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Abstract

This paper deals with the error analysis of a novel navigatdgorithm that uses as input the sequence of images actjuire
from a moving camera and a Digital Terrain (or Elevation) ME&RTM/DEM). More specifically, it has been shown that the
optical flow derived from two consecutive camera frames @nded in combination with a DTM to estimate the position,
orientation and ego-motion parameters of the moving cam&saopposed to previous works, the proposed approach daes no
require an intermediate explicit reconstruction of the 3brid. In the present work the sensitivity of the algorithnilioed
above is studied. The main sources for errors are identifielet the optical-flow evaluation and computation, the qualit
of the information about the terrain, the structure of thesetved terrain and the trajectory of the camera. By assuming
appropriate characterization of these error sources, aseld form expression for the uncertainty of the pose and motio
of the camera is first developed and then the influence of flaesers is confirmed using extensive numerical simulations
The main conclusion of this paper is to establish that thgppsed navigation algorithm generates accurate estimates f
reasonable scenarios and error sources, and thus can betigfily used as part of a navigation system of autonomous
vehicles.

1 Introduction

Vision-based algorithms has been a major research issirgdhe past decades. Two common approaches for the narigati
problem arelandmarksandego-motion integrationIn the landmarks approach several features are locateldeoimiage-
plane and matched to their known 3D location. Using the 2D23ihdlata the camera’s pose can be derived. Few examples
for such algorithms are [2], [3]. Once the landmarks weranfhuhe pose derivation is simple and can achieve quite ateur
estimates. The main difficulty is the detection of the feegwand their correct matching to the landmarks set.

In ego-motion integration approach the motion of the cameétia respect to itself is estimated. The ego-motion can be
derived from the optical-flow field, or from instruments swahaccelerometers and gyroscopes. Once the ego-motion was
obtained, one can integrate this motion to derive the campath. One of the factors that make this approach attedtiv
that no specific features need to be detected, unlike thégueapproach. Several ego-motion estimation algorithensbe
found in [4], [5], [6], [7]. The weakness of ego-motion intatjon comes from the fact that small errors are accumulated
during the integration process. Hence, the estimated csmmath is drifted and the pose estimation accuracy dez@dang
time. If such approach is used it would be desirable to rethedrift by activating, once in a while, an additional aigfom
that estimates the pose directly. In [8], such navigatigsteam is being suggested. In that work, like in this work, the
drift is being corrected using a Digital Terrain Map (DTMQh& DTM is a discrete representation of the observed ground’s
topography. It contains the altitude over the sea level efténrain for each geographical location. In [8] a patch fitim
ground was reconstructed using ‘structure-from-moti@¥i) algorithm and was matched to the DTM in order to derive
the camera’s pose. Using SFM algorithm which does not makeise of the information obtained from the DTM but rather
bases its estimate on the flow-field alone, positions thehrtiejue under the same critique that applies for SFM algmst
[1].

The algorithm presented in this work does not require arrnméeliate explicit reconstruction of the 3D world. By com-
bining the DTM information directly with the images infortian it is claimed that the algorithm is well-conditioneddan



generates accurate estimates for reasonable scenari@srandources. In the present work this claim is explored day p
forming an error analysis on the algorithm outlined abowvg.aBsuming appropriate characterization of these erracseu

a closed form expression for the uncertainty of the pose asttbmof the camera is first developed and then the influence of
different factors is studied using extensive numericalsations.

2. Problem Definition and Notations

The problem can be briefly described as follows: At any giveretinstancef, a coordinates systeifi(¢) is fixed to a
camera in such a way that th&axis coincides with the optical-axis and the origin codles with the camera’s projection
center. At that time instance the camera is located at sowgrgehical location(¢) and has a given orientatidR(¢) with
respect to a global coordinates systBm(p(¢) is a 3D vector,R(t) is an orthonormal rotation matrixp(t) and R(t) define
the transformation from the camera’s frai@i¢t) to the world’s frameV, where ifv and" v are vectors irC'(¢t) and W
respectively, theff' v = R(t)v + p(¢).

Consider now two sequential time instan¢eandt.: the transformation fron@’(¢1) to C(t2) is given by the translation
vectorAp(ty,to) and the rotation matriA R(¢1, t2), such that“2v = AR (t1,t2) ““v+ Ap (¢1, t2). A rough estimate of
the camera’s pose &t and of the ego-motion between the two time instangesg¢:) ,Rg(t1), Apg(t1,t2) andARg(t1,t2)

- are supplied (the subscript letteE™ denotes that this is an estimated quantity).

Also supplied is the optical-flow field{u;(tx)} (i=1...n, k=1,2). For thei'th feature,u;(t;) € R? andu;(tz) € R?
represent its locations at the first and second frame ragekct

Using the above notations, the objective of the proposeatititgn is to estimate the true camera’s pose and ego-motion:
p(t1), R(t1), Ap(t1,t2) and AR(t1,t2), using the optical-flow field{w;(¢;)}, the DTM and the initial-guesspg (¢1),
RE(tl), ApE(tl, tg) andARE(tl, tg).

3. The Navigation Algorithm

The following section describes a navigation algorithmahhestimate the above mentioned parameters. The pose and ego
motion of the camera are derived using a DTM and the optioal-fleld of two consecutive frames. Unlike the landmarks
approach no specific features should be detected and mat®hgdthe correspondence between the two consecutive gnage
should be found in order to derive the optical-flow field. Asswaentioned in the previous section, a rough estimate of
the required parameters is supplied as an input. Nevesthedence the algorithm only use this input as an initial guesl
re-calculate the pose and ego-motion directly, no intémmatf previous errors will take place and accuracy will begarved.

The new approach is founded on the following observationc&the DTM supplies information about the structure of the
observed terrain, depth of observed features is beingtdittay the camera’s pose. Hence, given the pose and egormotio
of the camera, the optical-flow field can be uniquely deteeainThe objective of the algorithm will be finding the pose and
ego-motion which lead to an optical-flow field as close as ip&s$o the given flow field.

A single vector from the optical-flow field will be used to defia constraint for the camera’s pose and ego-motion. Let
W@G € R? be a location of a ground feature point in the 3D world. At twiffedent time instances, andt,, this feature
point is projected on the image-plane of the camera to thetgait,) andu(tz). Assuming a pinhole model for the camera,
thenu(ty), u(t2) € R%. Letq(t;)andq(t2) be the homogeneous representations of these locationgsakdasd, one can
think of these vectors as the vectors from the optical-cesftthe camera to the projection point on the image planendJsi
an initial-guess of the pose of the camera;athe line passing through (¢;) and®¢(¢1) can be intersected with the DTM.
Any ray-tracing style algorithm can be used for this purpo$ie location of this intersection is denoted*a&'r. The
subscript letter £” highlights the fact that this ground-point is the estintatecation for the feature point, that in general
will be different from the true ground-feature locatidiz. The difference between the true and estimated locatiodséds
to two main sources: the error in the initial guess for theepmsd the errors in the determination"of: z caused by DTM
discretization and intrinsic errors. For a reasonabléairguess and DTM-related errors, the two poitits'  and™ G will
be close enough so as to allow the linearization of the DTMiatld” G . Denoting byN the normal of the plane tangent to
the DTM at the point” G, one can write:

N'("G -"GEg)~0 1)

The true ground featuré G can be described using true pose parameters:

"G =R(t1) “q(t1) - A + p(t1) 2



P(Reay,N)(P,- Cp)

Figure 1: Geometrical description of expression (9) usheggrojection operator (7)

Here, A denotes the depth of the feature point (i.e. the distandeegboint to the image plane projected on the optical-axis).
Replacing (2) in (1):
NT(X-R(t1) - “q(t) + p(t1) — "Gp)=0 €)

From this expression, the depth of the true feature can b@gtad using the estimated feature location:

_ NTWGE — NTp(t)

A T NTRE) ) @
By plugging (4) back into (2) one gets:
Tw _ T

In order to simplify notationsR(¢;) will be replaced byR; and likewise forp(¢;) andgq(t;) i = 1,2. AR(t1,t2) and
Ap(ty,ts) will be replaced byR;2 andp;» respectively. The superscript describing the coordina@é in which the vector
is given will also be omitted, except for the cases were gpatiention needs to be drawn to the frames. Normallyand
¢’s are in camera’s frame while the rest of the vectors arengineéhe world’s frame. Using the simplified notations, (5hca

be rewritten as:
Ryt NT Rigy NT

G = —— - = 6
NTRiqr NTqulpl + (6)
In order to obtain simpler expressions, define the followgngjection operator:
UST
=|I-— 7
Plus) = (1- 45 @

This operator projects a vector onto the subspace normalaiong the direction ofi. As an illustration, it is easy to verify
thats” - P(u, s)v = 0 andP(u, s)u = 0. By adding and subtracting z to (6), and after reordering:

_ R1Q1NT R1Q1NT
G=Gg+ {I NTquJ D1 {I NT R, (8)
Using the projection operator, (8) becomes:
G =Gg+P(R1q1,N) (p1 — Gg) %

The above expression has a clear geometric interpreta@mKig.1). The vector froi¥ i to p; is being projected onto the
tangent plane. The projection is along the directity;, which is the direction of the ray from the camera’s opticahter
(1), passing through the image feature.



Our next step will be transferring’ from the global coordinates framéV into the first camera’s framé€'; and then
to the second camera’s frandi®. Sincep;and R;describe the transformation frodi; into 1/, we will use the inverse
transformation:

“2G =pia+ Rz (R] (G —p1)) (10)
Assigning (9) into (10) gives:
G =p1a + Ri12L (Gg — p1) (11)
L in the above expression represents:
o aN” (12)
- NTRiqy

One can think ofC as an operator with inverse characteristidoit projects vectors on the ray continuitigy ¢; along the
plane orthogonal tav.

g2 is the projection of the true ground-feature Thus, the vectorg, and“2G should coincide. This observation can be
expressed mathematically by projectifig= on the ray continuation afs:

2} = q_2 <£02G> (13)
|QQ\ \92|

In expression (13)q2T/|q2| - ©2(G is the magnitude of2G’s projection ong.. By reorganizing (13) and using the projection
operator, we obtain:
T
L__qu qﬂ -2G = Pleg) 2G = 0 (14)
a3 - q2
©2(G is being projected on the orthogonal complemen},0fSince“zG andg, should coincide, this projection should yield
the zero-vector. Plugging (11) into (14) yields our final straint:

P(q2,q2) [p12 + R12L (G —p1)] =0 (15)

This constraint involves the position, orientation and ¢ige-motion defining the two frames of the camera. Although it
involves 3D vectors, it is clear that its rank can not exceeamdue to the usage @ which projectsR® on a two-dimensional
subspace.

Such constraint can be established for each vector in theabyfiow field, until a non-singular system is obtained. &in
twelve parameters need to be estimated (six for pose andrding ego-motion), at least six optical-flow vectors areunegl
for the system solution. But it is correct conclusion for lne@ar problem. If we use Gauss-Newton iterations methatisan
make linearization of our problem near approximate sotutibhe found matrix will be always singular for six points i
zero determinant)as numerical simulations demonstratét iS necessary to use at least seven points to obtain rgquriam
linear approximation. Usually, more vectors will be usedider to define an over-determined system, which will lead to
more robust solution. The reader attention is drawn to tbetfeat a non-linear constraint was obtained. Thus, antitera
scheme will be used in order to solve this system. A robugtrialgn which uses Gauss-Newton iterations and M-estimator
is described in [9].We begin to use Levenberg-Marquardhioeeif Gauss-Newton method after several iterations st ppe
converge. This two algorithms are realized in Isgnonlin@tldb function. The applicability, accuracy and robussnafthe
algorithm was verified though simulations and lab-expenitse

It is more convenient to use more robust for iterations eajaivt to (15) equation:

P(q2,92) [P12 + Ri2Li (Gg, —p1)] /|G| =0 (16)

Using of this normalized form of equations avoids to get medt trivial solution when two positions are in a singlengoi
on the ground.

3.1 Multiple Features

Suppose next that feature points are tracked in two frames, so that the estiinlaications) g; and projections onto the
image planeg; andgs; are estimated and measured, respectively, forl, - - - | n. Associated with eacl) g; is the normal
vector to the DTM at this point, namely;.



Taking this into account, one can re-write (15) in matrixfioas:

{ —P (g2:) 77(‘121')% } [ 127112 } -

)RIQCIM L O (17)

P @) MR ians

Repeating this for each feature point:

T
—P(g21) Pgz1) %%éﬁ
_P P Ri2q12Ny
(q22) (q22) NI Ridio |:p12 } B
: : p1

R NT
=P (g2n) Pla2n) Figig™
R NT
P (q21) Nl%g,iqli Q1

Rizqis N
P (q22) ngﬁfqli Qp2

(18)
P (q2n) %;%:qlﬂ QEI’L
In compact notation:
A [ P12 } = B,. (19)
D1

Note thatA4,, andB,, depend on known quantities: the estimated features, thmaisrof the DTM tangent planes, and the
images of the features at the two time instances, togethhrtie unknown orientatio®; and the relative rotatiof®;,. At

this point in our discussion, several remarks are in order.

Remark 1 The constraint (18) involves twelve "unknowns”, namelg fose and ego-motion of the camera. From the remark
at the end of the previous section, the equation involvesat2n linearly independent constraints, so that at least sixifeat

at different locationg); are required to have a determinate system of equations.t Butarrect conclusion for nonlinear
problem. If we use Gauss-Newton iterations method and seetiadarization of our problem near approximate solution.
The found matrix will be always singular for six points (witkero determinant)as numerical simulations demonstrate. S
it is necessary to use at least seven points to obtain naramiinear approximation. Usually, more vectors will beeds

in order to define an over-determined system, and hence edtleceffect of noise. Clearly, there are degenerate scanari
in which the obtained system is singular, no matter whateésniimber of available features. Examples for such scenarios
include flying above completely planar or spherical terr&élowever, in the general case where the terrain has “irttegés
structure the system is non-singular and the twelve paremsiean be obtained.

Remark 2 The constraint (18) is non-linear and, therefore, no diafplution to it is readily available. Thus, an iterative
scheme will be used in order to solve this system. A robusirdlgn using Newton-iterations and M-estimator will be
described in following sections.

Remark 3 Given Remark 2, one observes that the location and tramslappear linearly in the constraint. Using the
pseudo-inverse, these two vectors can be solved explioityve:

[ P12 } = Al B, (20)
P
so that, after resubstituting in (19):

(I-A,AY) B, =0. (21)

This remark leads to two conclusions:

1. If the rotation is known to good accuracy and measuremaseris relatively low, then the position and translation ca
be determined by solving a linear equation. This fact mayehevant when "fusing” the procedure described here with
other measurement, e.g., with inertial navigation.



2. Equation (21) shows that the estimation of rotation (kadikolute and relative) can be separated from that of loca-
tion/translation. This fact is also found when estimatinggfrom a set of visible landmarks as shown in [17]. In that

work, similarly to the present, the estimate is obtained lryimmzing an objective function which measures the errors
in the object-spaceather than on the image plane (as in most other works). Thoggoty enables the decoupling
of the estimation problem. Note however that [17] addressly the pose rotation and translation decoupling while
translation.

here the 6 parameters of absolute and relative rotatiorseperated from the 6 parameters of the camera location and

3.2 The Epipolar Constraint Connection

Before proceeding any further, it is interesting to lookl&)(in the light of previous work in SFM and, in particularjggar
geometry. In order to do this, it is worth deriving the basiostraint in the present framework and notation. Write:

“Qr = Aag2 = p12 + M Riaq
for some scalarg; and\; (see Fig.2).

It follows that:

Figure 2: The examined scenario from the second camera 418 point of view. ¢, is the perspective projection of the

terrain feature’2Qr, and thus the two should coincide. Additionally, singds also a projection of the same feature in the
C-frame, the epipolar constraint requires that the two rape (n the direction o, and the other fronp;- in the direction
of Ri2¢1) will intersect.

D12 X A2g2 = p12 X A1 R12q1,
and hence:

q3 (p12 X Ri2q1) = 0.
For a vectorr € R3, letz” denote the skew-symmetric matrix:

A

O —x3
[ T3 0 -
T3 —ry X 0

€2
Then, it is well known that the vector product between twaee: andy can be expressed as

rxy=a"y.

(23)

(24)

(22)



Using this notation, the epipolar constraint (24) can bétemias:

g3 (Ri2q1)" p1a =0 (25)
and symmetrically as:
i Ri2q5p12 =0 (26)

The important observation here is that if the vegipr verifies the above constraint, then the vectomp,, also verifies the
constraint, for any numbet. This is an expression of the ambiguity built into the SFMigleon. On the other hand, the
constraint (15) is non-homogeneous and hence does not fuffie the same ambiguity. In terms of the translation alone
(and for only one feature point!), if;5 verifies (15) for givenR; and R, then als@;s + rq- Will verify the constraint, and
hence the ego-motion translation is defined up to a one-diioeal vector. However, one has the following trivially:

41 R1502" 2 = 0, (27)

and hence the epipolar constraint does not provide an additequation that would allow us to solve for the transtatioa
unique manner. Moreover, observe that (15) can be writtergusvector product instead of the projection operator as:

Ryi2g1 N7
A —_— - =0. 28
g2" |p12 + N"Riqt (Qe —p1) (28)
Taking into account the identity
(Ri2¢1)" ¢2" Ri2q1 = 0, (29)

it is possible to conclude that (28)— (26), and hence the new constraint "contains” the classjgiglolar geometry. Indeed,
one could think of the constraint derived in (15) as streegihg the epipolar constraint by requiring not only that tilve
rays (in the directions of; andgs) should intersect, but, in addition, that this intersectmint should lie on the DTM’s
linearization plane. Observe, moreover, that taking mioaa tone feature point would allow us to completely compuge th
translation (at least for the given rotation matrices).

4 Vision-based navigation algorithm corrections for inertial navigation by hdp
of Kalman filter.

Vision-based navigation algorithms has been a major rekéssue during the past decades. Algorithm used in thisrpape
based on foundations of multiple-view geometry and a land.rBy help of this method we get position and orientation of
a observer camera. On the other hand we obtain the same diaténirtial navigation methods. To adjust these two results
Kalman filter is used. We employ in this paper extended Kalfiin for nonlinear equations [12].

For inertial navigation computations was used Inertial ijation System Toolbox for Matlab [13].

Input of Kalman filter consists of two part. The first one isiahtes X for equations of motion. In our case it is
inertial navigation equations. Vectdf consists of fifteen component®ix oy 6z 6V, 6V, 6V, d¢ 60 6¢ ay ay a, by by b,].
Coordinatesxdydz are defined by difference between real position of the caaraigosition gotten from inertial navigation
calculus.VariablesV,, 06V, 6V, are defined by difference between real velocity of the camedavelocity gotten from inertial
navigation calculus. Variablép 50 6v are defined as Euler angles of matfix x DI whereD,. is matrix defined by real
Euler angles of camera with respect to Local Level Framer@dnte) andD,. is matrix defined by Euler angles of camera with
respect to Local Level Frame (L-Frame) gotten by inertiaigation computation. It is necessary to pay attention fiad
Euler anglesi¢ 00 6v» ARE NOT equivalent to difference between real Euler angfes Buler angles gotten from inertial
navigation calculus. For small values &b 660 d+ perturbations to these angles can be added linearly andese #ngles
can be used in Kalman filter for small errors. Such choose gliearis made because formulas describing their evolutien ar
much simpler than formulas describing evolution of Euleglasa differences. Variables, a, a. are defined by vector of
Accel bias in inertial navigation measurements.Variatlligd,, b, are defined by vector of Gyro bias in inertial navigation
measurements.

The second input of Kalman filter B-result of measurements by vision-based navigation dlgos.VectorZ consists of
six component$dx.,,, Y., dzm 0, 00,, J1b,,|Coordinatedz,,, dy,, dz,, are difference between camera position measured
by vision-based navigation algorithm and position gottemf inertial navigation calculus.Variabdd,,, 61, are defined as
Euler angles of matrixD,,, * DI whereD,,, is matrix defined by Euler angles of camera with respect talLbevel Frame



(L-Frame) measured by vision-based navigation algoriththia.. is matrix defined by Euler angles of camera with respect
to Local Level Frame (L-Frame) gotten by inertial navigatmomputation. Let variablé to be number of step for time
discretization used in Kalman filter.

We assume that errors for between values gotten by inegiadjation computation and real values are linearly depend o
noise. Corespondent process noise covariance matrix ®etbby(Q,. Diagonal elements a), correspondent to velocity
are defined by Accel noise and proportionadlte: Qv ~ dt?, wheredt is time interval betweety, andt,_1: dt = t,, —ti_1.
Diagonal elements af);, correspondent to Euler angles are defined by Gyro noise ambgiional todt: Q 4 ~ dt.

We assume that errors for between values gotten by visieaebaavigation algorithm and real values are linearly dépen
on noise. Corespondent measurement noise covariance mateinoted byR;. Error analysis giving this matrix is described
in [14].

Kalman filter equations describe evolutionwposteriori state estimatiork;, described above andposteriori error
covariation covariance matrik, for variablesXj,.

To write Kalman filter equations we must define two 15x15 noaiyetH; and A;. Matrix Hj, is measurement Jacobian
describing connection between predicted measureitignt X; and actual measuremefi}, defined above. Diagonal ele-
mentsHy(1,1), Hx(2,2), Hi(3,3) describing coordinate and elemetifs (4, 7), Hx(5,8), Hx(6,9) describing angles are
equal to one. The rest of the elements are equal to zero.

Ay is Jacobian matrix describing evolution of vecfor. The exact expression for this matrix is very difficult so veeu
approximate formula ford;, neglecting by Coriolis effects, Earth rotation and so ont ¢.é ¢ be the Euler angles in L-
FramedV is deltaV vector gotten from inertial navigation measuretsgf,,.. is acceleration vector in L-fram&C My _tq_|
is direction cosine matrix (from body-frame to L-frame).

The formulas definingi,, are follow:

cos(yp) sin(¢p) O
Upom = | —sin(v) cos(yp) 0 (30)
0 0 1
cos(f) 0 —sin(h)
O©pom = 0 1 0 (31)
sin() 0  cos(6)
1 0 0
@pecu = 0 cos(¢) sin(¢) (32)
0 —sin(¢) cos(¢)
DCMp to-| = Ppcm®OpemV¥pom (33)
dv
Foee = DCMp 0.5 (34)
1 0 0
Phi(1:3,4:6)= 0 1 0 (35)
0 0 1
0 _fvec('?)) fveC(Q)
Phi(4:6,7:9) = | foee(3) 0 — fuee(1) (36)
_fvec(2) fvec(l) O
Phi(7:9,10 : 12) = —DCMj 40| (37)
Phi(4:6,13:15) = —DCMj 40| (38)
The rest of elements for matrix Phi are equal to zero.
Ay =1+ Phidt (39)

Kalman filter time update equations are follow:



X]; = [0 0 0 0 0 0 0 0 0 Arl—1 ayk,_l Ayle—1 bxk—l bf‘/k'—l bzkfl] (40)

Pk_ = Akpk_lAg + Qr—1 (41)

Kalman filter update equations project the state and cavegiastimates from the previous time siep 1 to the current
time stepk.
Kalman filter measurement update equations are follow:

Ky = P HI (H Py HE + Ry,) ™ (42)
Xy =X, + Ki(Zp — H X)) (43)
P = (I~ KyHy)Py (1 - KyHy)" + K Ry K (44)

Kalman filter measurement update equations correct the atat covariance estimates with measurenagnt

The found vectotX}, is used to update coordinates, velocities, Euler angleselfemd Gyro biases for inertial navigation
calculations on the next step.

Numerical simulations were realized to examine effectagsof Kalman filter to combine these two navigation algaorih
On figurefig:figel we can see that corrected path for coorgieabr much smaller than inertial navigation coordinaterer
without Kalman filter. Improved results by help Kalman filtge gotten also for velocity in spite of the fact that thisoedtly
was not measured by help vision-based navigation algorithm
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Figure 3: Position errors ((a) for x coordinate (b) for y adiaate (c) for z coordinate) of the drift path are marked veith
red line, and errors of the corrected path are marked withia lihe. Parameters : Height 2000m, FOV 60 degree, Features
number 120, Resolution 1000x1000, Baseline=200uime = 15 s

5 Error analysis

The rest of this work deals with the error-analysis of thegpsed algorithm. In order to evaluate the algorithm’s penfince,
the objective-function of the minimization process neewl®é¢ defined first: For each of the optical-flow vectors, the
function f; : R'2 — R3 is defined as the left-hand side of the constraint descrin¢td):

filp1, @1,61, 91, P12, d12, 012, %12) =

= Plg,q2) [P12 + R12Li (GE, — p1)] /|G (45)
In the above expressio®;» and L; are functions of ¢12, 612, ¥12) and(¢1, 01,11 ) respectively. Additionally, the func-
tion F : R'2 — R3" will be defined as the concatenation of tfiefunctions: F(p1, ¢1,01,%1,p12, h12,012,012) =
[fis--, fn]T. According to these notations, the goal of the algorithro fétd the twelve parameters that minimizé6, D) =
| F(6, D)||*, whered represents the 12-vector of the parameters to be estingted) is the concatenation of all the data
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Figure 4: Position errors for x, y, z coordinate of the dritlpare marked with a red line, and errors of the correctell pat
are marked with a blue line. Parameters : FOV 60 degree, fesatumber 120, Resolution 1000x1000, Baseline=200m,

Atime = 15 s, Height a) 700m b) 1000m ¢) 3000m
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Figure 5: Position errors for x, y, z coordinate of the dridtipare marked with a red line, and errors of the correcteu grat
marked with a blue line. Parameters : FOV 60 degree, Featuraber 120, Baseline=200m\time = 15 s, Height 2000m,

Resolution a) 500x500 b) 1000x1000 c) 4000x4000

obtain from the optical-flow and the DTM. D would have been free of errors, the true parameters werénebtaSince
D contains some error perturbation, the estimated parasaterdrifted to erroneous values. It has been shown in [HD] th
the connection between the uncertainty of the data and tbertainty of the estimated parameters can be describedeby th

following first-order approximation:
-1 T —1
g, (1) (dg g (do\" (do
de dD dD do

Here,Xy andXp represent the covariance matrices of the parameters anldtheespectivelyg is defined as follows:

9(6,D) = Z-M(0.D) = - F'F = 2J] F

(46)

(47)

Jo = dF'/df is the(3n x 12) Jacobian matrix of" with respect to the twelve parameters. By ignoring secadéicelements,
the derivations of; can be approximate by:

dg

0~ 2JF Jy (48)
dg

5~ 2J5 Jp (49)

Jp = dF/dD is defined in a similar way as th&n x m) Jacobian matrix oF" with respect to then data components.
Assigning (48) and (49) back into (46) yield the followingoegssion:

Jr = (JFJe) " IF
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Figure 6: (a) Velocity errors of the drift path (x y z compotgn and (b) Velocity errors of the corrected path (x y z
components). Parameters Height 1000m, FOV 60 degree,rEsatumber 120, Resolution 1000x1000, Baseline=200m,
Atime =15s

Yo = Jr - (JpEpJ}) - It (50)

The central component, X J7, represents the uncertainties6fwhile the pseudo-inverse matr{x/;" J9)71 J7 transfers
the uncertainties of to those of the twelve parameters. In the following subsesti/y, Jp andXp are explicitly derived.

5.1. Jy Calculation
Simple derivations of; which is presented in (45), yield the following results:

Np(q2,*G) = P(q2,42)P(*G,*G) /|G| (51)
d
d—f = 7Np(q2, CQG)ngﬁ (52)
P1
d, d
dTJ; = —Np(q2, ?G)R12L (quR1> L(Gg —p1) (53)
df
Y Np(ge, 2@ 54
s P(q2 ) (54)
df _ g d
dog Np(g2,*G) (da12 R12> L(Gg —p1) (55)

In expressions (53) and (55); = ¢1, 61,91 and: a2 = ¢12, 012, 112. The Jacobiany is obtained by simple concate-
nation of the above derivations.

5.2 Jp Calculation

Before calculating/p, the data vectolD must be explicitly defined. Two types of data are being usethbyproposed
navigation algorithm: data obtained from the optical-floeldiand data obtained form the DTM. Each flow vector starts at
q1 and ends afo. One can consider;’s location as an arbitrary choice of some ground featurgeption, whileg, represent
the new projection of the same feature on the second frames tHe flow errors are realized through thevectors.

The DTM errors influence th€ z and NV vectors in the constraint equation. As before, the DTM liizzdion assumption
will be used. For simplicity the derived orientation of therain’s local linearization, as expressed by the normal,be
considered as correct while the height of this plane mightieneous. The connection between the height error and the
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error of G g will be derived in the next subsection. Resulting from the\ed theg;’s and theN’s can be omitted from the
data vectorD. It will be defined as the concatenation of all taés followed by concatenation of th@g's.

The i'th feature’s data vectorg,, andGg, appears only in the i'th feature constraint, thus the oletidacobian matrix
Jp = [Jy, J¢] is a concatenation of two block diagonal matricésfollowed by J. The i'th diagonal block element is the
3 x 3 matrix df;/dgs, anddf;/dGg,for J, andJ respectively:

af _
dqa
-1
W [(QQT . C2G) I+ qo- CQGT] P(QQ,Qz)/|CQG| (56)
2
d
ﬁ = NP(q27ch)R12£ (57)

“2(G in expression (56) is the ground featdraunder the second camera frame as defined in (11).

5.3. Xp Calculation

As mention above, the data-vector D is constructed fromammation of all thes's followed by concatenation of thég's.
ThusXp should represent the uncertainty of these elements. Siege’s and theGG g’s are obtained from two different and
uncorrelated processed the covariance relating them sitdoo, which leads to a two block diagonal matrix:

Sp = { a9y ] (58)

In this work the errors of image locations and DTM height assusned to be additive zero-mean Gaussian distributed with
standard-deviation af; ando;, respectively. Each, vector is a projection on the image plane where a unit fomadth is
assumes. Hence, there is no uncertainty aboutdsmponent. Since a normal isotropic distribution was etifor the
sake of simplicity, the covariance matrix of the image measents is defined to be:

Yg = 0’% . 1 (59)

andX, is the matrix with thez,,’s along its diagonal.

In [11] the accuracy of location’s height obtained by intdgtion of the neighboring DTM grid points is studied. The
dependence between this accuracy and the specific reqotation, for which height is being interpolated, was fouod t
be negligible. Here, the above finding was adopted and aaanstandard-deviation was set to all DTM heights measure-
ments. Although there is a dependence between clgse uncertainties, this dependence will be ignored in thiofahg
derivations for the sake of simplicity. Thus, a block diaglomatrix is obtained fod. containing the3 x 3 covariance
matricesX, along its diagonal which will be derived as follows: consitlee ray sent fronp; along the direction of?;¢;.

This ray should have intersected the terrairtzat = p; + AR1q; for some), but due to the DTM height error the point

~ \T
Gg = (:Ic, 7, h) was obtained. Let be the true height of the terrain abo\ie ) andH = (Z, g, k) be the 3D point on the

terrain above that location.
Using that H belongs to the true terrain plane one obtains:

N (Gg — H)=N'(py + \Ryqy — H) = (60)
ExtractingA from (60) and assigning it back t@x’s expression yields:
Gp=p1+ RiL(H—p1) (61)
For Gg's uncertainty calculation the derivative 6fz with respect toh should be found:

dGE
dh

Riq:

T

(62)
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The above result was obtained using the fact thatztltemponent ofNV is 1: N = ( -VDTM 1 )T. Finally, the
uncertainty ofG g is expressed by the following covariance-matrix:

dGp\ o, (dGe\" 5 RiqglRT
G; < dh ) o-h ( dh ) O-h (NTqul)Q (63)

5.4. ¥, Calculation

The algorithm presented in this work estimates the poseefitht camera frame and the ego-motion. Usually, the most
interesting parameters for navigation purpose will be #wmad camera frame since it reflect the most updated infaymat
about the platform location. The second pose can be obtanadtraightforward manner as the composition of the first
frame pose together with the camera ego-motion:

p2 =p1 — RiR{yp12 (64)
Ry, = R1RT, (65)

The uncertainty of the second pose estimates will be desttifily a6 x 6 covariance matrix that can be derived from the
already obtained2 x 12 covariance matrixty by multiplication from both sides witll-,. The last notation is the Jacobian
of the sixCy parameters with respect to the twelve parameters mentaip@ek. For this purpose, the three Euler angles
0, andy» need to be extracted from (65) using the following equations

B R»(2,3)
¢o = arctan (Rz(& 3)) (66)
0> = arcsin (—R2(1, 3)) (67)
1hg = arctan (gzgj f;) (68)

Simple derivations and then concatenation of the aboveesgjams yields the required Jacobian which is used to patpag
the uncertainty fron’; and the ego-motion t@s. The found covariance matri¥., is the same as measurement covariant
matrix R, described in section about Kalman filter.

Ry =%c, (69)

6. Divergence of the method. Necessary thresholds for the method congence.

In previous Section we considered Error analysis for vid@dgation method. But its consideration is correct onlyoififid
solution is close to true one. If it is not true nonlinear effecan appear or even we can found incorrect local minimam. |
this case the method can begins to diverge. We can obtaimdheresult:

1)if large number of outliers features appears.

2)if the case is close to degenerated one. In this case thiioposr orientation errors are too large. It can happen for
example for small number of features, flat ground , small féldiew of camera and all that.

3) if the initial position and orientation for iterationsquess are too far from true values

In the follow subsections we consider some threshold cimmditwhich allow us to avoid the such situations.

If in some case even one of these threshold conditions isarotat we don't use for this case the correction of visual
navigation method and use only usual INS result.If suchatitn repeats three times we stope to use the visual namgati
method at all and don't use it also for the last correct cas¢éuk discourse these three factors in details
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6.1 Dealing with Outliers

In order to handle real data, a procedure for dealing witfiemgtmust be included in the implementation. The objeabi/e
the present section is to describe the current implementatthich seems to work satisfactorily in practice. Threelkiof
outliers should be considered:

1. Outliers present in the correspondence solution (ve@fig matches”).
2. Outliers caused by the terrain shape, and
3. Outliers caused by relatively large errors between th®@Ad the observed terrain.

The latter two kinds of outliers are illustrated in Fig.7.e€Ttutliers caused by the terrain shape appear for terraioréesa
located close to large depth variations. For example, densivo hills, one closer to the camera, the other fartheyaarad a
terrain feature) located on the closer hill. The ray-tracing algorithm udimg erroneous pose may “miss” the proximal hill
and erroneously place the feature on the distal one. Neettiesay, the error between the true and estimated locatorat i
covered by the linearization. To visualize the errors idtroed by a relatively large DTM-actual terrain mismatcipmse a
building was present on the terrain when the DTM was acquiretis no longer there when the experiment takes place. The
ray-tracing algorithm will locate the feature on the builglialthough the true terrain-feature belongs to a backgt et is
now visible.

Figure 7: Outliers caused by terrain shape and DTM mismatghandCg are true and estimated camera frames, respec-
tively. @1, andQ-,, are outliers caused by terrain shape and by terrain/DTM muisim respectively.

As discussed above, the multi-feature constraint is salvadeast-squares sense for the pose and motion variabies G
the sensitivity of least-squares to incorrect data, thiigien of one or more outliers may result in the convergea@atrong
solution. A possible way to circumvent this difficulty is bging an M-estimator, in which the original solution is reqdd by
a weighted version. In this version, a small weight is assigio the constraints involving outliers, thereby minimgtheir
effect on the solution. More specifically, consider the fiort f;(©) defined in (45) resulting from thieth correspondence
pair. In the absence of noise, this function should be equaéto at the true pose and motion values and hence, following
standard notation, define the residugl®) = || f:(©)]|. Using an M-estimator, the solution fér (the twelve parameters to
be estimated) is obtained using an iterative re-weightastisquares scheme:

O = argmin Z w;r?. (70)
i=1
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The weightaw; are recomputed after each iteration according to theiesponding updated residual. In our implementation
we used the so-calle@eman-McClurdunction, for which the weights are given by:
1

w(z) =

The calculated weights are then used to construct a weigiseado-inverse matrix that replaces the regular pseudose
Jr appearing in (50). See [18] for further details about Mraation techniques. Let us define weights matrix W which
allows us to decrease influence of outliers

ri = || fi(p1, 61,01, U1, P12, P12, 012, V12) ||
medR = median(z;)
R; = w(r;/medR) (72)

wherei = 1, ..., n andn is number of features.

The weights matrix W3n x 3n) can be found as follow: for diagonal elements of W we can writé;; = R;, where k
is integer part of(¢ — 1)/3 + 1]. Non-diagonal elements &¥;; = 0 for i # j.

Instead equation (50) we use new one:

JT = (JTW.J) " JFW

Yo =JT (JpSpJh) - JTT (73)

If we know two positions of camera and features position m fibst photo so we can find the features position on the
second photo. If the distance between true position of sanespondent feature on second photo and the position found
by previously described method larger thgary we would consider the such feature as outlier. Let us definas number
of outliers in initial approximation of cameras positiordasrientation (i.e. before using visual navigation methaaijl V
as number of outliers after visual navigation method cdivaes. The follow conditions let us to avoid too large numbgr
outliers case:

N; > Ny
N
Wf < thresholdy, (74)

where N is full number of features amntlresholdy, is some threshold value. We choose it to be equal 0.1 .

6.2 Degenerated case large errors.

For degenerate case the matfikW.J, in equation (73) can be singular. It gives us follow threshmindition:

reond(Jg W Jg) > threshold,cona (75)

where rcond() -Matlab function for matrix reciprocal comalh number estimate. It is measure for matrix singularity
(0 < reond() < 1). Threshold valughreshold,..,q iS chosen to beé0~16.

Degenerated case because of small number of features, diadyor small field of view of camera gives the follow
threshold conditions:

b i
ﬁ < threShOlddist (76)
I

wherei = z,y, z coordinate indexes for diagonal elements of covarianceixnai,.f = 1 is a focus length of the
camera, h is height of the camef# h gives us the maximum camera position shift allowing the plieature error to be
smaller than pixel size.Threshold valtieresholdy;; is chosen to be 40.

3 [ZCQ]M < Lgroundfdist (77)
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wherei = z,y, z coordinate indexes for diagonal elements of covarianceixat,, Lground—dist IS Character size of
ground relief change.

[Ecylis
Y2 < thresholdgn, 78
Bo1/f) < thresho gle (78)
wherei = ¢, 0,v angular indexes for diagonal elements of covariance malgix 2% gives us the maximum camera
angular shift allowing the photo feature error to be smahen pixel size.Threshold valuéreshold,,qi. is chosen to be
40.

L round—dis
3v[Za,)i < QTC“” (79)

wherei = ¢, 6,1 angular indexes for diagonal elements of covariance majix
Degenerated case because of small baseline (distanceelpetwe camera positions used in video navigation method)
gives the follow threshold conditions:

[Zolii
P12l

wherei = x12,¥12, 212 Mutual coordinate indexes for diagonal elements of comadamatrixXy. Threshold value
thresholdg;st,, IS chosento be 0.1 .

< thresholdg;st,, (80)

(o)
([lp12ll /h)

wherei = ¢12, 012, 112 mutual angular indexes for diagonal elements of covariamateix £y. Threshold valuéhresholdangie, .,
ischosentobe 0.1.

< thresholdangie,, (81)

6.3 The initial state of the camera is too far from the its true @ final calculated state.

Let us define threshold conditions to avoid the initial stftthe camera to be too far from the its true statg. is covariant
matrix obtained from INS and previous corrections of INS ligeo navigation method with help of Kalman filter and
described in section about Kalman filter.

3 [P];]Z’L < Lgroundfdist (82)

wherei = x,y, z coordinate indexes for diagonal elements of covariancexmaf .

L round—dis
34/ [P i < QTW (83)
wherei = ¢, 0,1 angular indexes for diagonal elements of covariance magfix
Let us define threshold conditions to avoid the initial staftthe camera to be too far from the its final state. The follow
four equations give us differences between initial and fitate obtain as corrections of INS by video navigation metho
with help of Kalman filter.

dp2 = |p2 final — P2init (84)

dp12 = |p12final — P12init| (85)

daz = | final — Q2inie| mod (2) (86)
daiz = |2 final — M2ipie] mod (27) (87)
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3\ 1Py Jii + V[, i) > 0p2; (88)

wherei = z, y, z coordinate indexes for diagonal elements of covarianceixmBf andX,

3Py i + V[Ec, i) > daz; (89)

wherei = ¢, 0,1 angular indexes for diagonal elements of covariance marxandXc,

510127;
P12l
wherei = x4, y12, 212 Mutual coordinate indexes.

< thresholdg;st,, (90)

dag;

(Ipa2ll /7)

wherei = ¢12, 012, 112 Mutual angular indexes.

< thresholdangie,, (91)

7. Simulations Results

7.1 Dependence of error analysis on different factors.

The purpose of the following section is to study the influeotdifferent factors on the accuracy of the proposed algorit
estimates. The closed form expression that was developedghout the previous section is being used to determine the
uncertainty of these estimates under a variety of simulstedarios. Each tested scenario is characterized by tbeviiod
parameters: the number of optical-flow features being ugettid algorithm, the image resolution, the grid spacing ef th
DTM (also referred as the DTM resolution), the amplitude iliEhmountains on the observed terrain, and the magnitdide o
the ego-motion components. At each simulation, all parareegxcept the examined one are set according to a predefined
parameters set. In thiefault scenaripa camera withl00 x 400 image resolution flies at altitude of 500m above the terrain.
The terrain model dimensions asex 3 km with 300m elevation differences (Fig.13(b)). A DTM of 30gnid spacing

is being used to model the terrain (Fig.10(c)). The DTM raoh leads to a standard-deviation of 2.34m for the height
measurements. The default-scenario also defines the nwhbptical-flow features to about 170, where an ego-motion of
lp12]] = 40m and||(¢12, 612, %12)|| = 10° differs the two images being used for the optical-flow corafiah. Each of the
simulations described below study the influence of diffeparameter. A variety of values are examined and 150 random
tests are performed for each tested value. For each testuthera position and orientation were randomly selectedepxc
the camera’s height that was dictated by the scenario’sypeteas. Additionally, the direction of the ego-motion skation

and rotation components were first chosen at random and tremafized to the require magnitude.

In Fig.8, the first simulation results are presented. Inshisulation the number of optical-flow features that are used
the algorithm is varied and its influence on the obtained @ayuof C>; and the ego-motion is studied. All parameters were
set to their default values except for the features numbg8() presents the standard-deviations of the secont:fd the
camera while the deviations of the ego-motion are showndrBfb). As expected, the accuracy improves as the number of
features increases, although the improvement becomeigibdghfter the features’ number reaches about 150.

In the second simulation the influence of the image resalutias studied (Fig.9). It was assumed that the image mea-
surements contain uncertainty of half-pixel, where the @itz the pixels is dictated by the image resolution. Obvigusl
the accuracy improves as image resolution increases diecquality of the optical-flow data is directly depends ors thi
parameter.

The influence of DTM grid spacing is the objective of the néxtidation. Different DTM resolutions were tested varying
from 10m up to an extremely rough resolution of 190m betwefjacent grid points (see Fig.10). The readers attention is
drawn to the fact that the obtained accuracy seems to declieaarly with respect to the DTM grid-spacing (see Fig.11)
This phenomenon can be understood since, as was explaittesl pinevious section, the DTM resolution does not affect the
accuracy directly but rather it influences the height uraiety which is involved in the accuracy calculation. As caskeen
in Fig.12, the standard-deviation of the DTM heights ines=alinearly with respect to the DTM grid spacing which is the
reason for the obtained results.

Another simulation demonstrates the importance of thair@structure to the estimates accuracy. In the extremeasoen
of flying above a planar terrain, the observed ground featdeenot contain the required information for the camera pose
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derivation, and a singular system will be obtained. As thightedifferences and the variability of the terrain increathe
features become more informative and a better estimatelecdarived. For this simulation, the DTM elevation diffezes
were scaled to vary from 50m to 450m (Fig.13). It is emphabktbat while the terrain structure plays a crucial role at the
camera pose estimation together with the translationapcment of the ego-motion, it has no direct affect on the egtion
rotational component. As the optical-flow is a compositibtwm vector fields - translation and rotation, the informatfor
deriving the ego-motion rotation is embedded only in thatiohal component of the flow-field. Since the features dejoth
fluence only the flow’s translational component it is expéthkat the varying height differences or any other stru¢tirange

in the terrain will have no affect on the ego-motion rotatemtimation. The above characteristics are well demoestriat
Fig.14.

Since itis the translation component of the flow which holasinformation required for the pose determination, it wioul
be interesting to observe the effect of increasing the ntadaiof this component. The last simulation presented swtloirk
demonstrates the obtained pose accuracy when the egoatratitslation component vary form 5m to 95m. Although it has
no significant effect on the ego-motion accuracy, the uag#st of the pose estimates decreases for a large magnifude o
translations (see Fig.15). As a conclusion from the abatedt the time gap between the two camera frames should be as
long as the optical-flow derivation algorithm can tolerate.

7.2 Results of numerical simulation for real parameters of fight and camera.

Inertial navigation systems (INS) are used usually for ctete of missile position and orientation. The problem dbth
method is that its error increases all time. We propose tomasemethod (Navigation Algorithm based on Optical-Flow and
a Digital Terrain Map) [15] to correct result of INS and to mneake error to be finite and constant. Kalman Filter is used to
combine results of INS and results of new method [12]. Erraiysis with linear first-order approximation is used to find
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error correlation matrix for our new method [14]. We made eugal simulations of flight with real parameters of flightlan
camera using only INS and INS and our new method to check mesfsi of this new method.

The chosen flight parameters are following:
Height of flight is 700, 1000, 3000 m.
Velocity of flight is 200m/s.

Flight time is 800 s.

Trajectory of the flight we can see on (Fig.16). Digital Tarr®lap of real ground was used as cell (Fig.17) for our sim-
ulations. This cell was continued periodically to obtail Map of the ground (Fig.18). Random noise was used as main
component of INS noise. The more real drift and bias noise giuch bigger mistake (about 6000 m instead 1000 m in the

finish point of the flight).

The chosen camera and simulation parameters are following:
FOV (field of view of camera) is 60 degree. ( FOV is field of viefxcamera. )

Features number found on photos is 100, 120.
Resolution of camera is 500x500, 1000x1000, 4000x400@ (&bolution of camera defines precision of feature detgctio

we assume no Optical Flow outliers for features.)
Baseline is 30m, 50m or 200m. ( Baseline is distance betw&ercamera positions used to make two photos for new

method.)
Atime is 5s, 15 s, 30s Atime is time interval between measurements. )

The typical results of numerical simulations can be seerr@n3, 4, 5, 6) for different cases of flight, camera and satiah
parameters. Let us demonstrate error tables for typica wéth positive results: x, y, z position errors of INS withing

new method and without using new method.

Used flight, camera and simulation parameters for this case:
FQOV is 60 degree
Number of features is 120
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Figure 16: Trajectory of the flight.

Heights are 700m, 1000 m, 3000m.

Height 700m | 1000m 3000m
Max x error without new method 900m | 130m 1300 m
Max x error with new method | 25m | 20m 100 m

Table 1. x axis max error for INS with and without new methoddiferent heights.

Height 700m | 1000m 3000m
Max y error without new method 1000m | 2000m 400m
Max y error with new method | 25m 20m 100 m

Table 2. y axis max error for INS with and without new methoddifferent heights.

Height 700m | 1000m 3000m
Max z error without new method 250m | 180m 250m
Max z error with new method | 25m 20m 150m

Table 3. z axis max error for INS with and without new methoddifferent heights.
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Figure 17: Map of real ground was used as cell.

Let us demonstrate error tables for typical case with p@sitsults: x, y, z position errors of INS with using new metho
for different resolutions of camera. Used flight, camerasintilation parameters for this case:

FOV 60 degree, Number of features:120, Resolution 500x5000x1000, 4000x4000, Baseline 200m, Deltatime 15 s,
Flight velocity 200 m/s, Heights: 1000 m.

Resolution 500x | 1000x 4000x
500 | 1000 4000
Max x error with new method 50m | 20m 10m

Table 4. x axis max error for INS with new method for differeesolutions of camera.

Resolution 500x | 1000x 4000x
500 | 1000 4000
Max y error with new method 50m | 20m 10m

Table 5. y axis max error for INS with new method for differeesolutions of camera.
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Figure 18: cell was continued periodically to obtain full Mef the ground.

Resolution 500x | 1000x 4000x
500 | 1000 4000
Max z error with new method 35m | 20m 10m

Table 6. z axis max error for INS with new method for differeggolutions of camera.

8 Open problems and future method development.

1) If situation is close to degenerated case (for examplesifall camera field of view, almost flat ground, small bagelin
and so on) we can not used described method because it issiblea® find cameras states from this data. But it is possible
also for this case to used found correspondent featuresraorssfor INS results improvement by help Kalman filter.Veac
consider directly these corespondent features (and nuileédd position and orientation on basis these featusa®sailt of
measurement for Kalman filter. Example of the such improveman be found in [16]. But in this case errors of method
will increase with time similar to INS. So after some time m@@@d position is too far from the true position and we can not
use DTM constrains for error correction, but only epipolanstrains. For described in this paper method the errosstop
increase and remains constant so we are capable to use DTE¥#aios all time.

2)It is possible to consider more optimal and fast methodddoking for minimum of function giving position and
orientation of camera.For example it is possible to imprioitéal state for described method , using epipolar equesti@5 )
for R12 andp;2 up to constant calculations. The next step can be use eguatiy for R, calculation. And final step using
equation (18) fop,, andp; calculation.The result can be improved by described immahethod.

3)We can look for not only some random features. Also hillstogalleys and hill occluding boundaries can be used for
position and orientation specifying.

4) using distributed (not point) features and also someaaitar object recognition.

5) Using the used methods in different practical situati@mgntation in rooms, inside of man body.
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9 Conclusions

An algorithm for pose and motion estimation using corresliog features in images and a DTM was presented with using
Kalman filter. The DTM served as a global reference and its @ats used for recovering the absolute position and orientat
of the camera. In numerical simulations position and véjoestimates were found to be sufficiently accurate in order t
bound the accumulated errors and to prevent trajectorisdrif

An error analysis has been performed for a novel algorithahubes as input the optical flow derived from two consecutive
frames and a DTM. The position, orientation and ego-motimrameters of the the camera can be estimated by the proposed
algorithm. The main source for errors were identified to leedptical-flow computation, the quality of the informatidvoart
the terrain, the structure of the observed terrain and #jediory of the camera. A closed form expression for the taicgy
of the pose and motion was developed. Extensive numeritaillations were performed to study the influence of the above
factors.

Tested under reasonable and common scenarios, the atgdsghaved robustly even when confronted with relatively
noisy and challenging environment. Following the analyisiss concluded that the proposed algorithm can be effelstiv
used as part of a navigation system of autonomous vehicles.

On basis results of numerical simulation for real paransetéflight and camera we also can conclude follow:

1) The most important parameter of simulations is FOV: fersmall FOV the method diverges. For FOV 60 degree the
results are very good. The reason for this is that for smaW Q2 or 6 degree) the situation is close to degenerated, state
also we must choose small baseline and observed groundipatchsmall and almost flat.

2) Resolution of camera is also very important parameteibdtter resolution we have much more better results, becaus
of much more better precision of features detection.

3) The precision of new method depends on flight height.dijtiprecision increases with height increasing because we
can use bigger baseline and can see bigger patch of grouriddoBigger heights precision begin to decrease because of
small parallax effect.
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