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Abstract— Memristive system models have previously 

been proposed to describe ionic memory resistors. 

However, these models neglect the mass of ions and 

repulsive forces between ions and are not well 

formulated in terms of semiconductor and ionic 

physics. This article proposes an alternative dynamic 

systems model in which the system state is derived 

from a second order differential equation in the form 

of a driven damped harmonic oscillator. Application 

is made to Schottky and tunneling barriers. 
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I. INTRODUCTION 

In 1971 the “memristor” had been proposed by 
Leon Chua as a “missing” fundamental circuit 
element exhibiting charge-dependent resistance [1] 
and was recently claimed to be “found” by 
researchers of HPLabs in the form of TiO2-x thin 
films [2]. In actuality there were earlier physical 
examples of charge-dependent memory resistors [3] 
and it had been demonstrated since the 1960’s that 
TiO2 thin films exhibit a memory resistance effect 
[4]. Commercial interest in memory resistors has 
gradually been increasing since the 1990’s and has 
been under development in numerous forms by 
AMD, Axon Technologies, Micron Technologies, 
Samsung, Sharp, Unity Semiconductor, and other 
companies with applications directed toward non-
volatile memory [5]. The recent efforts of HPLabs to 
market Chua’s “memristor” as a newly discovered 
“4

th
 fundamental circuit element” are arguably an 

attempt to take credit for the work of these other 
companies rather than representative of any new 
discovery [6].  

The researchers at HPLabs have made some 
attempts to model their TiO2 memory resistor using 
ionic drift/diffusion of oxygen vacancies [7] 
formulated in terms of memristive systems [8]. 
However, the memristor ionic drift model is at 

minimum incomplete (if not entirely incorrect) 
since: 

a) it neglects hysteretic capacitive effects that would 
occur as ions move in a thin semiconductor film,  

b) it neglects the mass and inertial effect of the 
mobile ions, 

c) it neglects repulsive forces between ions, and 

d) it neglects dynamic effects of the built-in voltage. 

In order to incorporate the above effects the 
memristor model would need to be modified (or 
completely replaced) with a different dynamic 
systems framework. There have been some 
suggestions of broader dynamic systems models 
such as mem-admittance systems (Fig. 1b) which 
incorporate memory capacitive effects found in 
certain perovskite and nanocrystal films [9]. In 
addition mem-transistor systems (Fig. 1c) have been 
suggested to model 3-terminal memory devices such 
as the Widrow-Hoff memistor or synaptic floating 
gate memory cells [10]. Yet another conceivable 
type of mem-electronic system is mem-active 
systems (Fig.1d) in which an active source of 
voltage or current is included in a resistance memory 
cell and exhibits independent memory effects. One 
example of this type of mem-electronic system may 
be found in a thin film having a charge storing 
medium providing non-volatile voltage storage [11]. 
Another example of mem-active systems may be 
rechargeable batteries which are resistive when 
acting as an electrolytic cell but serve as a power 
source when acting as a galvanic cell.      

The present article presents a new dynamic model 
which incorporates aspects of these different mem-
electronic systems to properly address the physics of 
nano-ionic thin films. 
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Memristive Systems (Fig.1a):  



𝑦(𝑡) = 𝑔 𝒙, 𝑢, 𝑡 𝑢(𝑡)
𝑑𝒙(𝑡)

𝑑𝑡
= 𝑓(𝒙, 𝑢, 𝑡)

 

Mem-Admittance System (Fig.1b):  



𝑦(𝑡) = 𝑔 𝒙, 𝑢, 𝑡 𝑢(𝑡) +
𝑑

𝑑𝑡
 𝑐 𝒙, 𝑢, 𝑡 𝑢(𝑡) 

𝑑𝒙(𝑡)

𝑑𝑡
= 𝑓(𝒙, 𝑢, 𝑡)

 

Mem-Transistor System (Fig. 1c):  



𝑦1(𝑡) = 𝑔 𝒙, 𝑢1, 𝑢2 

𝑦2(𝑡) = 𝑕 𝒙, 𝑢1 , 𝑢2 
𝑑𝒙(𝑡)

𝑑𝑡
= 𝑓(𝒙, 𝑢1 , 𝑢2)

 

Mem-Active System (Fig. 1d):  



𝑦(𝑡) = 𝑔 𝒙, 𝑢, 𝑡 (𝑢(𝑡) − 𝑢𝑖 𝒙, 𝑢, 𝑡 )
𝑑𝒙(𝑡)

𝑑𝑡
= 𝑓(𝒙, 𝑢, 𝑡)

 

 

II. IONIC DYNAMICS IN THIN FILMS 

The assumption by [8] that the dynamics of ionic 
motion can be treated solely by drift-diffusion 
equations is flawed. It neglects the inertia of ions in 
a solid and the repulsive forces between ions. A 
better model for ion dynamics in a solid is provided 
by Bisquert et al. [12]. This model expresses ionic 
dynamics in terms of Newton’s 2

nd
 law of motion 

(5) relating the acceleration d
2
x/dt

2
 of an ion having 

effective mass mion to the sum of the forces Fi acting 
on it. 

 𝑚𝑖𝑜𝑛
𝑑2𝑥

𝑑𝑡2
=  𝐹𝑖𝑖  

When an external electric field is applied to an 
ionic thin film sandwiched between two electrodes 
there are three principle forces which act on the ion. 
The first force (Fc) is due to collisions of the ion as it 
moves through the thin film. The product of this 

force and the average time between collisions c can 
be equated to the change in the ion momentum. 

 𝐹𝑐𝜏𝑐 =  −𝑚𝑖𝑜𝑛
𝑑𝑥

𝑑𝑡
 

The second force (Fr) is due to the internal 
electric field (Er) produced by other ions in the thin 
film. Assuming an equilibrium position x0 where the 
forces of the other ions all balance and an ion donor 
density of Nd this force may be expressed using 
Gauss’s Law as (7). 

 𝐹𝑟 = 𝑧𝑒𝐸𝑟 = −
(𝑧𝑒)2𝑁𝑑

𝜀𝑟𝜀0
(𝑥 − 𝑥0) 

where 0 is the vacuum permittivity, r is the relative 
permittivity, e is the unit charge, and z is the valence 
of the ion.    

The third force Fa is that produced by an applied 
voltage bias. According to the ion hopping model 
reviewed in [13] the ionic current (i.e. dx/dt) 
dependence on the external field is given by a sinh 
function which is approximated by an exponential at 
high fields and a linear function at low fields. It may 
thus be inferred from (6) that the ionic driving force 
would take the form 

 𝐹𝑎 = (
𝑚 𝑖𝑜𝑛

𝜏𝑐
) 2𝑎 𝑒𝑥𝑝  

−𝑊𝑎

𝑘𝑇
 𝑠𝑖𝑛𝑕  

𝑎𝑧𝑒𝐸𝑎

2𝑘𝑇
  

where a is the jump distance of the ions between 

hopping,  is a frequency factor, Wa is the energy 
barrier, k is Boltzmann’s constant, T is absolute 
temperature, and Ea is the electric field in the thin 
film. Combining (5)-(8) produces: 

        𝑚𝑖𝑜𝑛
𝑑2𝑥

𝑑𝑡2 +
𝑚 𝑖𝑜𝑛

𝜏𝑐

𝑑𝑥

𝑑𝑡
+

(𝑧𝑒)2𝑁𝑑

𝜖𝑟𝜖0
 𝑥 − 𝑥0 =

(
𝑚 𝑖𝑜𝑛

𝜏𝑐
) 2𝑎 𝑒𝑥𝑝  

−𝑊𝑎

𝑘𝑇
 𝑠𝑖𝑛𝑕  

𝑎𝑧𝑒𝐸𝑎

2𝑘𝑇
 

 

For cases in which the thin film is bounded between 

electrodes separated by a distance D and in which 

the ions are unable to penetrate the electrode a 

boundary condition 0≤x(t)≤D may be added. 

     
In order to analyze the collective motion of an 

aggregate number of ions in the thin films it will be 
necessary to modify (9). Fig. 2a illustrates a uniform 
distribution of ions within a region of a thin film 
having thickness D. If there is sufficient ionic 
conductivity in the medium the ions will gradually 
redistribute themselves due to electrostatic repulsion 
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leading to Fig. 2b. However the total number of ions 
should not change due to conservation of charge

1
.  

 𝑁𝑑 𝑡 𝑥𝑑0 𝑡 = 𝑁𝑑𝑥𝑑0 

As a voltage is applied to the thin film as in Fig. 2c 

the mean value of the ionic distribution drifts and is 

independent of redistribution of the collective ions. 

In light of the above discussion (9) may be rewritten 

in terms of the aggregate motion of the ions where 

xd(t) is the dynamic mean of the actual positions of 

the ions and x0(t) is the dynamic mean equilibrium
2
 

position of the ions. 



𝑚𝑖𝑜𝑛
𝑑2𝑥𝑑 (𝑡)

𝑑𝑡2 +
𝑚 𝑖𝑜𝑛

𝜏𝑐

𝑑𝑥𝑑 (𝑡)

𝑑𝑡

+
 𝑧𝑒 2𝑁𝑑  𝑡 

𝜖𝑟𝜖0
 𝑥𝑑 𝑡 − 𝑥0(𝑡) =

 
𝑚 𝑖𝑜𝑛

𝜏𝑐
  2𝑎 𝑒𝑥𝑝  

−𝑊𝑎

𝑘𝑇
 𝑠𝑖𝑛𝑕  

𝑎𝑧𝑒𝐸𝑎
2𝑘𝑇

 

 

This may be easily simplified to: 



𝑑2𝑥𝑑 (𝑡)

𝑑𝑡2 +
1

𝜏𝑐

𝑑𝑥𝑑 (𝑡)

𝑑𝑡
+
 𝑧𝑒 2𝑁𝑑  𝑡 𝑥𝑑(𝑡)

𝑚 𝑖𝑜𝑛 𝜖𝑟𝜖0
(1 −

𝑥0(𝑡)

𝑥𝑑 (𝑡)
)

= (
2𝑎

𝜏𝑐
) 𝑒𝑥𝑝  

−𝑊𝑎

𝑘𝑇
 𝑠𝑖𝑛𝑕  

𝑎𝑧𝑒𝐸𝑎 (𝑡)

2𝑘𝑇
 

 

Further simplification of (12) may be achieved in 

the case when the aggregated ions are adjacent the 

left or right electrode. In Fig. 3a-c a dynamic 

evolution of the ion distribution is illustrated in a 

similar manner as in Fig. 2 in which the ions are 

accumulated at a boundary. In this case it is possible 

to relate the dynamic mean xd(t) with the dynamic 

width xd0(t). For a uniform ion distribution as 

illustrated xd(t) = xd0(t)/2. The dynamic equation 

(12) may now be further simplified using (10) as: 

                                                           
1
 It is notable that in the special case of solid electrolyte thin 

films ions are temporarily produced from an electrochemically 

active electrode and are critical to the formation of metal 

filaments important to resistance switching. This case will be 

discussed in section III in the sub-section on active junctions.  

    
2
 The concept of “dynamic mean equilibrium” may seem 

confusing to some. It is “equilibrium” in the sense it is the 

mean position of the ions in steady state when the forcing 

function is zero. It is dynamic in the sense that a sufficiently 

high forcing function will change its value and transient 

dynamics will still be in play. 



𝑑2𝑥𝑑 (𝑡)

𝑑𝑡2 +
1

𝜏𝑐

𝑑𝑥𝑑 (𝑡)

𝑑𝑡
+
 𝑧𝑒 2𝑁𝑑𝑥𝑑0

2𝑚 𝑖𝑜𝑛 𝜖𝑟𝜖0
(1 −

𝑥0(𝑡)

𝑥𝑑 (𝑡)
)

= (
2𝑎

𝜏𝑐
) 𝑒𝑥𝑝  

−𝑊𝑎

𝑘𝑇
 𝑠𝑖𝑛𝑕  

𝑎𝑧𝑒𝐸𝑎 (𝑡)

2𝑘𝑇
 

 

Still further simplifications can be made under the 

assumptions that  

 

a) the applied field Ea(t) is sufficiently small that the 

mean equilibrium is time-independent 

(x0(t)=x0=xd0/2) and the sinh function can be 

approximated as linear, 

 

b) the variation xd(t) is small compared to x0, 

 ∆𝑥𝑑 𝑡 = 𝑥𝑑 𝑡 − 𝑥0 ≪ 𝑥0 

Under these conditions (13) may be approximated 
as: 



𝑑2∆𝑥𝑑(𝑡)

𝑑𝑡2 +
1

𝜏𝑐

𝑑∆𝑥𝑑 (𝑡)

𝑑𝑡
+

 𝑧𝑒 2𝑁𝑑
𝑚 𝑖𝑜𝑛 𝜖𝑟𝜖0

∆𝑥𝑑(𝑡)

= (
𝑎2𝑧𝑒

𝜏𝑐𝑘𝑇
) 𝑒𝑥𝑝  

−𝑊𝑎

𝑘𝑇
 𝐸𝑎(𝑡)

 

Finally we arrive at a tractable form! This is of 

course the familiar driven damped harmonic 

oscillator differential equation.  


𝑑2𝑥

𝑑𝑡2 + 2𝜔0
𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = 𝐹(𝑡) 

We can immediately obtain a potentially useful 

result in terms of the resonant angular frequency 0.  

 𝜔0 =  
(𝑧𝑒)2𝑁𝑑

𝑚 𝑖𝑜𝑛 𝜖𝑟𝜖0
 

By using (17) the effective mass of ions or oxygen 

vacancies in mem-resistor thin films might be able 

to be estimated from the frequency at which 

hysteresis effects are at a maximum.  

 
 

III. COUPLING IONIC AND ELECTRONIC DYNAMICS 

 

a) Dynamic Schottky junction 

 

The behavior of electrons in semiconductor thin 

films is well studied and reviewed such as in [14]. 
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In the case of metal-semiconductor junctions the 

situation is such that if the work function of the 

semiconductor is smaller than the metal the 

electrons in the semiconductor are more energetic 

and become depleted from the semiconductor side 

of the barrier while accumulating on the metal side. 

This situation is referred to as a Schottky barrier 

and is illustrated by the left side of Fig. 4a-c. 

 

In the case where the work function of the metal 

is less than the semiconductor the electrons in the 

semiconductor are less energetic and electrons enter 

into the semiconductor from the metal. This 

situation is referred to as an ohmic contact and is 

illustrated by the right side of Fig. 4a-c.   

 

The concept of built-in voltage i is used in 

reference to metal-semiconductor junctions 

referring to the difference between the work 

functions of metal M and that of a semiconductor 

S. In general both the built-in voltage and 

semiconductor work functions can be dependent on 

position and time as determined by the dynamic 

evolution of ionic density.   

 
𝑖
(𝑥, 𝑡) = 

𝑀
- 

𝑆
 𝑥, 𝑡  

If the dynamic ionic density Nd(x,t) is known 

Poisson’s equation can be used to determine this 

built-in voltage.  


𝑑2(𝑥,𝑡)

𝑑𝑥2 = −
𝑧𝑒

𝜖𝑟𝜖0
𝑁𝑑 𝑥, 𝑡  

Assume (as illustrated in Fig. 4b) that at an initial 

time the ionic doping Nd present near the left 

junction (0<x<xd0(t)) is constant. Poisson’s equation 

in this region reduces to  


𝑑2(𝑥,𝑡)

𝑑𝑥2
= −

𝑧𝑒

𝜖𝑟𝜖0
𝑁𝑑 𝑡  

This equation can be used to solve for the electric 

field E(x,t) and potential(x,t) given the conditions 

E(xdo(t),t)=0 and (0,t)=0.  

 𝐸 𝑥, 𝑡 =
𝑑𝑖(𝑡)

𝑑𝑥
=

−𝑧𝑒

𝜖𝑟𝜖0
𝑁𝑑 𝑡 (𝑥𝑑0(𝑡) − 𝑥) 

 (𝑥, 𝑡) =
−𝑧𝑒

𝜖𝑟𝜖0
𝑁𝑑0 𝑡 (𝑥𝑑0(𝑡)𝑥 − 𝑥2/2) 

The built-in voltage i is defined at the boundary 
of the electron depletion region x=xd0.   

 
𝑖
(𝑡)=  𝑥𝑑0, 𝑡  =

𝑧𝑒

2𝜖𝑟𝜖0
𝑁𝑑 𝑡 𝑥𝑑0

2(𝑡) 

Given (10) this can be simplified to 

 
𝑖
(𝑡)=

𝑧𝑒

2𝜖𝑟𝜖0
(𝑁𝑑0𝑥𝑑0)𝑥𝑑0(𝑡) 

The harmonic equation (15) can now be used to 
determine the time-dependent behavior of the built 
in voltage with the dynamic mean equilibrium 
located at x0=xd0/2 and noting that the variation of 
the depletion width is twice the variation of the 
dynamic mean.  

       𝑥𝑑0 𝑡 = 𝑥𝑑0 + 2∆𝑥𝑑(𝑡) 

This can be applied to a Schottky barrier in which 
the relationship between the electron current density 
J(t) and applied voltage Va(t) is expressed as  

 𝐽 𝑡 =𝐽𝑆 𝑡 [𝑒𝑥𝑝  
𝑧𝑒𝑉𝑎 (𝑡)

𝑘𝑇
 − 1] 

𝐽𝑆 𝑡 =
(𝑧𝑒)2𝐷𝑛𝑁𝑐

𝑘𝑇
 

2𝑧𝑒(i 𝑡 −𝑉𝑎  𝑡 )𝑁𝑑  𝑡 

𝜖𝑟𝜖0
 

1/2

𝑒𝑥𝑝  
−𝑧𝑒B

𝑘𝑇
 

Using (10), (24), and (25) the Schottky barrier 
equations (26), (27) may be expressed in terms of 
the single dynamic variable xd(t) and the applied 
voltage Va(t) with the other quantities being time-
independent.  

In addition to the current-voltage relationship of 
the Schottky barrier, capacitive current density Jc(t) 
can be calculated using the dynamic capacitance 
C(t) expressed in terms of the depletion width xd0(t).  

  𝐽𝑐 𝑡 =
𝑑[𝐶 𝑡 𝑉𝑎 (𝑡)]

𝑑𝑡
=

𝑑

𝑑𝑡
 
𝜖𝑟𝜖0

𝑥𝑑0(𝑡)
𝑉𝑎(𝑡)  

The equations for a dynamic Schottky barrier are 
summarized in TABLE 1. 

b) Dynamic tunneling junction 

Memory resistors have been under development 
by a company called Unity Semiconductor since 
2002 based on a conductive metal oxide having a 
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variable tunneling barrier [15]. Fig. 5a provides an 
approximate energy diagram for a tunneling barrier 
formed by an ion-depleted non-conductive region of 
thickness xd0(t) wherein xd0(t) is sufficiently small to 
allow electron tunneling. The ion depleted region 
separates the left electrode from a region having a 
uniform ion density Nd0(t) which may be 
approximated as time independent for xd0(t)<<D 
under the condition of (10).  

When the applied voltage to this system is zero 
(Va(t)=0) the magnitude of the energy barrier B is 
the product of the constant electric field E0 and the 
ion depletion width xd0(t).  

 𝐵0 𝑡 = 𝐸0𝑥𝑑0(𝑡) 

At zero voltage some tunneling between the metal 
and ionic region occurs due to the thermal energy of 
the electrons. At equilibrium the tunneling current 
density JT0 from the metal to the ionic region should 
balance the tunneling current density from the ionic 
region to the metal and can be calculated using the 
tunneling current equation referenced in [15]. Note 
that xd0(t) is time-dependent but is a constant for 
purposes of the integration with respect to x.  


𝐽𝑇0 𝑡 = 𝐶0 𝑒𝑥𝑝  

− 8𝑚𝑒

𝑕/2𝜋
  𝐵0 𝑡 𝑑𝑥
𝑥𝑑0 𝑡 

0
 =

𝐶0𝑒𝑥𝑝⁡ 
− 8𝑚𝑒

𝑕/2𝜋
 𝐸0 𝑡 𝑥𝑑0

3(𝑡) 


As a positive voltage is applied to the left 
electrode the height of the barrier decreases so that  

 𝐵𝑣 𝑡 = 𝐸0𝑥𝑑0 𝑡 −𝑉𝑎(𝑡) 

and the tunneling current is now calculated as 


𝐽𝑇𝑣 𝑡 = 𝐶0 𝑒𝑥𝑝  

− 8𝑚𝑒

𝑕/2𝜋
  𝐵𝑣 𝑡 𝑑𝑥
𝑥𝑑0 𝑡 

0
 =

𝐶0𝑒𝑥𝑝⁡ 
− 8𝑚𝑒

𝑕/2𝜋
 𝐸0 𝑡 𝑥𝑑0

3(𝑡) − 𝑉𝑎 𝑡 𝑥𝑑0
2(𝑡) 



The net increase of current from equilibrium is 

 𝐽𝑇 𝑡 = 𝐽𝑇𝑣 𝑥𝑑0(𝑡) − 𝐽𝑇0 𝑥𝑑0(𝑡)  

For xd0(t)<<D the dynamic mean equilibrium x0 of 
the ionic region is approximately D/2 and the 
variation of the ionic depletion width xd0(t) is twice 
the variation of the dynamic mean.  

       𝑥𝑑0 𝑡 = 𝑥𝑑0 + 2∆𝑥𝑑(𝑡) 

The harmonic equation (15) can now be used to 
determine the time-dependent behavior of the 
tunneling barrier (with x0=D/2).  

 

𝑑2∆𝑥𝑑(𝑡)

𝑑𝑡2 +
1

𝜏𝑐

𝑑∆𝑥𝑑 (𝑡)

𝑑𝑡
+

 𝑧𝑒 2𝑁𝑑
𝑚 𝑖𝑜𝑛 𝜖𝑟𝜖0

∆𝑥𝑑(𝑡)

= −(
𝑎2𝑧𝑒

𝜏𝑐𝑘𝑇
) 𝑒𝑥𝑝  

−𝑊𝑎

𝑘𝑇
 𝑉𝑎(𝑡)/𝑥𝑑0

 

It is expected in this example the dynamic 
capacitance would be negligible since the right 
junction is ohmic and the left junction is tunneling. 
The equations for such a dynamic tunneling barrier 
are summarized in TABLE 1. 

c) Generalized dynamic diode and tunnel junctions 

It is to be expected that in the case of a non-
uniform ion distributions Nd(x,t) or in consideration 
of more detailed quantum mechanical models the 
dynamic Schottky and tunneling mem-resistor 
equations derived above will need to be modified. 
In general one may discuss the mem-resistor model 
in terms of an electron current density expressed as 
the difference between the diffusion or tunneling 
current when Va(t)=0 and the current when Va(t)≠0.  


𝐽 𝑡 =𝐽0 𝑖 𝑡 , 𝑁𝑑 𝑡 , 𝑥𝑑0 𝑡 , 𝑉𝑎(𝑡) −

𝐽0 𝑖 𝑡 , 𝑁𝑑 𝑡 , 𝑥𝑑0 𝑡 , 0 
 

A generalized version of (10) may be formulated 
for non-uniform ionic density. 

  𝑁𝑑 𝑥, 𝑡 𝑑𝑥
𝑥𝑑0(𝑡)

0
= 𝑁𝑑𝑎𝑥𝑑0 

In this case Nda represents the spatial average of the 
ionic density in the depletion region and xd0(t) is the 
dynamic deletion width. The product of these values 
is time–independent provided that the number of 
ions is conserved. When the equilibrium ionic 
density is known integrating (38) provides a relation 
between xdo(t) and Nd(x,t) and a similar analysis as 
in Section II can be performed. 

Poisson’s equation can also be solved given the 
non-uniform density Nd(x,t) as in section IIIa and 
this can be used to form a relationship between 
Nd(x,t) and the dynamic built-in voltage i(t). These 
relationships can be used to express (37) as a 
function of a single dynamic variable. 
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 𝐽 𝑡 =𝐽0 𝑥𝑑0 𝑡 , 𝑉𝑎(𝑡) −𝐽0 𝑥𝑑0 𝑡 , 0  

This equation combined with the appropriately 
modified version of (12) result in a general dynamic 
description of diodes and tunnel junctions.  

d) Frequency Response 

In the case of a sinusoidal voltage applied to the 
dynamic tunneling junction 

 𝐸𝑎(𝑡)=
𝑉0
𝑥𝑑0

𝑠𝑖𝑛(𝜔𝑡) 

the steady-state solution to (36) takes the form 

 ∆𝑥𝑑0(𝑡)=∆𝑋𝑑𝑠𝑖𝑛(𝜔𝑡 +𝜑0) 

∆𝑋𝑑 =
𝑎2𝑧𝑒  𝑒𝑥𝑝  

−𝑊𝑎
𝑘𝑇

 𝑉0/𝑥𝑑0

𝜏𝑐𝑘𝑇 (𝜔/𝜏𝑐)2+(𝜔2−
 𝑧𝑒  2𝑁𝑑
𝑚 𝑖𝑜𝑛 𝜖𝑟𝜖0

)2

 

 𝜑0 = tan−1 𝜔

(𝜔2−
 𝑧𝑒  2𝑁𝑑
𝑚 𝑖𝑜𝑛 𝜖𝑟𝜖0

)𝜏𝑐

 

It is notable that at resonance 0 = 90 degrees 

and the dynamic behavior of the tunneling width is 

90 degrees out of phase with the applied voltage. As 

a result a zero-crossing hysteresis curve will 

develop in the current vs. voltage curve. As the 

input signal frequency increases or decreases 

sufficiently from the resonance frequency the phase 

shift 0 will go to zero and the hysteresis effect will 

disappear. It is these effects which led the HPLabs 

researchers to incorrectly come to the conclusion 

that they found a memristor. However, zero-

crossing hysteresis is a necessary but not a 

sufficient condition for Chua’s memristor.  

e) Active junctions 

In some cases (10) (or the more generalized (37)) 
may not hold. For example in solid electrolyte 
memory electrochemical reactions occur at active 
electrodes which temporarily create ions during 
electroformation of a filament [13]. In another 
example electrons may be temporarily trapped at an 
interface at a related rate to an applied periodic 

voltage as in [11]. In these cases (10) would need to 
be modified according to 

 𝑁𝑑 𝑡 𝑥𝑑0 𝑡 = 𝑁𝑑𝑥𝑑0 + 𝑄𝑆(𝑡)/𝑧𝑒 

where QS(t) is the dynamic charge density and is 
related to the electrochemical reaction rate or 
probability of charge trapping. In cases where the 
dynamic charge density is significant non-zero 
crossing hysteresis effects will emerge in the I-V 
curve and effects such as illustrated in Fig. 1a of 
Argall [4] or in [11] will emerge. Following through 
with the previous analysis of Section II (13) may be 
adjusted to incorporate active ionic mem-resistors. 

𝑑2𝑥𝑑 (𝑡)

𝑑𝑡2 +
1

𝜏𝑐

𝑑𝑥𝑑 (𝑡)

𝑑𝑡
+
 𝑧𝑒 2(𝑁𝑑𝑥𝑑0+𝑄𝑆(𝑡)/𝑧𝑒)

2𝑚 𝑖𝑜𝑛 𝜖𝑟𝜖0
(1 −

𝑥0(𝑡)

𝑥𝑑 (𝑡)
)

= (
2𝑎

𝜏𝑐
) 𝑒𝑥𝑝  

−𝑊𝑎

𝑘𝑇
 𝑠𝑖𝑛𝑕  

𝑎𝑧𝑒𝐸𝑎 (𝑡)

2𝑘𝑇
 





IV. CONCLUSION 

Researchers at HPLabs have used the concept of 

Chua’s memristor [1] in a propaganda campaign to 

make it appear as if they discovered something new. 

However, the magnetic flux vs. charge relationship 

of HP’s memristor [2] is actually useless to the 

analysis of real nanoionic thin films since it neglects 

effects such as the inertia of ions, repulsive force 

between ions, and capacitance changes due to ion 

motion in thin films. Since the 1990’s numerous 

competitors to HP such as Advanced Micro 

Devices, Axon Technologies, Micron Technologies, 

Samsung, Sharp, and Unity Semiconductor have 

been developing ReRAM based on thin film ionic 

materials [5]. Meanwhile, the researchers at HPLabs 

were trying to develop a form of molecular 

memory. I believe that when the researchers at 

HPLabs found that there was more progress being 

made by their competitors they decided to switch 

their research efforts away from molecular materials 

and toward ionic thin films. In order to give the 

appearance that they were an initiator rather than 

copying their competitors the researchers of 

HPLabs decided to use the idea of Chua’s 

memristor as a “fourth fundamental circuit element” 

which was allegedly missing until HP’s 

“discovery”.  
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The use of TiO2 as a resistance switching 

material was known since the 1960’s [4] and the 

concept of a memory resistor predates Chua [3]. 

There is no realistic model of ionic thin films based 

on the magnetic flux vs. charge relationship of a 

memristor. Chua’s memristor remains nothing more 

than a mythological construct [6]. It is not practical 

to form the basis of new technology on mythology. 

 

In contrast this paper has provided a realistic 

analysis of resistance switching of nanoionic thin 

films grounded in the physics of ions and 

semiconductors. It is hoped that the equations 

summarized in TABLE 1 will be of assistance to 

further development of ReRAM. It is also hoped 

that they will assist to further develop my patented 

inventions involving mem-resistor crossbars used in 

signal processing circuits and robotic control 

systems [16].  

 

It is requested that honest researchers who work 

on ReRAM or dynamic circuit modeling should 

refer to any devices which conform to the equations 

described herein as mem-resistors to distinguish 

these devices from the propaganda of the magnetic 

flux vs. charge memristor of Chua.     
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TABLE 1 Summary of Mem-resistor Equations  

A) Dynamic Schottky junction  

𝐽 𝑡 =𝐽𝑆 𝑡 [𝑒𝑥𝑝  
𝑧𝑒𝑉𝑎(𝑡)

𝑘𝑇
 − 1]

𝐽𝑆 𝑡 =
(𝑧𝑒)2𝐷𝑛𝑁𝑐

𝑘𝑇
 

2𝑧𝑒(
𝑧𝑒

2𝜖𝑟𝜖0
(𝑁𝑑0𝑥𝑑0(𝑥𝑑0+2∆𝑥𝑑  𝑡 )−𝑉𝑎  𝑡 )𝑁𝑑0𝑥𝑑0

𝜖𝑟𝜖0(𝑥𝑑0+2∆𝑥𝑑  𝑡 )
 

1/2

𝑒𝑥𝑝  
−𝑧𝑒B

𝑘𝑇
  



𝐽𝑐 𝑡 =
𝑑[𝐶 𝑡 𝑉𝑎(𝑡)]

𝑑𝑡
=
𝑑

𝑑𝑡
 

𝜖𝑟𝜖0

𝑥𝑑0 + 2∆𝑥𝑑 𝑡 
𝑉𝑎(𝑡)  



𝑑2∆𝑥𝑑(𝑡)

𝑑𝑡2
+

1

𝜏𝑐

𝑑∆𝑥𝑑(𝑡)

𝑑𝑡
+
 𝑧𝑒 2𝑁𝑑
𝑚𝑖𝑜𝑛 𝜖𝑟𝜖0

∆𝑥𝑑(𝑡) = − 
𝑎2𝑧𝑒

𝜏𝑐𝑘𝑇
  𝑒𝑥𝑝  

𝑊𝑎
𝑘𝑇
 
𝑉𝑎(𝑡)

𝑥𝑑0
 

 

 

 

 

 

 

 

B) Dynamic Tunneling junction 

 

𝐽𝑇 𝑡 = 𝐶0  𝑒𝑥𝑝⁡ 
− 8𝑚𝑒

𝑕/2𝜋
 𝐸0 𝑡 𝑥𝑑0

3(𝑡) − 𝑉𝑎 𝑡 𝑥𝑑0
2(𝑡) − 𝑒𝑥𝑝⁡ 

− 8𝑚𝑒

𝑕/2𝜋
 𝐸0 𝑡 𝑥𝑑0

3(𝑡)   

 
𝑑2∆𝑥𝑑 (𝑡)

𝑑𝑡2 +
1

𝜏𝑐

𝑑∆𝑥𝑑 (𝑡)

𝑑𝑡
+

 𝑧𝑒 2𝑁𝑑

𝑚 𝑖𝑜𝑛 𝜖𝑟𝜖0
∆𝑥𝑑 𝑡 = − 

𝑎2𝑧𝑒

𝜏𝑐𝑘𝑇
  𝑒𝑥𝑝  

𝑊𝑎

𝑘𝑇
 
𝑉𝑎 (𝑡)

𝑥𝑑0
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a) Memristive System b) Mem-Admittance System 

c) Mem-Transistor System d) Mem-Active System 

Fig. 1 Different types of Mem-Electronic Systems 



June 25, 2011 (ver.3) 

 

Fig. 2  

(A) Uniform positive ion distribution at initial time with zero applied voltage. The mean 

value of the distribution is located at xd.  

(B) At later time ions spread out but charge is conserved. (Nd-Nd) (xd0+xd0)=Ndxd0. 

(C) A voltage is applied moving the mean of the ions toward the right. While the 

distribution Nd(t) may change charge is conserved. 
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xd(t) 

Fig. 3  

(A) Uniform positive ion distribution at initial time with zero applied voltage. The mean 

of the distribution is located at xd.  

(B) At later time ions spread out but charge is conserved. (Nd-Nd) (xd0+xd0)=Ndxd0. 

(C) A voltage is applied moving the mean of the ions toward the right. While the 

distribution Nd (t) may change charge is conserved. 
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qB 

     Q=-zeNd(t)xd(t) 

x=D x=0 

xd0(t) 

 zeNd (t) 

qi(x) 

EC-EV 

qX 
qS(x) qM 

EF 

qM 

(x) 

x=D 

xd0(t) 

   Emax 

x=0 

(A) 

(B) 

(C) 

Fig. 4  

(A) Idealized band diagram for a Schottky mem-resistor under depletion approximation.  

(B) Charge density for the Schottky mem-resistor which illustrates electron depletion 

region located at 0≤x≤xd0. Outside depletion region Nd ≈ n and the ion charge is 

neutralized by the electron charge. 

(C) Electric field in the device.   

x=D x=0 
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qB(xd(t)) 

EF 

(x) 

x=D 

xd0(t) 

Eo 

x=0 

(A) 

(B) 

(C) 

Fig. 5 

(A) Idealized energy diagram for a tunneling mem-resistor.  

(B) Charge density for tunneling mem-resistor having dynamic ionic depletion region 

0<x<xd(t). 

(C) Electric field in the tunneling mem-resistor.   

x=D x=0 


