
Erdős–Faber–Lovász conjecture states that if k complete graphs, each having exactly k vertices, 

have the property that every pair of complete graphs has at most one shared vertex, then the 

union of the graphs can be colored with k colors. 

 

Consider Case 1: All pairs of complete graphs have one shared vertex in each pair. 

Consider Case 2: All pairs except 1 pair have one shared vertex in each pair. One graph is 

disjoint from at least one graph, i.e. one pair is disjoint with no shared vertex and not a pair.  

 

We can colour the Case 2 the same as Case 1, the only difference is that the vertex is ripped apart. 

This works for 2 or more cases. Draw a Case 1 graph with Case 1 colourings, then take the 

shared vertex you don't want to share, and rip it apart. 

 

Hence, we just have to consider Case 1.  

 

Let the k graphs be G1, G2, ..., Gk. 

Let the k shared vertices be S1, S2, ..., Sk. 

Let P(Si) denote the number of graphs sharing the vertex Si. 

Let G(Si) denote the graphs sharing the vertex Si. Set theory is used here. 

 

For instance, G(Si) = {G1, G2, ...} 

 

Now, consider this: either 1 vertex is shared or more than k-1 vertices are shared. 

 

Suppose only k - i vertices are shared such that 1 < k - i < k.  

 

Since we are sharing k - i vertices, k - i - 1 vertices should have at least 1 graph for each of them. 

Otherwise, they wouldn’t be “shared vertices”. 

 

Hence, we are left with k - (k - i - 1) graphs for 1 shared vertex as the largest upper bound, which 

is i + 1. Hence, 2 <= P(Sj) <= (i + 1) in this case for 1 <= j <= k - i.  

 

Because we are looking for graphs so that each pair has only, at least and at most, one shared 

vertex, Si cannot be connected to more than one graph of the graphs that are connected to Sj. For 

instance, let's say G(Sj) = {Ga, Gb, ...}. If Si is connected to both Ga and Gb, then Ga and Gb 

have both Si and Sj as shared vertices. This means the graphs connected to Si cannot be 

connected to more than one graph of the graphs that are connected to Sj. This means it is case 2.  

 

Hence, either 1 vertex is shared or more than k-1 vertices are shared.  

 

Case 1: There is only one shared vertex for k graphs. This is easy. Have the same k graphs 

coloured the same way sharing the same one vertex.  

 

Case 2: We have k or more shared vertices.  

 

Suppose it is k. We have S1, ..., Sk.  

 



Colour S1, ..., Sk in k different colours. For any Gi, regardless of the number of shared vertices it 

has, it has all different colours for the coloured vertices in it. The vertices that are not coloured 

yet are not shared by other graphs, and you can colour them whatever you want. Each Gi has k 

vertices, and each Gi is allowed to use k colours. Just colour the non-shared vertices with 

whatever remaining colours you want. Hence, this can be coloured by only k colours. 

 

Suppose it is k + i. 

 

This is the same. All you have to do is just colour the first k shared vertices in k different colours, 

and colour the remaining shared vertices with whatever the colour you want. In this case, for 

some Gi, they have must more than 2 shared vertices. Just colour the shared vertices within Gi 

differently, and you can colour the remaining vertices with the remaining colours whatever you 

want. 

 

Hence, using the set theory, we have proven that if k complete graphs, each having exactly k 

vertices, have the property that every pair of complete graphs has at most one shared vertex, then 

the union of the graphs can be cloured with k colours. 
 


