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Abstract: In this paper, we establish local fractional Hilbert transform in fractal space, consider
some properties of local fractional Hilbert Transforms.
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1 Introduction

In the past ten years, Local fractional calculus[1-27] has been widely applied to many fields
such as mathematics , image processing and signal processing etc .Some authors have given many
definitions of local fractional derivatives and local fractional integrals (also called fractal calculus)
[1-16]. Hereby we rewrite the following local fractional derivative which is given by [15,16]
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and local fractional integral of f(x) defined by [15-16]
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with At; =t;, —t; and At=max{At,At,,...,At;,.. .}, where for j=1,2,...,N-1, [t;t;,]

is a partition of the interval [a,b] and t;=a, t,=b.

The aim of this paper is to define local fractional Hilbert transforms based on Local fractional
calculus. This paper is organized as follows. In section 2, local fractional Hilbert transforms is
defined; Section 3 presents Properties of local fractional Hilbert transforms.

2 The local fractional Hilbert transform and some examples

In the section, both local fractional Hilbert transform and its inverse transform are defined.
Definition 2.1 (The local fractional Hilbert transform). If f(x) is defined on the real line

—o0 < X < o0, its local fractional Hilbert transform, denoted by f,"** (x) is defined by
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where X is real and the integral is treated as a Cauchy principal value, that is,
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To obtain the inverse local fractional Hilbert transform, write again (2.1) as
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where g(x) = —ia , application of the local fractional Yang-Fourier transform [15,16] with
X
respectto X gives
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Taking the inverse Yang-Fourier transform [15,16], we find the solution for f(x) as
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which is, by the Convolution Theorem [15,16]
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Obviously, —HZ{f (t)}=-H_[H_{f()}=f(x) and hence, H;'=-H_. Thus, the inverse

local fractional Hilbert transform is given by

_ Affa _ fa _ 1 fl—(:!(g) a
FO = HHE 00y = —HAT (0=~ 0 5 (09) (26)

Example 2.1 Find the local fractional Hilbert transform of
ta
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we get, by definition,
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The second and third integrals as the Cauchy principal value vanish and hence, only the first
integral makes a non-zero contribution. Thus, we have
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Example 2.2 Find the local fractional Hilbert transform of

(@ f(t)=cos, ®»“t* and (b) f(t)=sin, ®"t*
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which is, the new variable T =t-x,
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Obviously, the first integral vanishes because its integrand is an odd function of T . On the
other hand, the second integral makes a non-zero contribution so that (2.8) gives
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Similarly, it can be shown that
H_ {sin, ®“t*}= 7" cos, & x* (2.10)
3 Basic Properties of the local fractional Hilbert Transforms

Theorem 3.1 If H_{f(t)}= fﬁ(x) , then the following properties hold:
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where || f(t)[l,=./(f.f) denotesthenormin L,,(R),

() H [f10=fo(x), H,[fe1(x)=—f (Reciprocity relations), (3.8)



(i) (Parseval’ s formulas).
(f,H,g) =(-H,f,g) and (H,f,g) =(f-H,qg) . (3.9)

Proof. (a) We obtain, by definition ,set u=t+a
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(b) We find, by definition ,set u =at
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Similarly, result (c) can be proved.
(d) We have, by definition
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Proofs of (e) - (i) are similar and consequently,we omit it
Theorem 3.2 If f(t) is an even function of t, then, an alternative form of the local fractional

Hilbert transform is
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Proof. As the Cauchy principal value, we obtain
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consequently,
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Since f(t) is an even function, the integrand of the first integral of (3.11) is an odd function;
hence, the first integral vanishes, and (3.11) gives (3.10). Since result (2.3) discovers that the
local fractional Hilbert transform can be written as a convolution transform, we state the
following.

Theorem 3.3 If fand gel,  (R) are such that their local fractional Hilbert transforms are



alsoin L ,(R),Then

H, (f *g)(x)=(H, f *9)(x) =(f *H_g)(x) (3.12)
and

(f*g)(x)=—(H,f*H_,g)X). (3.13)
Proof. We obtain, by definition, £=t—y
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Likewise, we can obtain the second result in (3.12).
To prove (3.13), we replace g by H_g in(3.12) and then use ng =—0.

4 discussions
In present paper we give local fractional Hilbert transforms as follows:

H {f(t)}=fo(x) = F(li p JZ i f_()t()) (dt)* for O<a <1 (4.1

and its inverse transform

_y-lffe __ £a __ 1 = f7(S) a <
f@)y=H_{f;y(x)}=—-H_{f5(x)} 22 j_m (x— &) (d&)* for O<a<l (4.2

The transforming functions are local fractional continuous. That is to say (in other words, it
means that ) , it is fractal function defined on fractal sets. Hilbert transforms in integer space are
the special case of fractal dimensiona =1. It is a tool to deal with differential equation with
local fractional derivative.
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