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Abstract

The connection of alphan(=1/137) to redistribution of intensities in
interference of circularly polarized waves it haswn. Obtained number
coincides to known one in reached accuracy:'°10The photon
represented as a quantum wave packet. The elextmodel proposed as
Compton’s circularly polarized standing wave. Thiagios of the mass
and static fields (charges) interpreted as a wétt mass and pseudo
static electromagnetic fields (“halos”) arising iimerference of quanta.
Electron’s magnetic moment and g value obtained %" accuracy.
Physical interpretation of de Broglie’s was proposed.
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Introduction

As known, there are no theoretical or conceptaacomplished
interpretations in contemporary physics of the retaf the basic particle
electron as well as of the existence of a finecstme constant ~1/137
having great importance in microcosm.ritay be obtained from experimental
measurements only according to standard formaliStany of renowned
physicists (such as P. Dirac and R. Feynman) h#empted to obtairu
theoretically, which continues to be an open qoesilVe have looked at the
problem of fine structure constant in conjunctiantihe global problem of
revealing the physical nature of elementary pasiclsincea appears
indivisible from them, as their deeply peculiarityyis possible to judge the
extreme importance and all complications relatedttis dimensionless
constant from [1]. The continuous attempts to pregdy means of artificial
combinations of other known constants (numeroldgiepresentations, etc.)
not considered as theoretical interpretations. Wk nefer to Feynman’s
known critical remark [2] on this issue. The lomgrh unsuccessful efforts to
obtain o theoretically force us to refer to wave-particleality principle
applied in quantum representations. By mentioning targe circle of
phenomena in microcosm whe#eexposes as an important parameter, we
bring also some expressions below related to degmmi of Hydrogen’s atom
that help us to realize direct interconnectionaoWith elementary particles
(photon, electron). Using known relatiors(2s0zhc)®> and me=h/cle we
express the speed of electranon the first Bohr’s orbit, the orbit’s radiag
and Rydberg’s constam by simplest expressions, containing onlyc and
Compton’s wave length of the electran

Vo=ac, a,=A, /2mr=05300"m, R=a’c/2A,=3300°s™

From these expressions, we lookeads an independent universal numeric
constant defining thedynamical, geometrical and wave properties of
localized particles as well as of the non-localizpdrticles (photons).
Mentioned view is pointing to the existence of ataie general principle in
formation of all kinds of elementary particles atalthe possibility of linking
o. to unique nature of localized and non-localizedrqum objects.

Our attempts to interpret fine structure constantwell as basic particles
correspond to wave-field principle of primordial bstance. Einstein,
Schrodinger, Heisenberg and other classics of gastury were convinced
supporters of such approach. We can remark [3]a$dlecent works pointing
on this direction. We attempt to show that de Bedglwave-particle duality
principle, electrodynamics and special relativi§TR) allow representing



photon as well as the localized particle (electrvojn wave-field point of
view.

1. Deduction ofa=1/137 as a wave interference redistribution constdn
In this chapter we prove the equation:

> 1,/1=0085424¢ =a® (1)

Where:l, is the intensity ofn peak.l is the total intensity of the circularly
polarized interfering wavesg, ~1/137is the Fine Structure Constast,is the
value of the elementary charge in the natural sysiéunits;c =% = 1. To
prove (1) we represent the interference as a stgndiave appearing in
Compton’s localized circularly polarized waves (Eig
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We have chosen described model of the wave erente as a classical
analog to the standing de Broglie’'s wave on thestfiBohr's orbit,
implementing following replacementsly, = A, wherel. is the Compton’s
wavelength andyp, = ¢. We consider number of interfering waves as much
greater than one, which corresponds to existingsial representations of
guanta. We have used handbook equations (2), (8gs$cribe the relations
between amplitudes and intensities gbipposing that examined interference
satisfies to Huygens — Fresnel’s principle.
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Where:An is the amplitude om peak.Aq is amplitude oD — peak (main)m =
1, 2, 3 ...n. Since the equations (2) are approximations suit&resmall
angular distribution only, for their implementatgrio infinite angular
distribution we have used the Kirchhoff’s functi(8), considering amplitudes
dependence on direction, according to Huygens sniéts principle:

F(6) = 051+ cosb) (3)
Where: equation (3) satisfies conditiorF(€) =1 at 8 =0(maximum of
amplitude on direction “forward”) arF(d)=0 at 8 =n (the amplitude
becomes zero on direction “backward”), (Fig. 2).indsequation (3) from
eqguation (2) we obtain:

A, _ 2F() _1+co9, y

A @m+Dhmr (2m+Dmr @
According to initial conditions (Fig.1) the anguldistance between first and
main peaks will be equal to average value of a @ltherencedy for the
interfering waves. The angular distances betweendwnsecutive peaks$tn,
will be consequently decreasing as described furti@onsidering that,

amplitudes of the secondary peaks differ from ezbler by phasé2zn) we
can directly summarize:

D=+l v+l = AP+ A+ + A (5)
From equations (4) and (5) follows:
Z I 1+ cosé,,
oS (o) .
The secondary peaks are differs at main peakhbgagy/2 + 27n because the

main peak corresponds @dy 4¢, meanwhile secondary peaks correspond to;
3r, 5z... m(2m+1). Considering the above, we define the distributbriotal

intensity as:
=G (T )

From above follows:

Y Inllg=tanAg, Y1 /1 =sinAg, |,/ =coshg 7)
Using (7) in (6) we obtain:
= f(lz,;off j ~tanAg =0 ®)



To find functional link betweef,, and4¢ we use vector diagram (Fig. 3).

Fig. 3.
Vectorial representation of the
secondary interferencial maximums

A A Vectors of secondary maximums

corresponding to initial equations:
[see eq. (2)]

An The vector of m maximum after first
correction: [see eg. (10)]

A The vector ofm maximum after second
correction: [see eq. (12)]

Om The angular shift ofm maximum at the
main; [see (Fig. 1)]

A The phase shift of interfering waves

AAn, The first corrections corresponding |to

o equation (10)

AA', The second corrections corresponding| to

'y equations (11)

Table 1. Ex@#ory to Fig. 3.



With application of equation (4) instead of (Zhal changes of vectors of
interfering waves arise as a functionfdat Aftermath of that the secondary
peaks also will change, by values as well as bytlons. The angular
distances between two peaks will changed as ifitesdr in diagram. Some
reduction of anglé,, occurs because of reduction of the ve&graftermath
of replacement (2) with (4). The correction for Hregle46,, we define as:

+ —

5, =%A¢ ~[ 2 1 cosA¢m]A¢ - A (l-cosAgm)

A, @2m+D)mr  (2m+Dmr T(2m+1) ©)

Using equation (9) and considering the relativengeaof angled, the
equation (4) becomes:

A'nw _1+cosAgm@d-J,/Agm)

A, 2m+1)m (10)

Simultaneously, with reduction of angle betwe@edionsA,, and A1, the

vector Al will slightly turn to right, as a result it becoma¥, For this
reason the projection oA, on a directionA,.; increases, that leads to
relative increase of their sum by value: (J4/49my. Mentioned factor leads
to a new small change of the angle and causes asn&ll increase in the
vectors sum. We can continue these reasoning telynwhich brings to
amendments in the form of Maclaurin series, foraghgles and for the vectors
accordingly:

(O Y" =D+ (3, /i) +(3, | iy + I3, gm) "] = g3, /(L= i)
AL AL =1+ (3,1 DY + (3, AgY* +--+ (8,1 D)™ = 1[L—(3,/ Agmy?] (1)

Considering relations (11) we have replaggdin (8) resulting to below
equation:

”i" [{1+cosm¢m—5€ /(1_5g/A¢m)]:|x|: 1 ZD = tandg  (12)
(2m+1) 1-(8, 1 gm)

Where:dy as defined above [see equation (9)]
By method of insertion, using numeric calculatitige value satisfying to
equation (12) has found:

m=1

Ag¢ = 0.085528781@ (13)
According to equations (7) using result (13) weanit
D 1,/1 =sinAg = 0.085424542B = e, (14)

Thus, the result (14) confirms initial assumptiowl &quation (1).



Obtained number coincides with elementary chargerelative units in
achieved accuracy range of measurements; it camespto value of Fine
Structure Constant:

1/sin® Ag =e?=137.0359999%<1/ a (15)
Here are results of last precious measurenigats
1/a=137.0359990+-137.0359998 [6], [7]

Thus, as shown, there exists a constant, refetannterference of circularly

polarized waves in generalized condition, whichrelates to the basic
coupling constant. We will interprea as well as the “Interferential
Redistribution Constant” considering above.

2. Description of the photon as a quantized wave pket
2.1. We start from classical wave equation:
_0°s 0°s 0°s_ 1 0% 0% 0% 9% .
=t =t ===, where:A = st——+— IS the
ox® o0y 0z° v° ot ox- ody° o0z
Laplace’s operatos characterizes the amplitude of perturbation \arsl
propagation speed.
For the harmonic oscillations and sinusoidal waa&ss place:
d°s
— =-u's 16
ot? (16)

Where:w is the cyclic frequency of the wave

As

For the vacuuna=p=1 and Maxwell's equations in vector form become:

rotE = —/10%—1?, rotH = 50(;—]5, divE =0, divH =0 (17)
From (17) follows:
0°E 0°H
AR = éofly =7 AH= Eot ™52
Consideringzo po=1/c*we write:
1 0°E 1 0°H
AE == —-, ==— 18
c¢? at? c? ot? (18)

Where the equations (18) satisfy to equation (16)

Considering: the rotor form of Maxwell's equatsithat free oscillation may
only be harmonic, two mutually perpendicular ostitins ofE, H vectors in a
wave flow are equivalent in all means (that look#tdr from equations (18)),



we examine below equations as a particular solutfollaxwell’s equations,
satisfying mentioned conditions, within conformitygraphic image (Fig. 4)

Figure 4. Scheme of quantum wave pocket

E = Ey[isin(at + a) +k cos(at + a)]
H = H[isin(at + B) + ] cos(t + £)] (19)

Equations (19) correspond to circularly polarizetutually perpendicular
oscillations that correspond to circle’s equatioig@éometric meaning.
Where:Ey, Hp are the modules of amplitudes of field’s tensiars 277¢/A is
the cyclic frequency of oscillatio, wavelengthg, f phases of oscillations,

J, k the unit vectors in cartesian coordinate frame.(#)g

The equations (19) are strongly right for annité wave flow only; that is
the sinusoidal wave. Supposing the ideality of sodal wave flow and the
absolute stability of its parameters, considering tonstant linear speed of
field’s circulation (as example; from equations )(1® follows: Vy =
(Vi*+V,9)°= c. Where:Vy is the linear speed of circulation in the “horizaint
rings”, Vi=csinwt, iy = ccoswot) we got the field’s circulation by the circle
with A length. Thus, this ideal imagination brings toinitfy of energy’s
density:p—oo. Considering infiniteness of the sinusoidal wawflalso, we
cannot judge anything certainly about total eneofydescribed flow. The
similar serious difficulties have risen in earlyeanpts to interpret the mass of
localized particles within electromagnetic origife attempt to represent the



photon as a wave flow having restricted length, clwhis not sinusoidal.
Considering established properties of photon, wi défine the length of
wave flow as:
L=An=cr (20)
Where:n is average quantity of whole waves composing tbe fh its stable
condition,z is action time of photon (time of its radiation orsalption). For
example; for the visible light is aboutmeter 1 is aboutmicronand,
n=L/l~10°>>1

Considering (20) we can look at photon’s wave flasva “part of sinusoid”
(or, as a “wave packet” as per accepted terminglagyin approximations.

2.2. Considering that Maxwell’'s equations already $atiso Lorentz
transformations and STR (because the propagatieedspf electromagnetic
wave;v = const = cin all inertial systems), from above mentioned gtiads
we can judge that our model will be not much fanirreality. We can make
certain conclusions on this base. Realizing thajwlgments and results have
approximate meaning, we write the equations ohtiighboring pair of whole
waves in a restricted wave flow resulting from (&9)

E, = Ey[isin(at +a) +k cos(at + a)]
Ey = Eolisin(at + B) +]cost + B)]
Here we use the same symitolwith different indexes to emphasize the
symmetry and full equality of two mutually perpendar circulations in a
flow. We do not examine the initial phases of datidns, which now are out
of our study. According to equations (21) the conicgion of energy of single
circulation has to be of “linear” charactérin the form of “string-ring”. We
will imagine the energy’s distribution as a tortise section’s diameter of
which is small compared to its length. We define #nergy of one “ring”
within classical representation as field’s energy:
=N =EV (22)
Where: Eyp is the amplitude of field’s tension/ = oA is the volume of its
concentrationg is the section of the “ring”
For total energy in a flow, we write:
w=2nE. oA (23)

(21)

! Assuming other characters of energy’s distributiorwave flow (“volume” or, “surface”
character) we get other appraises Ilforr, which become unconformable to actual exposed
ones.



Where:n is the number of pairs of “rings” that we considsrthe number of
whole waves.
The wave flow will show some deviation in paraemstas a “part of
sinusoid”. Particularly, the number of whole wavél be an average: m ng
+ 1/2. To interpret aforesaid we can image propagatiomwave flow as a
permanent process of originating new “rings” aheatth simultaneously
annihilation of “rings” end of the flow. In confoiity to this imagination, the
instant number of whole waves will be changeablenge:
An=x1/2or, relativelyAn/n=1/2n (24)
The coherence’s time considered as the average df photon’s action in
guantum representations (see “quantum optics”):
r=r1, =l Aw=1/2Av (25)
Where:v is the photon’s frequencyv is the Heisenberg’s uncertainty for
frequency.
From equations (20), (25) we gett= c7/ 1 = v t= v/ 2Av. From equation
(24) we see:
Av/v=1/2n=An/n (26)
We make first important conclusion from abovencalence:
a). The examined model of photon shows the equalitifeséenberg’s
Uncertainties with the deviation of parameters imeatricted wave flowthe
phenomenon known as the “beating of wave”). Thiactgsion shows the
compatibility of Heisenberg’'s Uncertainties (quantuconcept) with the
deviations of parameters (wave concept) in a aettiwave flow.
However, the seeming main contradiction betweervewand quantum
representations is the total difference in expogssiof energy, accordingly:
eA? and,elv. Where:A is the amplitudey is the frequency of the wave.
Attempting to solve this contradiction, we will usenclusion a). First, we
define the uncertainty for the single whole waeiergy as:

(Ag, 1 &) =(AvIv)In=(AA1A)/n=1/2n? (27)

We relate the transformation of energy between himgng whole waves
(coupling energy) in propagation processatand to uncertainty by equation
(27) as:

Ae,, le=a(De | €)=al2n? (28)
AssumingAee, as a possible minimal portion of energy (quantaradrgy) for
the examined wave flow we define it as:

Aeg, =hE™ (29)
Considering equation (28) we write:

10



£=2n°Ae,, la=2n’h/als (30)
Equalizing this value to actual energy of photor,define its frequency:

e=hv=2n*h/al3

v=2n®/als (31)
To define the number of whole waves in the flow easidering the section

size of “ring-string” conditioned by changeabilfiyncertainty) of wavelength
as:

o= (DA)? (32)
We define the spatial uncertainty of distribution the energy as:

AV IV = dDA A = (DA A)? (33)
Considering universality af (chap 1), we assume:

M IA=na (34)

Where:y is acoefficient, which will be discussed.

According to (34) we interpret as well as' natural uncertainty of quanta”

that equal to the “wave interferential redistrilbaticonstant” (chapter 1).

We consider below equation as a condition of stgitmf wave flow:
1/n=(AV/V)=(@na)® (35)

We call equation (35) condition of “Symmetry of éntainties’ Distribution”

(SUD)

2.3. To test our formulas, fop=1 we get from equation (351 =~ 1/~
2.6-106 and from equation (31) we definex1.8-16°. Using equation (20) we
get:z=in/c = nh =~ 1.4-10s.

This numbers are conformable with Rydberg’s carstand to known
handbooks appraisements for atomic photons. Totleste expressions for
other energy level we have used experimentallybésteed properties foy
quantag =~ 0.5 Mev ¢ ~ 10%°s?), 7~ 10~ **s. Using equation (31) we obtain;
n= (av-s/2)>°~ (10?2 2.137Y°~ 6-10% From equation (20), we defines niv
~ 6-10™%s that coincides with the actual one.

These two examples show the “workability” of exaednmodel in a large
interval of energy.

2.4. Equalizing equation (23) with the actual energylebton;hv we write:

2EZoAn=hv (36)

The left and right sides of equation (36) are tibtal energy of wave flow,
within classical and within quantum representatiacsordingly.

From equation (36) we definEy= (w/27)(h/2an)*°. According to Fig4, we
can define the phase shiti/g) for Ey, Ey and write equations (21) as:

11



E, =2 h [isin w(t—5)+kcosa)(t—§)}
277\ 2con c c
o _ 37
E, ~ Y h {|S|nw(t—£—i)+jcosa)(t—i—i)j| 7
27T \ 2con C w cC w

Resulting from above, we mark:
b). The equation$37) are approximate forn? of quantized wave equations,
which simultaneously satisfy to classical conceystidaken for the single
whole waveas well as to quantum conceptions taken for tistéricted wave
flow.
As shown above, mentioned consensus becomes ossibhse of “String-
ring” form of energy’s concentration in the wavew.

2.5. The presented approximate representation provakespportunity to
move ahead and make new conclusions.

Attributing to photon an impuls®, = 7ik= aw/c and the relativistic mass =
hiwlc> in conformity to quantum representation and STRe image
distribution of mass by the length of “rings”. Fraraphic image (Fig. 4) and
eqguation (36) we define the moment of impulse &whe‘ring” as:

S, =cmr =cmr/2n=c(hw!/ ¢*)(A 1 2m)@L/2n) =k /2n

The scalar sum of moments in the wave flow we deéis:

S=)S=2n§=h (38)
Considering spatial distribution and directionscotulations (Fig. 4) for the
vector sum of moments we get:

S=)'5,=0 (39)

From equations (38), (39) we make conclusion:

¢). The summary impulse moment (scalar sum) of théophs equal toi
(accepted as unit).

% To find the exact form of these equations it's seey to establish the correct functioms;

= Fy(n), ando = Fy(n) thatwe have done approximately. We can expect thaethegtions
will contain specific factors similar to Fourier,dMaclaurin series arising because restrictions
of photons wave flow. This issue can be subjectstiedy the theoretically as well as
experimentally.

12



d). The photon’s spin distributed discretely, by walev length within
mutually perpendicular directions, perpendicular tdirection of its
propagation(Fig. 4)

3. Description of the electron as a Compton’s stamag wave

3.1. We start with examination of the meaningyoh SUD @.2). We have
accepted in above examp2 B.)7 = 1. It meansn = 1/® number of whole
waves filling a full length of wave flow. From examed model of photon
becomes clear thab is an individual parameter of quanta defining its
peculiarities. We are free to suppose that onehgth of a flow can be located
n = (2/a)®, (3la)*...etc, whole waves, as well as we can takes (1/20)3,
(1/4¢)*.. etc, which means we assumes m/p, wherem, pare whole positive
numbers. In such way, we can “construct” photongritadifferent energies
and parameters, satisfying (approximately) to digtiexposed properties of
photons. We examine now the special conditipn:1/2z. We suppose that in
this case the quant is able to form localized dioonli We imagine above said
as a possibility to “wrap” a restricted wave floymametrically by volume. We
consider the mentioned condition necessary foilgtabf the localized quant.
The graphic illustration of described concept pnése (Fig. 5).

Fig. 5 The localization of quanta

Supposing that wave flow “wraps” in vertical flay O radius, we conclude
that “vertical rings” simply become to the same cpla meanwhile the
“horizontal rings” are distributed in space withexial symmetry. We

13



“construct” the elementary particle as the localizeave-vortex (Fig. 6) by
means of described mental operatin
3.2. We define the energyv) corresponding to valuey = 1/2r from
equations (31), (35):
n=@1/na)® =@l a)’®= 6400 (40)

v=2n?/a3=11200°" (41)
Obtained number (41) definitely is near to eleat®s rest energyv{ =
1.24-16° s%). Considering the mentioned coincidence we exardeseribed
localized quant as the electron’s model. We presestitmass of the particle as
a relativistic mass of quant:
m,=&/c®*=hv,/c® =h/cA, (42)
Where:le ~ 2.426-10’m is the Compton’s wavelength for the electron.

A=A o = 2ac/ A o~ 1/137

Fig. 6. The Model of the Flectron

Considering previous interpretationsa{chapters 1, 2) we represens as
the energy of main interferential maximum in lozatl quanta. We represent
the electromagnetic energy of electron as the gnefgpseudo static fields,
which are conditioned by energies of secondaryfertential maximums (we
can imagine it as “halos” of interference). Witltsionformity to above said we
define:

3 Conservation’s laws prohibit the transformatiorsimigle photon to a single
localized particle.

14



Eou = &+ €, = ahv =ahc/ A, = ac’m, (43)

Where:¢g, ¢, are energies of electric and magnetic fields asnghd Their
equality follows from initial condition (21). Froequation (43), we write:

£, =&, = 05¢,, = 05ahv = ahc/ 24, (44)
The quantity and locations of “rings” for massesveell as for secondary
maximums presented in graphic (Fig. 6). We comepttesented image
considering previous conclusions and certain reasalpout symmetry of
“construction” of formed particle.
We present the electrical energy (44) as tradalioftharged” sphere’s
energy:

£, =0Q° I8y (45)
Where:g, is the electric constant. Equalizing equations és) (44),
considering =1¢27 we get:

q=+2c,0hC=te (46)

3.3. We define particle’s moment impulse (spin) by agglto photon’s spin
(2.5), (Fig. 6). Considering: =4d27 and (42) we get:
| T . _MJIC _ 7
S—Z(Emer smzcsmz) =5 =3 47
3.4. To define particle’s magnetic moment, consideringation (44) we
present it as produced from circulation of the fidmtary charge” by its
diametric length:
u=ecr/2=ecl, /4m=ech/4mcm, =eh/2m, =y, (48)

Where:ug= ei/2m, accepted as uniBphr magneton The results (46), (47),
(48) are in conformity with actual values of chargpin and magnetic
moment of the electron (sedlectron’s g factoy.

We can make correction o considering previous representations. Some
enlargement in the sizes of the particle will ocasilocalized wave, in view of
its uncertainty. That brings to a corresponding Isrohange of magnetic
moment. We will define the actual magnetic momehtetectron using
expression:

o= (Lt + Ky +Ky +ot k) (49)

We define correction factdg as a parameter of enlargement of particle’s
diameter caused by natural uncertainty of quantd), (3Heisenberg’s
uncertainty for the localized quantum):

k,=Ar/r =AA/A=a/2r=0.00116140925. (50)

15



We can interpret; as an illustration t&winger’s Correction

We definek, as a factor of smallest reduction of effectiveiwadRes of
circulation in relation toH axis, caused by enlargement of “charge’s”
distribution, corresponding to angte within conformity to previous point
(see Fig.7)

Fig. 7.
The distribution of charge { & shown much bigger)

We obtain from figure:

K, _AR =M = 1+T§os¢ dg —1=%—1= -2.2188810°  (51)
T.hus, the factorsk(, kz_)a(/Jvaioust derives from examined model. Their sum
e Ul g =1+k +k, =1.0011591908. (52)

This number differs from experimentally measuvee by 1@ digit only. To
define ks we assume that it conditioned by non-homogeneitycbarge’s”
distribution in the range of angte We test this assumption in the form of an
excitation (by analogy of QED methods) consideraguations (35), (40)
within conformity to below expression:

K, :a3(1+ 1/2mr+1/ 4 + [+ 1/2" ") (53)
Using Maclaurin’s series formula, we get:
k,=a’/(1-1/2m) = 4621146<10”’ (54)

16



Considerindks we get:

Ul g =1+ K + K, +k; =1.0011596529.. (55)
This number differs from the measured one bytleas 10" digit:
(1.0011596522...) [6]

New small corrections are possible define asceffef mutual actions of
mentioned factors. However, we cannot be sureghtmess of ours results
because (55) already is comparable to experimeatealbilities.

3.5. In conformity to photon’s model, (chap. 2) these no difference
between mutually perpendicular two vect&g E;. It means the “left” and
“right” systems, formed by two vectors with the t@cof propagation, will be
compatible. Thus, the photon’s “mirror particle” Iwbe the same as the
original, which means it cannot have its “antipa€fi. The mentioned equality
of two vectors becomes disturbed in localized quan{Fig. 5, 6) because
different kind of symmetry (axial and central) asdor its pseudo static fields
(in distributions of electric and magnetic “chargest means the localized
guanta and its “mirror particle” become incompatibrhis illustration allows
interpreting the existence of particle-antipartipkars for localized quanta as
its “left” and “right” circulations, as well as ctrary signs of “charges’3(2)

3.6. To test the “workability’s” of electron’s model wexamine the
possibility of communicating it with de Broglie’'save. De Broglie’'s wave
presented in handbooks as:

i(E1-P

Y(r,t)=Ce # (56)
Where:r is radius vector of free point,is time, E is energy of moving
particle,p impulse.
It has shown in courses that propagation spee@ &rdglie’s wave coincides
to particle’s speed within all directions:

V, =0E/dpy, V, =0E/dp,, V, =0E/dp,

Or, in vector formV =0 E =V (57)

The equation (57) means that de Broglie’s wave eaawith the patrticle. Its
wavelength connected to the particle’s impulsp asik where:k = 2z /1. For
the low speed; v << c the energy becomes: p*2my and wave length
becomes:

I (58)

V2Em,

We will replaceip by corresponding frequency and write equation €s8)

17



c _ c/2Em, (59)
Ao 27h
We represent a mass of particle as relativistergyn of localized quanta as
per examined modelmy, = hv/c? (3.2). Expressing kinetic energy & =
mov%/2, from equation (59) we get:

Vp =V (V/c). Or, for the wavelengthip = Ac(c) = h/mpv (60)

Where: /¢, v are Compton’s wavelength of particle and its festpy (as a
localized quanta).

The equations (60) correspond to Doppler's kneffact by its form, which
points on the physical meaning of de Broglie’s wave

3.7. We will show below that it is possible to get tekame result and
conclusion from equations (37) without referringgoeantum representation.
For simplicity we will examine the movement of diwertical ring” only (Fig.

4), assuming the observation poin@iand movement by axis (Fig. 8).

Vp =

z 5]

SR 1
I

m, v

Fig. 8. The movement of localized quanta Fig. 9. De Broglie’s wave illustration

The oscillationsEg, E; will look in observer's system with some changed
frequencies as transverse and longitudinal Dopettacts accordingly. For
frequencies we write:

1-vi/c
= 1-(v/ 2' =
G = aIm(VIO? @ =T

Accepting; v<< ¢ we write:wx~ o, andw; = w(1- v/c). We define summary
oscillation as per sum of two oscillations havinigse frequencies (see

handbook):
S=2A, cos(‘“kT_‘”t)sin(‘%T“L‘”t)

Considering above we get:
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S=2A, cos%cct)sina)ct (61)

Equation (61) corresponds to “wave beating” asaghin graphic (Fig. 9)
Accepting;o= we We define the length of one “beating packet” as:
| = @/2)(2c/v)(2mrclw,) =A(c/v)=h/myv=Ay (62)

Presented interpretation clarifies the physicahnieg of de Broglie’'s wave
as Doppler Effect arising from movement of Comptostanding wave
(elementary patrticle).

3.8. Comparing the examined model of the electron veiperimentally
established its peculiarities we can see some typbes that can help us to
interpret these. Particularly, the intriguing ptol of defining the actual size
of electron gets new aspects. As it seems fromhigcag=ig. 6) the electron is
mostly “empty” by its “construction” (similar to @in’s “construction”). This
circumstance may open new possibility to explas interaction with the
high-energy hadrons and other heavy particlesgfample, it seems probable
that heavy particles can just pass through thetrelecwithout seeming
energetic transformations). It explains the seemaigsence of sizes” of the
electron, although its actual size is much bigganthadrons. On the issue we
can point on theoretical conclusions of some reremvresearchers about;
“Impossibility of localization of the electron in gpace less than Compton’s
wavelength”(L. Landau, R. Peirls)

We remark that examined model removes some spooblems as well,
concerning to “infiniteness” of electron’s electicenergy, to its spin and
“rotation speed” etc, which arise from its reprdaaéon as “material point”.

We remark [8] as a resent conclusion pointingstang-ring” form of the
electron’s mass by size comparable to Compton’sslesngth.The mentioned
aspects maybe subjects to future study.

Discussion

A constant relation is revealed concerning esigkly to wave properties,
not considered yet. It correlates with the electrgnetic coupling constant,
which is currently inexplicable.

The obtained coincidence principally is possitdeproof experimentally.
That could confirm the wave origin of the electrgmnatic coupling constant
and wave-field nature of basic particles, as déierkinds of quantum-wave
formations.
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The universality ofa and its exposition in extremely large group of
phenomena in microcosm becomes explainable; asistasd conditioned by
wave-dynamic unique character of primordial substgianalogicatk).

The absolute stability okt becomes clear, which means it is really “a
constant”; it cannot vary with time as some redeaix are inclined to see.

Proposed interpretation shows deep roots of vpawvtcle duality principle
and its applicability in quantum electrodynamicgeleas well. It points on the
unique nature of material world and on the posgjbdf unifying quantum
and classical representations.

Presented approach and methodology may opentematlve way to study
microcosm, empowering current research capabilities

Methods

We have used the general conceptual principleagpdoach in our attempts
to solve the examined problems, based on the unigue-field nature of
primordial substance.

Our method of analyses’ is based on the geomietaginary representations
and calculations allowing approximations. As an am@nt criterion of
trustfulness’ of our approach we have looked atioled series of known
fundamental physical values, based on a uniquee@inc

We propose below described experiment as an emamt confirmation of
presented interpretation of the fine structure tamgsee; “Results”, chap. 1)

Proposed concept of Fine Structure Constant demsoh& correction to
redistribution of interferential intensities. Acdang to initial equations (2),
we can obtain:

& 4

31 /1, =tam\gp ; P 0094715 (63)
This value corresponds ty ~ 0.094433..that differs from (13). The task
of experiments should be to define the actual vaudy, by the same to
check the rightness of deduced results (13), @dp.such measurements we
propose to use Fraunhofer’'s Single Slit Diffractidhe total intensity of the
beam of light and intensity of main peak are nemgsdo establish in
experiment, using photometric measurements withsdrae (P) photometer
(or two calibrated ones) behind the slits S1, 3g. (£0).
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Fig. 10. Fraunhofer’s Single Slit Diffraction

It is necessary to define the constant relatiowéen its values. The exactness
of results will mostly conditioned by exact coinemnte of the sizes of the slit
S2 with the displayed sizes of main peak of interiee. (The direct
measurement summary intensity of secondary peaksafdull angle of
redistribution seems difficult from technical pgint

By measured valudg, | we can definelp/ | =cosdep. In case (63), it has to
be:

o1 = 0.995544... (64)
In case (13) it has should be:
lo/ | = cos (arcsing) ~ 0.996344... (65)

The relative difference of two numbers is ab®ut8*10 *. The implemented
collaboration laser-optics technique should tosatio mentioned conditions.
The experiment will prove the wave origin of théefaentary charge(e:) as
well as of the particle’s mass.
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