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Abstract

The centre of the Milky Way is populated with so-called  super-massive black holes. In most of the papers and

books about black holes at the centre of galaxies, the mass is said to be gigantic.

In this paper, we will see how to calculate the mass of these super-massive black holes out of observational data,

by using the Maxwell Analogy for Gravitation, and we see how to make the difference between real physical mass

and apparent (fictive) mass.

We discover  that  so-called 'super-massive black holes'  do not have huge  masses  at all  but that  they have an

apparent mass that can be thousands times the real mass. This suggests that the energy of such black-holes could

decrease very fast in relative terms.
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Method: analytic Notations: metric with comma

1. Basic gyro-gravitation physics for a rotating sphere.

Rotating objects have a velocity-dependent property that is the following. Imagine a sphere that is rotating with an

angular velocity ω . The gravitational field of the sphere is the steady reference field with a velocity that is locally

zero. But the rotation of the particles at a certain velocity, depending from its orbit's radius, will undergo a second

field that is entirely comparable with the magnetic field in electromagnetism. I call this field gyrotation, but

several other names exist in literature, such as co-gravitation field, gravito-magnetic field, etc. This orbital

velocity is locally an absolute velocity. In “A Coherent Dual Vector Field Theory for Gravitation” , I explained

that this second field is generated by the motion of masses.

Fig. 1. If two particles inside a spherical object rotate at their corresponding circular

velocity, they will influence each-other by a gyrotational force.
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In fig 1, the mass m1 (a particle of the sphere) orbits at a velocity v1 in the gravitation field g of the sphere. This

motion generates a second field ΩΩΩΩ  that is perpendicular on the velocity  v1 . This second field will influence any

second mass m2 that travels with a velocity v2 by generating a force F2 that will cause a deviation of the mass m2 .

This force is perpendicular to both the velocity v2 and the gyrotation field ΩΩΩΩ . Mutatis mutandis, the mass m2 will

also deviate any mass m1 in a similar way.

The force F2 can be found by the vector expression :

F2 ⇐ m2 (v2 × ΩΩΩΩ)  (1.1)

which can be completed by adding the gravitational force :

      F2, tot ⇐ m2 (g + v2 × ΩΩΩΩ)  (1.2)

When this scenario is repeated for all the particles of the sphere, the global gravitation is found and the global

second field (the gyrotational field) is found.

For a spinning sphere with rotation velocity ω , the results for the gyrotation at a point p outside the sphere with

mass m is given by the equation  (1.3) (5):

(1.3)

wherein • means the scalar product of vectors.

(Reference: adapted from E. Negut). The drawing shows equipotentials of  – Ω .

    Fig. 1.2

For the level of the equatorial plane, the last term of (1.3) vanishes, and we get a simple expression that is

dependent of the inverse cube of the distance, and, compared with the pure gravitational field, dependent from the

square of the sphere's radius, from the inverse square of the light velocity, and from the sphere's angular velocity.

The result of the expression (1.3) can be put in (1.2) in order to find the total acceleration acting on a arbitrary

mass in motion.

For the equatorial plane, equation (1.2) can generally also be written as :

(1.4)

This equation shows that the second term can have some considerable relative importance, even if the mass is

small. Indeed, the second term can be much larger than 1, depending from the values of the variables. This means

that even if the mass is small, it is still possible to have the impression that we are coping with a massive object.

The equation (1.4) can be expressed more generally, when we consider  I  the inertial momentum of the central

object:

Since        ,  we get, more generally : (1.5)

In the next chapter, we will analyse these parameters in detail.
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2. Gyrotational centripetal forces.

The orbit velocity is non-Keplerian nearby fast spinning stars.

When the orbital velocity of an object surrounding an invisible star (or black hole) appears to be non-Keplerian,

this  central  black hole is said to be super-massive.  Therefore, let us use the velocity  v2 ,  used in the former

equations as an orbital velocity of objects nearby the central black hole.

In “On the orbital velocities nearby rotary stars and black holes” I found the velocity of orbiting objects when

taking in account the gyrotation field of the central star.

In relation to the Keplerian orbital velocity  v
G m
rk =   , we found the following real orbit velocity :

(2.1)

Herein, I is the inertial momentum of the sphere, or in general, of the central celestial object. The orbiting object

will experience a larger velocity than the Keplerian orbital velocity only, because of the spinning of the star.

We define the notations  ag  , v k   and v k   as follows :  the gravitational acceleration as  a
G m
rg = −

2
 , the

angular spread as  s
I
m r cΩ =

ω

4 2   and the Keplerian orbital velocity as v
G m
rk =  . 

Then, the equations (2.1) and (1.5) can be more simply written as :

 and (2.2) (2.3)

In the case of a large Keplerian orbital velocity  vk  and of a considerable  angular spread sΩ  (which has the

dimension of the inverse velocity [s/m]) , we get a total centripetal force that can be many times larger than the

gravitation force alone, but without therefore having a larger mass. 

The main factor that will determine the gyrotation force (the second, large term in (2.3)) , is the angular velocity ω

of the central star or black hole. 

The apparent mass is caused by the non-Keplerian part of the orbital velocity.

Therefore, let us examine again the characteristics of rotary black holes. In “The Kerr-metric, Mass and Light-

Horizons, and Black Holes' Radii” I explained the shape and other characteristics of black holes.

When someone is not aware that the velocity v2 is not Keplerian, he will say that the mass of the central black hole

can be found out of the Keplerian equation : 

(2.4)

But since we know better, we can say that the mass contains partly real mass and partly apparent mass, due to the

wrong idea that v2 would be Keplerian. 
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So, we get: (2.5)

The total mass (real and apparent) of the rotating star is given by the following expression :

(2.6)

where the first term is the gravitational real mass and the second term the apparent mass.

The equation (2.6) can be written as following, when using (2.2) :

(2.7.a)

Remember that the first part of the equation can be written as (2.7.b)

In the next section, we will analyse the equations (2.7) closer.

Analysis of equations (2.7) and simplification.

Three cases are considered.

Let us consider the case where  vk sΩ  ≈ 1 . Then the following approximations can be made :

(2.8.a) (2.8.b)

The apparent mass is already considerable here. 

When we consider the case where  vk sΩ  >> 1 , the following approximations can be made, since

1 1 2+ ≈ +x x  :

(2.9.a) (2.9.b)

The apparent mass is very important here. This is the case that will be studied further in this paper.

To a certain extend, for  vk sΩ   >>> 1 , it is even possible to reduce the equations to a more simplified version :

(2.10.a) (2.10.b)

And when vk sΩ  << 1 , the following approximations can be made :
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(2.11.a) (2.11.b)

Even here, the apparent mass can be of a noticeable importance, if  vk sΩ  is not too small.

For  vk sΩ  <<< 1 , we can reduce the equations to a more simplified version :

(2.12.a) (2.12.b)

3. Study of the case  vk sΩ  >> 1 .

When the case vk sΩ  >> 1 is considered, the first thing to do is to verify what the physical balance conditions are

that can comply with the several  parameters of the expression vk sΩ  . We have to check the physical equilibrium

between the so-called centripetal forces (gravitation and gyrotation) and the centrifugal forces (inertia of mass). In

this paper we will study stars that are stable while spinning. 

To obtain the condition  vk sΩ  >> 1 , it is sufficient to choose the orbit radius r small enough, but still  r > R.

The condition of non-explosion of the star.

In “On the geometry of rotary stars and black holes” I found the critical radius at which a fast rotating spheric

object will not fall apart at latitudes smaller than 35°16', even at very fast rotation speeds. The generalization for

some other shapes than the sphere are worked out in “The Kerr-metric,  Mass and Light-Horizons,  and Black

Holes' Radii”, chapter 3, section “Are Pure Black Holes explosion-free ?”. I found the equilibrium between the

corresponding accelerations, and the corresponding explosion-free Critical Radius R
C 

:

(3.1)

wherein the symbol Rs is the Schwarzschild radius  R
G m
cs =

2
2

 and the dimensionless factor λ is found out of

I = λ m R² . For a sphere,  λ = 2/5 and for a thin ring with radius R we have λ = 1.  The radius of the black

hole must be equal or less than RC  .

Minimum spinning velocity for the validity of equation (3.1).

Remark that the condition for the non-explosion of fast spinning stars is independent from the spinning speed.

However,  the expression (3.1) is not applicable for slowly rotating stars,  because during the deduction of the

equation (3.1) in the latter mentioned paper, I have supposed that the gravitational part is negligible versus the

gyrotational part. When the  gravitational part is not negligible, the star will even better be kept together, and the

critical radius can be considerably larger without any risk for falling apart.

The condition for which (3.1) is precise enough and applicable in this paper as explained in the Appendix at the

end of this paper, where a general study of the explosion-free equilibrium of stars is given.

Also in the mentioned papers, I find that the final shape of fast spinning stars and black holes must be tiny and

ring-shaped.
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Quotient of apparent mass and real mass.

Let us now compare the apparent mass with the real mass. The equation (2.6) , combined with the definition of

vk sΩ  , and in which we replace R by the expression of RC  that we found in (3.1) , gives us the quotient of the

apparent mass and the real mass :

(3.2.a)

This equation is only valid for fast rotating stars that do not explode, due to the gyrotation force that keeps the star

together, whatever the rotation speed might be. 

One might  be very surprised to see such huge powers in this equation. However, this is due because we have

assembled several conditions in the same equation. The first condition is that we have considered that the apparent

mass can only be observed by observing the orbit velocity of an orbiting mass about the star or black hole. Thus,

we consider the apparent mass at the level of that orbiting object. One power of the real mass is accounting for the

orbit velocity of the orbiting object, caused by gyrotation. The second condition is that the chosen type of star is

an explosion-free one. A fourth power of the real mass is accounting for this condition!

The case of  vk sΩ   >>> 1  allows us to maintain only the first term of the right hand of equation (3.2). The second

term becomes negligible.

The equation (3.2.a) can then be simplified as : (3.2.b)

We see that the speed of light is present to the power minus sixth, which induces that there are needed very high

values for the black hole's mass in order to get significant values for the apparent mass.

Observational limitations due to the Light Horizon.

The radius of the Light Horizon  rLH of black holes has been calculated in  “The Kerr-metric,  Mass and Light-

Horizons, and Black Holes' Radii”, chapter 2, section “What specifies the light-horizon of black holes?” and is

given by :

(3.3)

This value is the minimum distance r from the black hole that has to be used in (3.2), because it is not possible to

observe phenomena that are closer to it, at the level of the equatorial plane, wherefore equation (3.3) is applicable. 

The condition for non-explosion (3.1) should still be applicable, although it has not yet combined in the equation

(3.3).

Since  I m R= λ 2
  , and combined with the equation (3.1) , we get as a limit for the light horizon  rLH (by

replacing R by RC ) :  

(3.4)

wherein the effective radius  of the black hole must be equal or less than  RC  . In (3.4) , we expressed the light

horizon in different ways.
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Orders of magnitude.

Let us apply the equation (3.2.b) with (3.3) for a ring-shaped

black hole of one hundred solar masses. 

When  we  suppose  it  is  rotating  at  1000  rpm,  we  get  in

fig.3.1, for a given distance r , the apparent mass versus the

black hole's mass.

Based on the equation (3.1) for the non-explosion of the star,

and as far as we can trust the values of the natural constants

c and  G at  that  position  in  space,  this  stable  ring-shaped

super-massive  black  hole  has  a  radius  of   73  km  only  !

Nearby that radius,  the  apparent mass is hundreds of times

the black hole's real mass (Fig.3.1).

In this example, the light horizon is at 298 km.

Fig. 3.1

In the case of a ring-shaped black hole of a thousand solar

masses, at the same rotation rate of 1000 rpm.

Then, we get in fig.3.2, at a given distance  r , the apparent

mass versus the the black hole's mass.

Based on the equation (3.1) for the non-explosion of the star,

the stable ring-shaped super-massive black hole has a radius

of less than 733 km ! Close to that radius, the apparent mass

is ten thousands times the black hole's real mass (Fig.3.2) !

In this example, the light horizon is at 7315 km.

Fig. 3.2

We conclude that the apparent mass takes the main part of the total gyro-gravitational attraction for black holes.

Non-Keplerian attraction is then observed. However, at very large distances, this apparent mass does not play a

significant role and can be neglected. The choice of 1000 rpm has been observed and this value is not unusual.

Due to the fact that matter can be transformed to gamma rays under high speed, such as with beaming black holes,

the limitation of the black-hole's spin velocity is set by the speed of light of the disintegrated mass. 

4. Discussion and conclusion. 

Out of the equation (3.2) it is confirmed that fast-spinning super-massive black holes can generate incredibly huge

apparent masses, if they are shaped at the critical radius that is necessary for non-explosion, which is given by the

equation (3.1). The apparent mass, caused by gyrotation, however decreases with the inverse cubic power of the

distance,  see  equation (1.5)  ,  whereas  the  gravitational  forces decrease  with  the  inverse  square  power  of the

distance. This fast decrease of the gyrotation force with the distance preserves that more distant objects would be

attracted and absorbed by these predator stars.

As known from the equation (3.1) that gives the radius' value of fast non-exploding rotating stars, these stars have

very small shapes, in the order of magnitude of kilometres.

Finally,  we conclude that the rotation speed of the star is not the main parameter for obtaining huge apparent

masses. The parameter of the (real) mass of the star is much more important to the gyrotational mass due to its

power 5/2 .
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Appendix : Critical radius of a spinning star.

The critical radius at which a star will  not fall  apart even when spinning at a high rate,  is deduced from the

equilibrium equation for  accelerations,  containing  gravitation,  gyrotation  and centripetal  accelerations.  In  this

Appendix, I analyze the outcome of equation (3.1) more generally.

In “On the geometry of rotary stars and black holes”, chapter 3, I wrote the equation (3.3), which can be simplified

for the equator by putting the latitude angle  α to zero. The star does not fall apart if this radial acceleration is

negative.

(A.1)

I generalize the case for any angular inertia of the type I = λ m R²  and get : 

(A.2)

Let us consider four cases.

Case 1 : . (A.3)

Here, the explosion at the equatorial zone can be avoided if        . (A.4)

This is the most general situation for fast spinning stars, as we saw in an earlier paper. The gravitational part is

negligible, and we get high spins and small star's shapes.

Case 2 :            . (A.5)

Then the total acceleration is always negative and this confirms the case 1.
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Case 3 :            . (A.6)

Falling apart of the star can be avoided if           . (A.7)

This case is applicable to the sun and to the classic stars with a rather slow spin.

Case 4 :                                    .   (A.8)

Also here, the total acceleration is then always negative and this confirms again the case 1.

In fine, we can maintain two cases with their corresponding critical radii : cases 1 and 3. The cases 2 and 4 are

only different aspects of the case 1.
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