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Abstract— A dynamic systems model is proposed 

describing memory resistors which include a filament 

conductive bridge. In this model the system state is 

defined by both a dynamic tunneling barrier 

(associated with the filament-electrode gap) and a 

dynamic Schottky barrier (associated with the 

electron depletion width surrounding the filament-

electrode gap). A general model is formulated which 

may be applicable to many different forms of 

memory resistor materials. The frequency response 

of the model is briefly discussed. 
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I. INTRODUCTION 

A dynamic systems model was recently proposed 
for ionic mem-resistors based on harmonic 
oscillation of either electronic or ionic depletion 
widths in metal-semiconductor junctions [1]. This 
model was made under the assumption that the 
depletion width was uniform across the area of the 
junction. However, this assumption is not justified 
for certain metal oxides [2] and ion-doped 
chalcogenides [3] which include localized 
conducting filaments. In the 1990’s and 2000’s 
research and development performed by scientists of 
Axon Technology and Micron Technology have 
demonstrated the existence of such conducting 
filaments as important to solid electrolyte memory 
cells [4]. The filaments may be formed in various 
memory resistor materials by different mechanisms 
such as accumulation of ions or vacancies in non-
uniform electric fields or via electrochemical 
reactions at an active electrode [5].  

The present article expands the harmonic mem-
resistor model of [1] to incorporate the effects of a 
filament in an ionic junction. 

II. FILAMENT DYNAMICS IN THIN FILMS 

Following the approach of [1] this model 
expresses the dynamic equation in terms of 
Newton’s 2

nd
 law of motion relating the acceleration 

d
2
xf/dt

2
 of the tip of a filament having effective mass 

mf to the sum of the forces Fi acting on it. 

 𝑚𝑓
𝑑2𝑥𝑓

𝑑𝑡2
=  𝐹𝑖𝑖  

When an external electric field is applied to a 
filament in a thin film sandwiched between two 
electrodes there are three principle forces which act 
on the filament tip. The first force (Fc) is due to 
collisions of the tip with the surrounding media as 
the tip-electrode gap varies. The product of this 

force and the average time between collisions c can 
be equated to the change in the tip momentum. 

 𝐹𝑐𝜏𝑓 =  −𝑚𝑓
𝑑𝑥𝑓

𝑑𝑡
 

The second force (Fr) is due to the internal 
electric field (Er) seen by ions attached to the 
filament tip. Fig. 1 provides an approximate picture 
of a conducting filament tip as it approaches an 
electrode. As the gap between the tip and the 
electrode approaches the width of a tunneling gap 
charged ions or vacancies will either become 
attached to the filament tip or swept away from the 
gap region due to electrostatic forces. This will 
result in the depletion of ions within the tunneling 
gap. As a result of this ion depletion the 2DEG 
normally found in the metal side of a Schottky 
junction will be neutralized. The charge neutrality of 
the interface allows the use of the method of image 
charges to be used to calculate the internal electric 
field in the region between the tip and the electrode. 
The exact calculation of this internal field would 
require knowledge of the geometry of the tip. 
However, an approximate solution can be 
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determined using the mean of the equilibrium 
positions of the collective ions denoted by xf0. In this 
case an application of Gauss’s Law produces  

𝐹𝑟 = 𝑧𝑒𝐸𝑟 = −
 𝑧𝑒  2𝑛𝑓

𝐴𝑓𝑥𝑓(𝑡)𝜀𝑟𝜀0
(𝑥𝑓(𝑡) − 𝑥𝑓0) 

where 0 is the vacuum permittivity, r is the relative 
permittivity, e is the unit charge, z is the valence of 
the ions, nf is the number of ions on the filament tip,  
Af is the cross-sectional area of the filament tip, and 
xf (t) is the dynamic tunnel gap.    

The third force Fa is related to the externally 
applied voltage bias by a proportionality constant K 
determined by the tip geometry. 

 𝐹𝑎 = −𝐾𝑧𝑒𝐸𝑎 = 𝐾𝑧𝑒𝑉𝑎/𝑥𝑓(𝑡) 

It is notable that this force is expected to be 180 
degrees out of phase with the force seen by the ions 
in the Schottky region since as ions are repelled 
from the gap by the applied potential they would be 
swept away from the tunnel gap which would cause 
the gap to decrease. On the other if the potential is 
such that it attracts ions to the junction the resultant 
electrostatic forces would cause the tunnel gap to 
increase.   

Combining (1)-(4) produces: 

        𝑚𝑓
𝑑2𝑥𝑓

𝑑𝑡2 +
𝑚𝑓

𝜏𝑓

𝑑𝑥𝑓

𝑑𝑡
+

 𝑧𝑒  2𝑛𝑓

𝐴𝑓𝑥𝑓(𝑡)𝜀𝑟𝜀0
(𝑥𝑓(𝑡) − 𝑥𝑓0) =

𝐾𝑧𝑒𝑉𝑎 (𝑡)

𝑥𝑓(𝑡)



A simplified version of (5) may be developed in 

the case where the maximum deflection of the tip 

xf(t) is small compared to the equilibrium position 

xf0.  

 ∆𝑥𝑓 𝑡 = 𝑥𝑓(𝑡) − 𝑥𝑓0 

 ∆𝑥𝑓 𝑡 ≪ 𝑥𝑓0 

         
𝑑2∆𝑥𝑓 𝑡 

𝑑𝑡2 +
1

𝜏𝑓

𝑑∆𝑥𝑓 𝑡 

𝑑𝑡
+

 𝑧𝑒  2𝑛𝑓

𝑚𝑓𝑥𝑓0𝐴𝑓𝜀𝑟𝜀0
∆𝑥𝑓 𝑡 

≈
𝐾𝑧𝑒𝑉𝑎  𝑡 

𝑚𝑓𝑥𝑓0

 

As in [1] we arrive at a tractable form in the form of 

the familiar driven damped harmonic oscillator 

differential equation.  


𝑑2𝑥

𝑑𝑡2
+ 2𝜔0

𝑑𝑥

𝑑𝑡
+ 𝜔0

2𝑥 = 𝐹(𝑡) 

 

III. COUPLING FILAMENT AND ELECTRONIC DYNAMICS 

The analysis of [1] for dynamic tunneling 
junctions can now be repeated in the case of the 
tunneling gap. When the applied voltage to this 
system is zero (Va(t)=0) the magnitude of the 
tunneling energy barrier B0(t) is the product of the 
electric field E0 in the gap and the ion depletion 
width xf(t).  

 𝐵0 𝑡 = 𝐸0𝑥𝑓(𝑡) 

E0 may be approximated as  

 𝐸0 =
𝑧𝑒𝑛𝑓

𝐴𝑓𝜀𝑟𝜀0
 

and B0(t) is 

 𝐵0 𝑡 =
𝑧𝑒𝑛𝑓

𝐴𝑓𝜀𝑟𝜀0
𝑥𝑓(𝑡) 

At zero voltage some tunneling between the metal 
and ionic region may occur due to the thermal 
energy of the electrons. At equilibrium the 
tunneling current density JT0 from the metal to the 
ionic region should balance the tunneling current 
density from the ionic region to the metal and can 
be calculated using the tunneling current equation 
as referenced in [1]. Note that xf(t) is time-
dependent but is a constant for purposes of the 
integration with respect to x.  



𝐽𝑇0 𝑡 = 𝐶0 𝑒𝑥𝑝  
− 8𝑚𝑒

ℎ/2𝜋
  𝐵0 𝑡 𝑑𝑥
𝑥𝑓 𝑡 

0
 =

𝐶0𝑒𝑥𝑝⁡ 
− 8𝑚𝑒

ℎ/2𝜋
 

𝑧𝑒𝑛𝑓

𝐴𝑓𝜀𝑟𝜀0
𝑥𝑓3(𝑡) 



As a positive voltage is applied to the left 
electrode the height of the barrier decreases so that  

 𝐵𝑣 𝑡 = 𝐸0𝑥𝑓 𝑡 −𝑉𝑎(𝑡) 
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and the tunneling current density is now calculated 
as 



𝐽𝑇𝑣 𝑡 = 𝐶0 𝑒𝑥𝑝  
− 8𝑚𝑒

ℎ/2𝜋
  𝐵𝑣 𝑡 𝑑𝑥
𝑥𝑑0 𝑡 

0
 =

𝐶0𝑒𝑥𝑝⁡ 
− 8𝑚𝑒

ℎ/2𝜋
 

𝑧𝑒𝑛𝑓

𝐴𝑓𝜀𝑟𝜀0
𝑥𝑓3(𝑡) − 𝑉𝑎 𝑡 𝑥𝑓2(𝑡) 



The net increase of current density from equilibrium 
is 

 𝐽𝑇 𝑡 = 𝐽𝑇𝑣 𝑥𝑓(𝑡) − 𝐽𝑇0 𝑥𝑓(𝑡)  

TABLE 1 summarizes the equations for the 
tunneling filament in addition to the dynamic 
Schottky and capacitance components discussed in 
[1]. The total current density J will of course be a 
weighted average of the tunneling JT, Schottky JS, 
and capacitance JC current densities in accordance 
with 

 𝐽 𝑡 =
 𝐽𝑆  𝑡 +𝐽𝐶 𝑡  (𝐴−𝐴𝑡)+𝐽𝑇 𝑡 𝐴𝑡

𝐴
 

where A is the total electrode area and At is the 
cross-sectional area of the filament. 

 

c) Frequency Response 

It is expected that capacitance effects dominate 
the frequency response of the filamentary mem-
resistor fabricated as memory cells. However, for 
experimental cases a scanning tunneling microscope 
may be used as the electrode on which the filament 
grows so that A≈At. In this case a sinusoidal voltage 
may be applied to the dynamic tunneling junction 

 𝑉𝑎(𝑡)=𝑉0𝑠𝑖𝑛(𝜔𝑡) 

and the steady-state solution to (8) takes the form 

 ∆𝑥𝑓(𝑡)=∆𝑋𝑓0𝑠𝑖𝑛(𝜔𝑡 +𝜑0) 

∆𝑋𝑓0 =
𝐾𝑧𝑒𝑉0

𝑚𝑓𝑥𝑓0 (𝜔/𝜏𝑓)2+(𝜔2−
 𝑧𝑒  2𝑛𝑓

𝑚𝑓𝑥𝑓0𝐴𝑓𝜀𝑟 𝜀0
)2

 

 𝜑0 = tan−1 𝜔

(𝜔2−
 𝑧𝑒  2𝑛𝑓

𝑚𝑓𝑥𝑓0𝐴𝑓𝜀𝑟 𝜀0
)𝜏𝑓

 

Similarly to the situation noted in [1] at 

resonance 0 = 90 degrees and the dynamic 

behavior of the tunneling width is 90 degrees out of 

phase with the applied voltage. As a result a zero-

crossing hysteresis curve will develop in the current 

vs. voltage curve. As the input signal frequency 

increases or decreases sufficiently from the 

resonance frequency the phase shift 0 will go to 

zero and the hysteresis effect will disappear.  

 

IV. CONCLUSION 

This paper has provided a model of resistance 

switching of filamentary memory resistors. It is 

hoped that the equations summarized in TABLE 1 

will be of assistance to further development of 

ReRAM. It is also hoped that they will assist to 

further develop my patented inventions involving 

mem-resistor crossbars used in signal processing 

circuits and robotic control systems [6].  
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TABLE 1 Summary of Equations for Filamentary Memory Resistor    

Schottky and capacitive components  

𝐽𝑆 𝑡 =𝐽𝑆0 𝑡 [𝑒𝑥𝑝  
𝑧𝑒𝑉𝑎(𝑡)

𝑘𝑇
 − 1]

𝐽𝑆0 𝑡 =
(𝑧𝑒)2𝐷𝑛𝑁𝑐

𝑘𝑇
 

2𝑧𝑒(
𝑧𝑒

𝜖𝑟𝜖0
(𝑁𝑑𝑥𝑑0(𝑥𝑑0+2∆𝑥𝑑  𝑡 )−𝑉𝑎  𝑡 )𝑁𝑑𝑥𝑑0

𝜖𝑟𝜖0(𝑥𝑑0+2∆𝑥𝑑  𝑡 )
 

1/2

𝑒𝑥𝑝  
−𝑧𝑒B

𝑘𝑇
  

𝐽𝑐 𝑡 =
𝑑[𝐶 𝑡 𝑉𝑎(𝑡)]

𝑑𝑡
=
𝑑

𝑑𝑡
 

𝜖𝑟𝜖0

𝑥𝑑0 + 2∆𝑥𝑑 𝑡 
𝑉𝑎(𝑡)  

 
𝑑2∆𝑥𝑑(𝑡)

𝑑𝑡2
+

1

𝜏𝑐

𝑑∆𝑥𝑑(𝑡)

𝑑𝑡
+
 𝑧𝑒 2𝑁𝑑
𝑚𝑖𝑜𝑛 𝜖𝑟𝜖0

∆𝑥𝑑 𝑡 = − 
𝑎2𝑧𝑒

𝜏𝑐𝑘𝑇
  𝑒𝑥𝑝  

−𝑊𝑎
𝑘𝑇

 
𝑉𝑎 𝑡 

𝑥𝑑0
 

 
 

 

Tunneling component  

 

𝐽𝑇 𝑡 = 𝐶0  𝑒𝑥𝑝 
− 8𝑚𝑒

ℎ/2𝜋
 
𝑧𝑒𝑛𝑓

𝐴𝑓𝜀𝑟𝜀0
𝑥𝑓3(𝑡) − 𝑉𝑎 𝑡 𝑥𝑓2(𝑡) − 𝑒𝑥𝑝 

− 8𝑚𝑒

ℎ/2𝜋
 
𝑧𝑒𝑛𝑓

𝐴𝑓𝜀𝑟𝜀0
𝑥𝑓3(𝑡)   

 
𝑑2∆𝑥𝑓 𝑡 

𝑑𝑡2
+

1

𝜏𝑓

𝑑∆𝑥𝑓 𝑡 

𝑑𝑡
+

 𝑧𝑒 2𝑛𝑓

𝑚𝑓𝑥𝑓0𝐴𝑓𝜀𝑟𝜀0
∆𝑥𝑓 𝑡 =

𝑘𝑧𝑒

𝑚𝑓

𝑉𝑎 𝑡 

𝑥𝑓0

 

 

 
∆𝑥𝑓 𝑡 = 𝑥𝑓(𝑡) − 𝑥𝑓0 

 

 

 

Total Dynamic Current Density 

 

𝐽 𝑡 =  
 𝐽𝑆 𝑡 + 𝐽𝐶 𝑡   𝐴 − 𝐴𝑓 + 𝐽𝑇(𝑡)𝐴𝑓

𝐴
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+ 

+ 

+ 
+ 

+ 

+ 

xf(t) 

Fig. 1 

(A) Illustration of a dynamic electron depletion width xd0(t) surrounding a filament and 

an ionic depletion width xf(t) between the filament tip and electrode in a metal-

semiconductor-metal cell.  

(B) A close up view of the ionic depletion width xf(t) between the filament tip and the 

left electrode illustrating mirror charges used in determining the electrostatic field.  

 

x=D 

xd0(t) 

x=0 

(A) 

(B) 

Metal Semiconductor Metal 

+ 

+ 

+ 

+ 

+ 

+ 
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