +mg”D,+qg* A,, D :(m _ﬁzjus_i_mgsva +qg™ 4,.
c c

For the case of substance without its direct interaction with another substance (other bodies),

located only in its own gravitational and electromagnetic fields, energy £ and momentum p of the

34



substance unit at constant mass and charge can not change, and must be equal to some constant for
the energy and constant vector for the momentum. This can be represented by the equation
H" = const , describing the conservation laws of energy and momentum of a closed system.

If in (85) we neglect the term with the curvature R and determine the constant equal to zero
needed for the energy calibration, which arises due to the constant A , then in the weak field limit, at

the transition to the special theory of relativity, for the energy and the momentum from the previous
equations we obtain:

mc? 1 2 2.2\ &0 2 2p2 1,273
E—W'FWZW'quD'FJ.{%(G —c°Q )—?(E —c°B ) dx dx“dx° . (88)
mv 14 1 £
= +mD+gA+ = || —(G* = c? Q%) -2 (E? = c*B?) |dx*dx*dx®.
A q CZJ(SM( )2 )j

2

From (88) it is seen that the term % plays the role of kinetic energy, and other terms
1-v°/c

belong to the potential energy. In this case the potential energy includes not only the energy of the
field intensities, but also the energy associated with the scalar field potentials.

From the substance unit we can proceed to a separate moving body, for which in case of straight-

line motion with constant velocity in the absence of external fields, the relations D =£2V,
c

A= %V arevalid. In this case for the momentum we have;

p= my +m12//V+qZDV+12J- i(GZ—CZ.QZ)—S—O(EZ—CZBZ) dxldxzdxgzﬁzV.
1—V2/02 c c c 8ry 2 c

(89)

Here the gravitational scalar potential y and the electromagnetic scalar potential ¢ are

understood as the averaged potentias inside the body, arising from its own fields. To find the rest
mass of the body, taking into account the fields we should write the ratio M = —E; with ¥ =0. We
c

shall use (88) to determine the rest mass with the help of volume integral:
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m 1 1 1 1 2> 2,9\ € p2  2p2
M=————+—my+—qgo+— || — (G =" Q2 |——=(E°—Cc"B°) |dV, =
4 2 q9 CZI[B’Z'}/( ) 2( ) 0

1 PoC 1 £
:c_zj‘ 0 (GZ_CZ.QZ)_?O(EZ_CZBZ)JdVO'

+ + +
e PV +Poy PTG

(90)

The rest mass M of the body differs from the mass m of its substance due to the contribution
from the field energies and energy of internal motion. If the body as a whole is at rest, but its
substance is in some internal motion with speed v’ it contributes to the overall mass due to the
kinetic energy, as well as due to the emerging field of gravitational torsion (2, and due to the
magnetic field B . Determining the mass the terms with field strengths should be integrated over
volume both inside and outside the body.

Now we shall use the relation (8) and apply it to (90) in case of stationary and not rotating solid
body:

1 ro, 1o & Lo 01 1 5 & 2
MO_?J[pOc +%G —?E dVO—m +c—2j %G —7E dl/o, (91)

where p(') is constant mass density associated with the cosmological constant A . The density

,0(', is obtained by excluding all the fields in the substance. For example, if the body is divided into

pieces and spread to infinity with zero velocity, then the normal field of gravitation and the
electromagnetic field will not be making large contribution to the density of the substance parts, and

the total mass of these parts will be equal to m” .

According to (91), the mass of the whole body becomes greater than the total mass of its parts,

due to the contribution of the gravitational energy with density _8 ! G?. Simultaneously, the
Ty

electrical energy of the body reduces its mass. These findings are consistent with results obtained by
another way in [1], [8], [9]. In the cosmic bodies the gravitational energy is generaly higher than the
electromagnetic energy, so as we move from small to large bodies the body mass should increase, as
well due to the potential energy of gravitation.

We shall note that instead of using the 4-vector of Hamiltonian (87) to estimate the energy,

momentum and mass, we can use another approach based on integration over volume of the time

components of the stress-energy tensors of substance ¢“ﬁ (83), the gravitational field U“* (9), as
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well as the electromagnetic field W *# (74). From the properties of the left side of the equation for

the metric (81) it follows that the covariant derivative of the right side is equal to zero:
V,(@" +U" + W)=V, " =9, 7" + T4 % +T, 7" =0, (92)

This equation is equivalent to the equation of motion of substance in the gravitational and

electromagnetic fields (80), in which it is considered that V E&j =0.
Po

If weintroduce aframe of reference relative to which the substance unit at a given timeis moving

like it should move according to the special theory of relativity, in this reference frame the
Christoffel symbols "%, and Fﬁa in (92) are equal to zero. Then the covariant derivative V,, of the
tensor 7" =@¢*" +U*" + W*" isequal to the ordinary derivative d,, which is the 4-divergence of
the tensor 7*" due to minimizing by the index v . Instead of (92) we obtain the equalityd, 7" =0,

the left part of which can be integrated over the 4-volume, taking into account the Gauss theorem,

and in this case/—g =1:
P¥ = JBVT”Vcdtdxldxzdxs = JT”V das,,

where dS, is the element of an infinite hypersurface surrounding the 4-volume. The projection

of this hypersurface a the hyperplane x° =const gives a three-dimensiona volume element

dS, = dx'dx”dx® = dV , and for the 4-vector energy-momentum we can write down:
Pt =[z4dS, = [¢4°dV = [ (9" +U*°+W**)dV . (93)

In contrast to (87), the expression (93) does not contain the energy of substance in its proper
field, that is, the energy associated with scalar potentials 7 and ¢ . Despite this, for a stationary

homogeneous ball in its proper gravitational field the mass-energies of this field according to (90)

and (93) coincide:

1 1¢ 1 1 1¢ 1
?jpowdrf,gr?j(%(;z]drfo:c_zjuwdr/o:_c_zj(%@]dVO, (94)
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where dV, is the differential of volume of the ball, dV}, — the differential of volume of space

inside and outside of the ball.

According to (94), the potential energy of the ball in its proper gravitational field associated with
the scalar potential is two times greater than the potential energy associated with the field strengths.
The same is true for the electromagnetic field, as in case of uniform arrangement of charges in the
volume of the ball, and at their location only on the surface. Equation (94) in its meaning resembles
the virial theorem for a stationary system of particles bound by its proper gravitational field —in this
system the module of the total potential energy is approximately equal to double kinetic energy of all
particles.

For the relativistic energy of substance from (88), and respectively, from (93) we also obtain the
equality:

2
mc

1-v?/c? .

2 2
mc 00 Po€ 2] 2
sub 1_V2/Cz sub '[¢ J-l_ VZ/CZ 4 /C 0

One aspect of the application (93) is the discrepancy between the mass-energy field of the
moving bodies that are found either through the field intensities in the potential energy, or through
the energy flux density and the momentum of the field (the so-called problem of 4/3). An attempt to
solve this problem was made in [8] on the basis of the contribution of the field mass-energy into the
total body mass. At the same time taking into account (94) we obtain the equality of the momentum
in (89) and the total momentum of substance and field contained in (93) in the spatial components of
4-vector P“.

We now turn our attention to the mass ratio of the substance unit contained in (90) and (91), for
the case when the contribution to the mass of the mass-energy of the electromagnetic field in
comparison with the mass-energy of the gravitationa field is small. Taking into account (94), then

for the masses of rest substance the relation must be valid: m’ < M < m , where the mass m isa part
of the rest energy mc?; themass M determines the total mass of substance together with the field;

the mass m’, as it follows from (8), is the substance mass scattered to infinity, where al fields are
set to zero. Which of these masses determine proper potentials and strengths of the gravitational field
of the considered substance unit? In our opinion, the observed mass is the mass M , it must specify
both the inert and the gravitational properties of the mass. This mass should be included in the
formulas for the potential and field strength, and in the potential energy. Then for a homogeneous

stationary ball we can write down:
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Since the observed massis M , then the mass m can be determined from the last equation, and

then the mass m’ can be calculated from the first equation. The mass density of substance p,

through the 4-vector of mass current density J* = p,u” is included in the Lagrangian (4) for a

substance unit, and is also included in the Hamiltonian (35). In the integration over three-

dimensional volume of the term cd_cﬁ PoC oy u" in (35), the mass m appears, and the integration
s

over the volume of the term Z—m P,V leadsin the result of the integration to appearing of the mass
S

M . The difference between the masses m and M isdue to the fact that at the addition of substance
units into a coherent body the 4-velocity u* is assumed constant, whereas the scalar potential i in
itself is a function of mass (more precisely, at the constant density of the substance the potential

within the body depends on the characteristic size of the body, or the amount of mass). Changing of
the potential  while the summation of the substance units into a single body in the course of
integration over volume instead of m gives the mass M , which is used to calculate the energy of
the field.

The stated above reveals the difference of forms of writing, and complementarity of Hamiltonian

and Lagrangian approaches in finding the mass, energy and momentum of the moving substance.

Action asthefunction to determine the effect of timedilation
In view of (10) and (12), we shall write the differential of the action function for a substance unit

with the mass m and the charge ¢ :

dS=Ldt=-mc,|g,, dx"dx" —mD, dx" —qA, dx" +

Ao P F FY (95)
e J-g ditdx®dx’.

+dzj kc(R—2A)+
16z y Au,
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From (95) it is seen that the action is a scalar quantity. In addition, the differential of the action

can be decomposed by the differentials of the interval ds =/ g,, dx"dx" , the 4-vector of

displacement dx” , and the coordinate (global) time dt , taken with the relevant factors.

Now we shall turn to the results obtained in [5]. It was shown there that the expression

dn =D, dx" contains a specific gauge function of gravitational field, which equals to
n= ID# dx" =|(y—D-v)dt, provided dr =vdt . A similar specific calibration function for

electromagnetic field is equal to 19=J'Aﬂ dx“zj((p—A-V)dt. We shal remind that the

fundamental field potentias are defined up to the coordinate and time derivatives from an arbitrary

gauge function. If we replace the 4-potentias for the gravitational field as follows:

D =D —F,, (96)

u u u

1dn

where we introduce the 4-vector Fﬂzaﬂnz[—a—,an, then the intensities of the
c dt

gravitational field and the equations of motion of substance in the field will not change. The sameis
true for the electromagnetic field and its specific gauge function ¢#. The gauge transformation (96)
in the case where the gpecific gauge function is sdlected in the form

n= jDﬂ dx* :J(w— D-v)dt, actualy clears the existing potentials of the gravitational field.

Although it seems that the system has not changed, it is not so. In fact, it turns out that when
comparing two systems, in one of which some gauge transformation is made by changing the
potentials, there are different rates of time flow. For gravitational and electromagnetic fields the
difference of a clock indications in the specia theory of relativity is described by the following

formulas:;

2 2
m
Tl_TZZWJD dx”, 7,7, :#J'A dx* . (97)

u u
1 1
The clock 2, which measures the time 7, , is check one and the clock 1 measures the time 7, and

is under the influence of additional 4-field potentials D, or A,. Time points 1 and 2 within the

integrals indicate the beginning and the end of the field action. From the time difference (97) we can

move to the phase shift for the same type of processes in different points of the field. To do this, in
(97) in the denominators it is necessary to replace mc? by the value of the characteristic angular

momentum. In quantum mechanics this value is the Dirac constant # (this value is equal to Planck
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constant /, divided by 27 ), which allows to take into account the appropriate phase shift which is

inversely proportional to this constant:

2 2
m
6’1—02=;J.D#dx”, el—ezzng dx". (98)
1 1

If we divide the first part in (95) by mc® and take the integral, we can obtain the standard time

dilation effect due to the clock motion with the speed v :

7,-1, =Z—; j,/gﬂv d'dx’ -7, _1 Ids—rz =_(i)-\/g_0()«/1—V2/cz dt_i@ dt, (99

0 c

here the clock speed v is measured by the local observer at the point with the time component of

t
the metric g,,; the moving clock measurestime 7;, and the fixed clock —thetime 7, = I,/ oo dt
0

of thelocal observer, expressed by the coordinatetime ¢ .

In (95), there is one more, the last term in the integral form, which in our opinion should also

influence the effect of time dilation. Any gauge transformation of 4-potentials does not affect the
values of field strengths, which are part of thetensors @, and £, . The energy of fields associated
with the substance mass m , depends not only on the absolute value of the 4-potentials, but also on

the rates of their changes in spacetime, that is, the field strengths. Each additional energy must affect

the intrinsic properties of substance, including the flow rate of proper time. From this we deduce:

p cco @ F F*
r—p=—t [ ]| ke(r-2n)+ 22
P me 167y 4u,

]«/—g dxldxzdxa:l dt.

From the stated above it follows that the action is not only a function by which from the principle
of least action the equations of motion are obtained, through the Legendre transformation the
Hamiltonian, or the Hamilton-Jacobi equations are defined. The action function has also a direct
physical meaning as the function describing the change in some intrinsic properties of physical
bodies. These include the intrinsic properties of the rate of the time flow, and consequently the rate
of increase of the phase angle of periodic processes depending on time. The special role of time in

relation to spatial size as a characteristic property of physical bodies is due to the fact that the time
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shift during motion and in the fundamental fields is an absolute effect, whereas the change of the

observed sizeisonly relative.
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