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Abstract. This article presents the shortest possible proof of Fermat's Last Theorem 

of any that have ever been published. It might be the one that Fermat had hinted about 

in his copy of Diophanti's Arithmetic Book. 

 

I   Some philosophical aspects 
 

As is known, in accordance with Fermat's last theorem, the equation 

                                                       
n n na b c+ =                                                (1) 

does not have any whole number solution for 2n > . 

Let us first relate to the first degree equation 1n = : 
1 1 1a b c+ =  

It is obvious that this equation is satisfied by any two whole numbers, as can see from 

its geometrical representation by an infinite line of natural numbers: the sum of two 

whole numbers always gives another whole number. 

 

 
The second degree equation: 

                                                    
2 2 2a b c+ =                                                  (2) 

is already more complicated, since it presents numbers on a plane, such as the case of 

Pythagoras' Triangle: 

 

 
 

This equation is satisfied by only some whole numbers, as can be seen from the figure 

below (From the book "Fermat's Last Theorem" by Simon Singh). 
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The third (and higher) degree equation: 

                                                          
3 3 3a b c+ =                                              (3) 

is much more complicated, since it presents numbers in a space: 

 

 
 

 

 

This equation cannot be satisfied by any whole numbers, as can be seen from the 

figure below (From the book "Fermat's Last Theorem" by Simon Singh). 
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II   One formula solution of a second degree equation 
 

For the quadratic equation (2) we found a simple whole number solution. 

Suppose that a  is less than b  and designate that c b d= + , where d  is a whole 

number and understanding that d a< ,  we may write: 

                                          
2 2 2( )a b b d+ = +                                            (4) 

or 
2 2 2 22a b b bd d+ = + + . 

After a reduction of 2b  and under the condition that a  is given, we have for b  a 

linear equation, where d  plays the role of a parameter. We will solve this equation 

for b  to obtain 

                                        

2

2 2

2 2

a
d

a d db
d

−−
= =                                      (5) 

Since b  must be a whole number, d  should be a divider of 
2

a , and also less than 

a  , as mentioned above. Taking all this into consideration for each specific d , 
which fulfills the above conditions, we may find a corresponding b . 

For example, suppose that 8a = , then the above equation: 
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d
db

⋅
−

=  

 gives for d  two possibilities 1 22, 4d d= = , which results in  
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1

8 8
2

2 15
2

b

⋅
−

= =  and 1 15 2 17c = + = , and the first solution is 
2 2 28 15 17+ = . The 

second possibility results in 2 2 26 8 10+ = . Thus, by using the formula (5) one 

can find all the solutions of Fermat's equation for 2n = . 

 

III   The proof of the third degree equation 
 

Next we analyzed in the same way the third-order equation, which gives 
3 3 3( )a b b d+ = +  or 

3 3 3 2 2 33 3a b b b d bd d+ = + + + . 

After a reduction of 
3b , we obtain for b  a quadratic equation: 

                                         
2 2 3 33 3 0d b d b d a⋅ + ⋅ + − =                                  (6) 

whose only positive root is: 

                                              

3

3 4

6 2

d
a

a d
b

 −  
 = −                                            (7) 

Since d a< , this result cannot be a whole number (but an irrational number) for any 

value of d  (note that for d a= , although b could be a whole number, but this case is 

not real because the sum of the cubes cannot be equal to the cube of the sums) and 

therefore c b d= +  cannot be a whole number. 

Since anda b  can be any numbers, this is proof of Fermat's theorem for 3n = . 
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IV   The general proof 
 

Now let us analyze Fermat's equation (1) in a general way. For this purpose we 

present the coefficient c  as  

                       ( ) ( )1

n

n nn
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n n
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c a b b bK

b

 = + = + = 
 

 ,                 (8) 

where ( ) ( )1

n

nn
n n
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K Q
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 = + = 
 

 and ( ) 1

n

n

a
Q

b

 = +  
 

. 

Since 
a

b

 
 
 

 is a proper fraction, ( )nQ  being greater than 1, will decrease with an 

increasing n , so will ( ) ( )andn nK c : 
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                                 (9) 

Suppose that the second order equation of two numbers anda b  has a whole number 

solution, which means that (2)Q is a full second power, and (2)K  is rational (a 

necessary condition) and also, since (2)K  is a fractional number, the product (2)bK  

should be a whole number (a sufficient condition). However, since for the next power 

( 3n = ) the radicand (3)Q  is obtained by raising only ( )/a b  to the next power and 

not the whole radicand, the radicand (3)Q  cannot be a full third power (it should be 

larger then (2)Q , but in accordance with (9), it is getting smaller) so that (3)K  will be 

irrational and (3)c  never will be a whole number. If (2)Q  is not a full second power, 

(2)K  is irrational and the coefficient (3)K , which follows (2)K , even more so, will 

also be irrational. It is obvious that the next radicands ( )nQ , since they are also 

getting smaller, cannot be full powers and all the coefficients ( )nK  are irrational, so 

that ( ) ( )n nc bK=  cannot be whole numbers. 

Since anda b  are any possible numbers, thereby Fermat's last theorem is proved. 

 

On the other hand, the possibility that the radicand ( )nQ  is the full power of some 

other number, say x , should also be checked, i.e., 

1 ( / ) (1 )n na b x+ = + . 

By solving this simple equation we have 

( )1 ( / ) 1 1n

nx a b K= + − = − , 

which means that x  is irrational if ( )nK  is irrational and vice versa. This brings us 

back to our previous decision that ( )nK  are irrational and ( )nc  cannot be whole 

numbers. 
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V   Some additional clarifications 

 
It is interesting to observe the curves of the coefficient ( )nK  versus n  and /a b : 

 
As can be seen, all the values of ( )nK , for all n-s (1 n< < ∞ ) and all ratios /a b  

(0 / 1a b< < ), are concentrated in the narrow area of an envelope, between the curves 

0.0 and 1.0. This means that all the possibilities of Fermat's equations, for all n-s and 

all numbers ,a b , are presented in this envelope. As can be seen these ( )nK  

coefficients converge very fast (practically up to 10n > ) to the unit and all the values 

of all the coefficients (for 2n > ) are fractional and lay in between 1 and ∼ 1.4. This 

result gives an intuitive feeling that in such conditions ( )nK  cannot be rational 

numbers, but irrational. 

For example, 

2

(2)

3 5
1

4 4
K

 = + = 
 

 is rational, but 

3

3
(3)

3 54617618...
1

4 48571213...
K

 = + = 
 

 is 

already irrational. 

 

Note that we proved Fermat's last theorem in a different way than usual, namely we 

proved it for a specific couple of numbers ,a b  for all the powers, in contrast to 

proving it for a specific power n  and all the numbers ,a b . So, here we see the 

reason for our success. 
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