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Abstract

This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images acquired
from a moving camera and a Digital Terrain (or Elevation) Map(DTM/DEM). More specifically, it has been shown that the
optical flow derived from two consecutive camera frames can be used in combination with a DTM to estimate the position,
orientation and ego-motion parameters of the moving camera. As opposed to previous works, the proposed approach does not
require an intermediate explicit reconstruction of the 3D world. In the present work the sensitivity of the algorithm outlined
above is studied. The main sources for errors are identified to be the optical-flow evaluation and computation, the quality
of the information about the terrain, the structure of the observed terrain and the trajectory of the camera. By assuming
appropriate characterization of these error sources, a closed form expression for the uncertainty of the pose and motion
of the camera is first developed and then the influence of thesefactors is confirmed using extensive numerical simulations.
The main conclusion of this paper is to establish that the proposed navigation algorithm generates accurate estimates for
reasonable scenarios and error sources, and thus can be effectively used as part of a navigation system of autonomous
vehicles.

1 Introduction

Vision-based algorithms has been a major research issue during the past decades. Two common approaches for the navigation
problem are:landmarksandego-motion integration. In the landmarks approach several features are located on the image-
plane and matched to their known 3D location. Using the 2D and3D data the camera’s pose can be derived. Few examples
for such algorithms are [2], [3]. Once the landmarks were found, the pose derivation is simple and can achieve quite accurate
estimates. The main difficulty is the detection of the features and their correct matching to the landmarks set.

In ego-motion integration approach the motion of the camerawith respect to itself is estimated. The ego-motion can be
derived from the optical-flow field, or from instruments suchas accelerometers and gyroscopes. Once the ego-motion was
obtained, one can integrate this motion to derive the camera’s path. One of the factors that make this approach attractive is
that no specific features need to be detected, unlike the previous approach. Several ego-motion estimation algorithms can be
found in [4], [5], [6], [7]. The weakness of ego-motion integration comes from the fact that small errors are accumulated
during the integration process. Hence, the estimated camera’s path is drifted and the pose estimation accuracy decrease along
time. If such approach is used it would be desirable to reducethe drift by activating, once in a while, an additional algorithm
that estimates the pose directly. In [8], such navigation-system is being suggested. In that work, like in this work, the
drift is being corrected using a Digital Terrain Map (DTM). The DTM is a discrete representation of the observed ground’s
topography. It contains the altitude over the sea level of the terrain for each geographical location. In [8] a patch fromthe
ground was reconstructed using ‘structure-from-motion’ (SFM) algorithm and was matched to the DTM in order to derive
the camera’s pose. Using SFM algorithm which does not make any use of the information obtained from the DTM but rather
bases its estimate on the flow-field alone, positions their technique under the same critique that applies for SFM algorithms
[1].

The algorithm presented in this work does not require an intermediate explicit reconstruction of the 3D world. By com-
bining the DTM information directly with the images information it is claimed that the algorithm is well-conditioned and
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generates accurate estimates for reasonable scenarios anderror sources. In the present work this claim is explored by per-
forming an error analysis on the algorithm outlined above. By assuming appropriate characterization of these error sources,
a closed form expression for the uncertainty of the pose and motion of the camera is first developed and then the influence of
different factors is studied using extensive numerical simulations.

2. Problem Definition and Notations
The problem can be briefly described as follows: At any given time instancet, a coordinates systemC(t) is fixed to a
camera in such a way that theZ-axis coincides with the optical-axis and the origin coincides with the camera’s projection
center. At that time instance the camera is located at some geographical locationp(t) and has a given orientationR(t) with
respect to a global coordinates systemW (p(t) is a 3D vector,R(t) is an orthonormal rotation matrix).p(t) andR(t) define
the transformation from the camera’s frameC(t) to the world’s frameW , where ifCv andWv are vectors inC(t) andW
respectively, thenWv = R(t)Cv + p(t).

Consider now two sequential time instancest1 andt2: the transformation fromC(t1) toC(t2) is given by the translation
vector∆p(t1, t2) and the rotation matrix∆R(t1, t2), such thatC(t2)v = ∆R (t1, t2)

C(t1)v+∆p (t1, t2). A rough estimate of
the camera’s pose att1 and of the ego-motion between the two time instances -pE(t1) ,RE(t1), ∆pE(t1, t2) and∆RE(t1, t2)
- are supplied (the subscript letter “E” denotes that this is an estimated quantity).

Also supplied is the optical-flow field:{ui(tk)} (i=1. . . n, k=1,2). For thei’th feature,ui(t1) ∈ R
2 andui(t2) ∈ R
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represent its locations at the first and second frame respectively.
Using the above notations, the objective of the proposed algorithm is to estimate the true camera’s pose and ego-motion:

p(t1), R(t1), ∆p(t1, t2) and ∆R(t1, t2), using the optical-flow field{ui(tk)}, the DTM and the initial-guess:pE(t1),
RE(t1), ∆pE(t1, t2) and∆RE(t1, t2).

3. The Navigation Algorithm
The following section describes a navigation algorithm which estimate the above mentioned parameters. The pose and ego-
motion of the camera are derived using a DTM and the optical-flow field of two consecutive frames. Unlike the landmarks
approach no specific features should be detected and matched. Only the correspondence between the two consecutive images
should be found in order to derive the optical-flow field. As was mentioned in the previous section, a rough estimate of
the required parameters is supplied as an input. Nevertheless, since the algorithm only use this input as an initial guess and
re-calculate the pose and ego-motion directly, no integration of previous errors will take place and accuracy will be preserved.

The new approach is founded on the following observation. Since the DTM supplies information about the structure of the
observed terrain, depth of observed features is being dictated by the camera’s pose. Hence, given the pose and ego-motion
of the camera, the optical-flow field can be uniquely determined. The objective of the algorithm will be finding the pose and
ego-motion which lead to an optical-flow field as close as possible to the given flow field.

A single vector from the optical-flow field will be used to define a constraint for the camera’s pose and ego-motion. Let
WG ∈ R

3 be a location of a ground feature point in the 3D world. At two different time instancest1 andt2, this feature
point is projected on the image-plane of the camera to the pointsu(t1) andu(t2). Assuming a pinhole model for the camera,
thenu(t1), u(t2) ∈ R

2. Let Cq(t1)andCq(t2) be the homogeneous representations of these locations. As standard, one can
think of these vectors as the vectors from the optical-center of the camera to the projection point on the image plane. Using
an initial-guess of the pose of the camera att1, the line passing throughpE(t1) andCq(t1) can be intersected with the DTM.
Any ray-tracing style algorithm can be used for this purpose. The location of this intersection is denoted asWGE . The
subscript letter “E” highlights the fact that this ground-point is the estimated location for the feature point, that in general
will be different from the true ground-feature locationWG. The difference between the true and estimated locations isdue
to two main sources: the error in the initial guess for the pose and the errors in the determination ofWGE caused by DTM
discretization and intrinsic errors. For a reasonable initial-guess and DTM-related errors, the two pointsWGE andWG will
be close enough so as to allow the linearization of the DTM aroundWGE . Denoting byN the normal of the plane tangent to
the DTM at the pointWGE , one can write:

NT (WG− WGE) ≈ 0 (1)

The true ground featureWG can be described using true pose parameters:

WG = R(t1) ·
Cq(t1) · λ + p(t1) (2)
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Figure 1: Geometrical description of expression (9) using the projection operator (7)

Here,λ denotes the depth of the feature point (i.e. the distance of the point to the image plane projected on the optical-axis).
Replacing (2) in (1):

NT (λ ·R(t1) ·
Cq(t1) + p(t1) − WGE) = 0 (3)

From this expression, the depth of the true feature can be computed using the estimated feature location:

λ =
NT WGE −NT p(t1)

NTR(t1)Cq(t1)
(4)

By plugging (4) back into (2) one gets:

WG = R(t1)
Cq(t1) ·

(

NT WGE −NT p(t1)

NTR(t1)Cq(t1)

)

+ p(t1) (5)

In order to simplify notations,R(ti) will be replaced byRi and likewise forp(ti) and q(ti) i = 1, 2. ∆R(t1, t2) and
∆p(t1, t2) will be replaced byR12 andp12 respectively. The superscript describing the coordinate frame in which the vector
is given will also be omitted, except for the cases were special attention needs to be drawn to the frames. Normally,p12 and
q’s are in camera’s frame while the rest of the vectors are given in the world’s frame. Using the simplified notations, (5) can
be rewritten as:

G =
R1q1N

T

NTR1q1
GE −

R1q1N
T

NTR1q1
p1 + p1 (6)

In order to obtain simpler expressions, define the followingprojection operator:

P(u, s)
.
=

(

I −
usT

sTu

)

(7)

This operator projects a vector onto the subspace normal tos, along the direction ofu. As an illustration, it is easy to verify
thatsT · P(u, s)v ≡ 0 andP(u, s)u ≡ 0. By adding and subtractingGE to (6), and after reordering:

G = GE +

[

I −
R1q1N

T

NTR1q1

]

p1 −

[

I −
R1q1N

T

NTR1q1

]

GE (8)

Using the projection operator, (8) becomes:

G = GE + P(R1q1, N) (p1 −GE) (9)

The above expression has a clear geometric interpretation (see Fig.1). The vector fromGE to p1 is being projected onto the
tangent plane. The projection is along the directionR1q1, which is the direction of the ray from the camera’s optical-center
(p1), passing through the image feature.
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Our next step will be transferringG from the global coordinates frame-W into the first camera’s frameC1 and then
to the second camera’s frameC2. Sincep1andR1describe the transformation fromC1 into W , we will use the inverse
transformation:

C2G = p12 +R12

(

RT
1 (G− p1)

)

(10)

Assigning (9) into (10) gives:
C2G = p12 +R12L (GE − p1) (11)

L in the above expression represents:

L =
q1N

T

NTR1q1
(12)

One can think ofL as an operator with inverse characteristic toP: it projects vectors on the ray continuingR1q1 along the
plane orthogonal toN .
q2 is the projection of the true ground-featureG. Thus, the vectorsq2 andC2G should coincide. This observation can be

expressed mathematically by projectingC2G on the ray continuation ofq2:

C2G =
q2
|q2|

·

(

qT
2

|q2|
· C2G

)

(13)

In expression (13),qT
2

/

|q2| ·
C2G is the magnitude ofC2G’s projection onq2. By reorganizing (13) and using the projection

operator, we obtain:
[

I −
q2 · q

T
2

qT
2 · q2

]

· C2G = P(q2, q2) ·
C2G = 0 (14)

C2G is being projected on the orthogonal complement ofq2. SinceC2G andq2 should coincide, this projection should yield
the zero-vector. Plugging (11) into (14) yields our final constraint:

P(q2, q2) [p12 +R12L (GE − p1)] = 0 (15)

This constraint involves the position, orientation and theego-motion defining the two frames of the camera. Although it
involves 3D vectors, it is clear that its rank can not exceed two due to the usage ofP which projectsR3 on a two-dimensional
subspace.

Such constraint can be established for each vector in the optical-flow field, until a non-singular system is obtained. Since
twelve parameters need to be estimated (six for pose and six for the ego-motion), at least six optical-flow vectors are required
for the system solution. But it is correct conclusion for nonlinear problem. If we use Gauss-Newton iterations method and so
make linearization of our problem near approximate solution. The found matrix will be always singular for six points (with
zero determinant)as numerical simulations demonstrate. So it is necessary to use at least seven points to obtain nonsingular
linear approximation. Usually, more vectors will be used inorder to define an over-determined system, which will lead to
more robust solution. The reader attention is drawn to the fact that a non-linear constraint was obtained. Thus, an iterative
scheme will be used in order to solve this system. A robust algorithm which uses Gauss-Newton iterations and M-estimator
is described in [9].We begin to use Levenberg-Marquardt method if Gauss-Newton method after several iterations stopped to
converge. This two algorithms are realized in lsqnonlin() Matlab function. The applicability, accuracy and robustness of the
algorithm was verified though simulations and lab-experiments.

It is more convenient to use more robust for iterations equivalent to (15) equation:

P(q2, q2) [p12 +R12Li (GEi
− p1)] /|

C2G| = 0 (16)

Using of this normalized form of equations avoids to get incorrect trivial solution when two positions are in a single point
on the ground.

3.1 Multiple Features

Suppose next thatn feature points are tracked in two frames, so that the estimated locationsQEi and projections onto the
image planeq1i andq2i are estimated and measured, respectively, fori = 1, · · · , n. Associated with eachQEi is the normal
vector to the DTM at this point, namelyNi.
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Taking this into account, one can re-write (15) in matrix form as:

[

−P (q2i) P (q2i)
R12q1iN

T

i

NT

i
R1q1i

]

[

p12

p1

]

=

P (q2i)
R12q1iN

T

i

NT

i R1q1i

QEi. (17)

Repeating this for each feature point:















−P (q21) P (q21)
R12q11NT

1

NT

1 R1q11

−P (q22) P (q22)
R12q12NT

2

NT

2 R1q12

...
...

−P (q2n) P (q2n)
R12q1nNT

n

NT
n

R1q1n















[

p12

p1

]

=















P (q21)
R12q11NT

1

NT

1 R1q11
QE1

P (q22)
R12q12NT

2

NT

2 R1q12
QE2

...

P (q2n)
R12q1nNT

n

NT
n

R1q1n
QEn















(18)

In compact notation:

An

[

p12

p1

]

= Bn. (19)

Note thatAn andBn depend on known quantities: the estimated features, the normals of the DTM tangent planes, and the
images of the features at the two time instances, together with the unknown orientationR1 and the relative rotationR12. At
this point in our discussion, several remarks are in order.
Remark 1: The constraint (18) involves twelve ”unknowns”, namely the pose and ego-motion of the camera. From the remark
at the end of the previous section, the equation involves at most2n linearly independent constraints, so that at least six features
at different locationsQTi are required to have a determinate system of equations. But it is correct conclusion for nonlinear
problem. If we use Gauss-Newton iterations method and so make linearization of our problem near approximate solution.
The found matrix will be always singular for six points (withzero determinant)as numerical simulations demonstrate. So
it is necessary to use at least seven points to obtain nonsingular linear approximation. Usually, more vectors will be used
in order to define an over-determined system, and hence reduce the effect of noise. Clearly, there are degenerate scenarios
in which the obtained system is singular, no matter what is the number of available features. Examples for such scenarios
include flying above completely planar or spherical terrain. However, in the general case where the terrain has “interesting”
structure the system is non-singular and the twelve parameters can be obtained.
Remark 2: The constraint (18) is non-linear and, therefore, no analytic solution to it is readily available. Thus, an iterative
scheme will be used in order to solve this system. A robust algorithm using Newton-iterations and M-estimator will be
described in following sections.
Remark 3: Given Remark 2, one observes that the location and translation appear linearly in the constraint. Using the
pseudo-inverse, these two vectors can be solved explicitlyto give:

[

p12

p1

]

= A†
nBn, (20)

so that, after resubstituting in (19):
(

I −AnA
†
n

)

Bn = 0. (21)

This remark leads to two conclusions:

1. If the rotation is known to good accuracy and measurement noise is relatively low, then the position and translation can
be determined by solving a linear equation. This fact may be relevant when ”fusing” the procedure described here with
other measurement, e.g., with inertial navigation.
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2. Equation (21) shows that the estimation of rotation (bothabsolute and relative) can be separated from that of loca-
tion/translation. This fact is also found when estimating pose from a set of visible landmarks as shown in [17]. In that
work, similarly to the present, the estimate is obtained by minimizing an objective function which measures the errors
in the object-spacerather than on the image plane (as in most other works). This property enables the decoupling
of the estimation problem. Note however that [17] address’sonly the pose rotation and translation decoupling while
here the 6 parameters of absolute and relative rotations areseparated from the 6 parameters of the camera location and
translation.

3.2 The Epipolar Constraint Connection

Before proceeding any further, it is interesting to look at (15) in the light of previous work in SFM and, in particular, epipolar
geometry. In order to do this, it is worth deriving the basic constraint in the present framework and notation. Write:

C2QT = λ2q2 = p12 + λ1R12q1 (22)

for some scalarsλ1 andλ2 (see Fig.2).

Figure 2: The examined scenario from the second camera frame’s (C2) point of view. q2 is the perspective projection of the
terrain featureC2QT , and thus the two should coincide. Additionally, sinceq1 is also a projection of the same feature in the
C1-frame, the epipolar constraint requires that the two rays (one in the direction ofq2 and the other fromp12 in the direction
of R12q1) will intersect.

It follows that:
p12 × λ2q2 = p12 × λ1R12q1, (23)

and hence:
qT

2 (p12 ×R12q1) = 0. (24)

For a vectorx ∈ R
3, letx∧ denote the skew-symmetric matrix:

x∧ =





x1

x2

x3





∧

=





0 −x3 x2

x3 0 −x1

−x2 x1 0





Then, it is well known that the vector product between two vectorsx andy can be expressed as:

x× y = x∧y.
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Using this notation, the epipolar constraint (24) can be written as:

qT

2 (R12q1)
∧
p12 = 0 (25)

and symmetrically as:
qT

1R
T

12q
∧
2 p12 = 0 (26)

The important observation here is that if the vectorp12 verifies the above constraint, then the vectorκ · p12 also verifies the
constraint, for any numberκ. This is an expression of the ambiguity built into the SFM problem. On the other hand, the
constraint (15) is non-homogeneous and hence does not suffer from the same ambiguity. In terms of the translation alone
(and for only one feature point!), ifp12 verifies (15) for givenR1 andR12, then alsop12 + κq2 will verify the constraint, and
hence the ego-motion translation is defined up to a one-dimensional vector. However, one has the following trivially:

qT

1R
T

12q2
∧q2 = 0, (27)

and hence the epipolar constraint does not provide an additional equation that would allow us to solve for the translation in a
unique manner. Moreover, observe that (15) can be written using a vector product instead of the projection operator as:

q2
∧

[

p12 +
R12q1N

T

NTR1q1
(QE − p1)

]

= 0. (28)

Taking into account the identity
(R12q1)

T

q2
∧R12q1 ≡ 0, (29)

it is possible to conclude that (28)−→ (26), and hence the new constraint ”contains” the classicalepipolar geometry. Indeed,
one could think of the constraint derived in (15) as strengthening the epipolar constraint by requiring not only that thetwo
rays (in the directions ofq1 andq2) should intersect, but, in addition, that this intersection point should lie on the DTM’s
linearization plane. Observe, moreover, that taking more than one feature point would allow us to completely compute the
translation (at least for the given rotation matrices).

4 Vision-based navigation algorithm corrections for inertial navigation by help
of Kalman filter.

Vision-based navigation algorithms has been a major research issue during the past decades. Algorithm used in this paper is
based on foundations of multiple-view geometry and a land map. By help of this method we get position and orientation of
a observer camera. On the other hand we obtain the same data from inertial navigation methods. To adjust these two results
Kalman filter is used. We employ in this paper extended Kalmanfilter for nonlinear equations [12].

For inertial navigation computations was used Inertial Navigation System Toolbox for Matlab [13].
Input of Kalman filter consists of two part. The first one is variablesX for equations of motion. In our case it is

inertial navigation equations. VectorX consists of fifteen components:[δx δy δz δVx δVy δVz δφ δθ δψ ax ay az bx by bz].
Coordinatesδxδyδz are defined by difference between real position of the cameraand position gotten from inertial navigation
calculus.VariablesδVx δVy δVz are defined by difference between real velocity of the cameraand velocity gotten from inertial
navigation calculus. Variableδφ δθ δψ are defined as Euler angles of matrixDr ∗ DT

c whereDr is matrix defined by real
Euler angles of camera with respect to Local Level Frame (L-Frame) andDc is matrix defined by Euler angles of camera with
respect to Local Level Frame (L-Frame) gotten by inertial navigation computation. It is necessary to pay attention thatfound
Euler anglesδφ δθ δψ ARE NOT equivalent to difference between real Euler angles and Euler angles gotten from inertial
navigation calculus. For small values ofδφ δθ δψ perturbations to these angles can be added linearly and so these angles
can be used in Kalman filter for small errors. Such choose of angles is made because formulas describing their evolution are
much simpler than formulas describing evolution of Euler angles differences. Variablesax ay az are defined by vector of
Accel bias in inertial navigation measurements.Variablesbx by bz are defined by vector of Gyro bias in inertial navigation
measurements.

The second input of Kalman filter isZ-result of measurements by vision-based navigation algorithms.VectorZ consists of
six components[δxm δym δzm δφm δθm δψm]Coordinatesδxm δym δzm are difference between camera position measured
by vision-based navigation algorithm and position gotten from inertial navigation calculus.Variableδθm δψm are defined as
Euler angles of matrixDm ∗DT

c whereDm is matrix defined by Euler angles of camera with respect to Local Level Frame
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(L-Frame) measured by vision-based navigation algorithm andDc is matrix defined by Euler angles of camera with respect
to Local Level Frame (L-Frame) gotten by inertial navigation computation. Let variablek to be number of step for time
discretization used in Kalman filter.

We assume that errors for between values gotten by inertial navigation computation and real values are linearly depend on
noise. Corespondent process noise covariance matrix is denoted byQk. Diagonal elements ofQk correspondent to velocity
are defined by Accel noise and proportional todt2: QV ∼ dt2, wheredt is time interval betweentk andtk−1: dt = tk−tk−1.
Diagonal elements ofQk correspondent to Euler angles are defined by Gyro noise and proportional todt: QA ∼ dt.

We assume that errors for between values gotten by vision-based navigation algorithm and real values are linearly depend
on noise. Corespondent measurement noise covariance matrix is denoted byRk. Error analysis giving this matrix is described
in [14].

Kalman filter equations describe evolution ofa posteriori state estimationXk described above anda posteriori error
covariation covariance matrixPk for variablesXk.

To write Kalman filter equations we must define two 15x15 matrices yet:Hk andAk. MatrixHk is measurement Jacobian
describing connection between predicted measurementHk ∗ Xk and actual measurementZk defined above. Diagonal ele-
mentsHk(1, 1), Hk(2, 2), Hk(3, 3) describing coordinate and elementsHk(4, 7), Hk(5, 8), Hk(6, 9) describing angles are
equal to one. The rest of the elements are equal to zero.
Ak is Jacobian matrix describing evolution of vectorXk. The exact expression for this matrix is very difficult so we use

approximate formula forAk neglecting by Coriolis effects, Earth rotation and so on. Let φ θ ψ be the Euler angles in L-
Frame,dV is deltaV vector gotten from inertial navigation measurements,fvec is acceleration vector in L-frame,DCMb-to-l
is direction cosine matrix (from body-frame to L-frame).

The formulas definingAk are follow:

ΨDCM =





cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1



 (30)

ΘDCM =





cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)



 (31)

ΦDCM =





1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)



 (32)

DCMb-to-l = ΦDCMΘDCMΨDCM (33)

fvec = DCMb-to-l
dV

dt
(34)

Phi(1 : 3, 4 : 6) =





1 0 0
0 1 0
0 0 1



 (35)

Phi(4 : 6, 7 : 9) =





0 −fvec(3) fvec(2)
fvec(3) 0 −fvec(1)
−fvec(2) fvec(1) 0



 (36)

Phi(7 : 9, 10 : 12) = −DCMb-to-l (37)

Phi(4 : 6, 13 : 15) = −DCMb-to-l (38)

The rest of elements for matrix Phi are equal to zero.

Ak = I + Phi dt (39)

Kalman filter time update equations are follow:
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X−
k = [0 0 0 0 0 0 0 0 0 axk−1 ayk−1

azk−1 bxk−1 byk−1
bzk−1] (40)

P−
k = AkPk−1A

T
k +Qk−1 (41)

Kalman filter update equations project the state and covariance estimates from the previous time stepk − 1 to the current
time stepk.

Kalman filter measurement update equations are follow:

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)−1 (42)

Xk = X−
k +Kk(Zk −HkX

−
k ) (43)

Pk = (I −KkHk)P−
k (I −KkHk)T +KkRkK

T
k (44)

Kalman filter measurement update equations correct the state and covariance estimates with measurementZk.
The found vectorXk is used to update coordinates, velocities, Euler angles, Accel and Gyro biases for inertial navigation

calculations on the next step.
Numerical simulations were realized to examine effectiveness of Kalman filter to combine these two navigation algorithms.

On figurefig:fige1 we can see that corrected path for coordinate error much smaller than inertial navigation coordinate error
without Kalman filter. Improved results by help Kalman filterare gotten also for velocity in spite of the fact that this velocity
was not measured by help vision-based navigation algorithm.

(a) (b) (c)

Figure 3: Position errors ((a) for x coordinate (b) for y coordinate (c) for z coordinate) of the drift path are marked witha
red line, and errors of the corrected path are marked with a blue line. Parameters : Height 1000m, FOV 60 degree, Features
number 120, Resolution 1000x1000, Baseline=200m,∆time = 15 s

5 Error analysis

The rest of this work deals with the error-analysis of the proposed algorithm. In order to evaluate the algorithm’s performance,
the objective-function of the minimization process needs to be defined first: For each of then optical-flow vectors, the
functionfi : R

12 → R
3 is defined as the left-hand side of the constraint described in (16):

fi(p1, φ1, θ1, ψ1, p12, φ12, θ12, ψ12) =

= P(q2, q2) [p12 +R12Li (GEi
− p1)] /|

C2G| (45)

In the above expression,R12 andLi are functions of(φ12, θ12, ψ12) and(φ1, θ1, ψ1) respectively. Additionally, the func-
tion F : R

12 → R
3n will be defined as the concatenation of thefi functions: F (p1, φ1, θ1, ψ1, p12, φ12, θ12, ψ12) =

[f1, . . . , fn]
T . According to these notations, the goal of the algorithm is to find the twelve parameters that minimizeM(θ,D) =

‖F (θ,D)‖
2, whereθ represents the 12-vector of the parameters to be estimated,andD is the concatenation of all the data
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(a) (b) (c)

Figure 4: Position errors for x, y, z coordinate of the drift path are marked with a red line, and errors of the corrected path
are marked with a blue line. Parameters : FOV 60 degree, Features number 120, Resolution 1000x1000, Baseline=200m,
∆time = 15 s, Height a) 700m b) 1000m c) 3000m

(a) (b) (c)

Figure 5: Position errors for x, y, z coordinate of the drift path are marked with a red line, and errors of the corrected path are
marked with a blue line. Parameters : FOV 60 degree, Featuresnumber 120, Baseline=200m,∆time = 15 s, Height 1000m,
Resolution a) 500x500 b) 1000x1000 c) 4000x4000

obtain from the optical-flow and the DTM. IfD would have been free of errors, the true parameters were obtained. Since
D contains some error perturbation, the estimated parameters are drifted to erroneous values. It has been shown in [10] that
the connection between the uncertainty of the data and the uncertainty of the estimated parameters can be described by the
following first-order approximation:

Σθ =

(

dg

dθ

)−1 (

dg

dD

)

ΣD

(

dg

dD

)T (

dg

dθ

)−1

(46)

Here,Σθ andΣD represent the covariance matrices of the parameters and thedata respectively.g is defined as follows:

g(θ,D)
.
=

d

dθ
M(θ,D) =

d

dθ
FTF = 2JT

θ F (47)

Jθ = dF/dθ is the(3n×12) Jacobian matrix ofF with respect to the twelve parameters. By ignoring second-order elements,
the derivations ofg can be approximate by:

dg

dθ
≈ 2JT

θ Jθ (48)

dg

dD
≈ 2JT

θ JD (49)

JD = dF/dD is defined in a similar way as the(3n × m) Jacobian matrix ofF with respect to them data components.
Assigning (48) and (49) back into (46) yield the following expression:

JT =
(

JT
θ Jθ

)−1
JT

θ
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(a) (b)

Figure 6: (a) Velocity errors of the drift path (x y z components), and (b) Velocity errors of the corrected path (x y z
components). Parameters Height 1000m, FOV 60 degree, Features number 120, Resolution 1000x1000, Baseline=200m,
∆time = 15 s

Σθ = JT ·
(

JDΣDJ
T
D

)

· JT
T (50)

The central componentJDΣDJ
T
D represents the uncertainties ofF while the pseudo-inverse matrix

(

JT
θ Jθ

)−1
JT

θ transfers
the uncertainties ofF to those of the twelve parameters. In the following subsections,Jθ, JD andΣD are explicitly derived.

5.1. Jθ Calculation
Simple derivations offi which is presented in (45), yield the following results:

NP (q2,
C2G) = P(q2, q2)P(C2G, C2G)/|C2G| (51)

df

dp1

= −NP (q2,
C2G)R12L (52)

df

dα1

= −NP (q2,
C2G)R12L

(

d

dα1

R1

)

L (GE − p1) (53)

df

dp12

= NP (q2,
C2G) (54)

df

dα12

= NP (q2,
C2G)

(

d

dα12

R12

)

L (GE − p1) (55)

In expressions (53) and (55):α1 = φ1, θ1, ψ1 and:α12 = φ12, θ12, ψ12. The JacobianJθ is obtained by simple concate-
nation of the above derivations.

5.2 JD Calculation

Before calculatingJD, the data vectorD must be explicitly defined. Two types of data are being used bythe proposed
navigation algorithm: data obtained from the optical-flow field and data obtained form the DTM. Each flow vector starts at
q1 and ends atq2. One can considerq1’s location as an arbitrary choice of some ground feature projection, whileq2 represent
the new projection of the same feature on the second frame. Thus the flow errors are realized through theq2 vectors.

The DTM errors influence theGE andN vectors in the constraint equation. As before, the DTM linearization assumption
will be used. For simplicity the derived orientation of the terrain’s local linearization, as expressed by the normal, will be
considered as correct while the height of this plane might beerroneous. The connection between the height error and the
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error ofGE will be derived in the next subsection. Resulting from the above, theq1’s and theN ’s can be omitted from the
data vectorD. It will be defined as the concatenation of all theq2’s followed by concatenation of theGE ’s.

The i’th feature’s data vectors:q2i
andGEi

appears only in the i’th feature constraint, thus the obtained Jacobian matrix
JD = [Jq, JG] is a concatenation of two block diagonal matrices:Jq followed byJG. The i’th diagonal block element is the
3 × 3 matrixdfi/dq2i

anddfi/dGEi
for Jq andJG respectively:

df

dq2
=

−1

‖q2‖
2

[(

qT
2 · C2G

)

I + q2 ·
C2GT

]

P(q2, q2)/|
C2G| (56)

df

dGE

= NP (q2,
C2G)R12L (57)

C2G in expression (56) is the ground featureG under the second camera frame as defined in (11).

5.3. ΣD Calculation
As mention above, the data-vector D is constructed from concatenation of all theq2’s followed by concatenation of theGE ’s.
ThusΣD should represent the uncertainty of these elements. Since theq2’s and theGE ’s are obtained from two different and
uncorrelated processed the covariance relating them will be zero, which leads to a two block diagonal matrix:

ΣD =

[

Σq 0
0 ΣG

]

(58)

In this work the errors of image locations and DTM height are assumed to be additive zero-mean Gaussian distributed with
standard-deviation ofσI andσh respectively. Eachq2 vector is a projection on the image plane where a unit focal-length is
assumes. Hence, there is no uncertainty about itsz-component. Since a normal isotropic distribution was assumed for the
sake of simplicity, the covariance matrix of the image measurements is defined to be:

Σqi
= σ2

I ·





1
1

0



 (59)

andΣq is the matrix with theΣqi
’s along its diagonal.

In [11] the accuracy of location’s height obtained by interpolation of the neighboring DTM grid points is studied. The
dependence between this accuracy and the specific required location, for which height is being interpolated, was found to
be negligible. Here, the above finding was adopted and a constant standard-deviation was set to all DTM heights measure-
ments. Although there is a dependence between closeGE ’s uncertainties, this dependence will be ignored in the following
derivations for the sake of simplicity. Thus, a block diagonal matrix is obtained forΣG containing the3 × 3 covariance
matricesΣGi

along its diagonal which will be derived as follows: consider the ray sent fromp1 along the direction ofR1q1.
This ray should have intersected the terrain atGE = p1 + λR1q1 for someλ, but due to the DTM height error the point

G̃E =
(

x̃, ỹ, h̃
)T

was obtained. Leth be the true height of the terrain above(x̃, ỹ) andH = (x̃, ỹ, h) be the 3D point on the

terrain above that location.
Using that H belongs to the true terrain plane one obtains:

NT (GE −H) = NT (p1 + λR1q1 −H) = 0 (60)

Extractingλ from (60) and assigning it back toGE ’s expression yields:

GE = p1 +R1L (H − p1) (61)

ForGE ’s uncertainty calculation the derivative ofGE with respect toh should be found:

dGE

dh
= R1L ·

(

0 0 1
)T

=
R1q1

NTR1q1
(62)
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The above result was obtained using the fact that thez-component ofN is 1: N =
(

−∇DTM 1
)T

. Finally, the
uncertainty ofGE is expressed by the following covariance-matrix:

ΣGi
=

(

dGE

dh

)

· σ2
h ·

(

dGE

dh

)T

= σ2
h ·

R1q1q
T
1 R

T
1

(NTR1q1)
2

(63)

5.4. ΣC2
Calculation

The algorithm presented in this work estimates the pose of the first camera frame and the ego-motion. Usually, the most
interesting parameters for navigation purpose will be the second camera frame since it reflect the most updated information
about the platform location. The second pose can be obtainedin a straightforward manner as the composition of the first
frame pose together with the camera ego-motion:

p2 = p1 −R1R
T
12p12 (64)

R2 = R1R
T
12 (65)

The uncertainty of the second pose estimates will be described by a6 × 6 covariance matrix that can be derived from the
already obtained12× 12 covariance matrixΣθ by multiplication from both sides withJC2

. The last notation is the Jacobian
of the sixC2 parameters with respect to the twelve parameters mentionedabove. For this purpose, the three Euler anglesφ2,
θ2 andψ2 need to be extracted from (65) using the following equations:

φ2 = arctan

(

R2(2, 3)

R2(3, 3)

)

(66)

θ2 = arcsin (−R2(1, 3)) (67)

ψ2 = arctan

(

R2(1, 2)

R2(1, 1)

)

(68)

Simple derivations and then concatenation of the above expressions yields the required Jacobian which is used to propagate
the uncertainty fromC1 and the ego-motion toC2. The found covariance matrixΣC2

is the same as measurement covariant
matrixRk described in section about Kalman filter.

Rk = ΣC2
(69)

6. Divergence of the method. Necessary thresholds for the method convergence.
In previous Section we considered Error analysis for video navigation method. But its consideration is correct only if found
solution is close to true one. If it is not true nonlinear effects can appear or even we can found incorrect local minimum. In
this case the method can begins to diverge. We can obtain the such result:

1)if large number of outliers features appears.
2)if the case is close to degenerated one. In this case the position or orientation errors are too large. It can happen for

example for small number of features, flat ground , small fieldof view of camera and all that.
3) if the initial position and orientation for iterations process are too far from true values
In the follow subsections we consider some threshold conditions which allow us to avoid the such situations.
If in some case even one of these threshold conditions is not correct we don’t use for this case the correction of visual

navigation method and use only usual INS result.If such situation repeats three times we stope to use the visual navigation
method at all and don’t use it also for the last correct case. Let us discourse these three factors in details
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6.1 Dealing with Outliers

In order to handle real data, a procedure for dealing with outliers must be included in the implementation. The objectiveof
the present section is to describe the current implementation, which seems to work satisfactorily in practice. Three kinds of
outliers should be considered:

1. Outliers present in the correspondence solution (i.e., ”wrong matches”).

2. Outliers caused by the terrain shape, and

3. Outliers caused by relatively large errors between the DTM and the observed terrain.

The latter two kinds of outliers are illustrated in Fig.7. The outliers caused by the terrain shape appear for terrain features
located close to large depth variations. For example, consider two hills, one closer to the camera, the other farther away, and a
terrain featureQ located on the closer hill. The ray-tracing algorithm usingthe erroneous pose may “miss” the proximal hill
and erroneously place the feature on the distal one. Needless to say, the error between the true and estimated locations is not
covered by the linearization. To visualize the errors introduced by a relatively large DTM-actual terrain mismatch, suppose a
building was present on the terrain when the DTM was acquired, but is no longer there when the experiment takes place. The
ray-tracing algorithm will locate the feature on the building although the true terrain-feature belongs to a background that is
now visible.

Figure 7: Outliers caused by terrain shape and DTM mismatch.CT andCE are true and estimated camera frames, respec-
tively. Q1E

andQ2E
are outliers caused by terrain shape and by terrain/DTM mismatch, respectively.

As discussed above, the multi-feature constraint is solvedin a least-squares sense for the pose and motion variables. Given
the sensitivity of least-squares to incorrect data, the inclusion of one or more outliers may result in the convergence to a wrong
solution. A possible way to circumvent this difficulty is by using an M-estimator, in which the original solution is replaced by
a weighted version. In this version, a small weight is assigned to the constraints involving outliers, thereby minimizing their
effect on the solution. More specifically, consider the function fi(Θ) defined in (45) resulting from thei-th correspondence
pair. In the absence of noise, this function should be equal to zero at the true pose and motion values and hence, following
standard notation, define the residualri(Θ)

.
= ‖fi(Θ)‖. Using an M-estimator, the solution forΘ (the twelve parameters to

be estimated) is obtained using an iterative re-weighted least-squares scheme:

Θ = arg min
n

∑

i=1

wir
2
i . (70)
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The weightswi are recomputed after each iteration according to their corresponding updated residual. In our implementation
we used the so-calledGeman-McClurefunction, for which the weights are given by:

w(x) =
1

(1 + x2)
2
. (71)

The calculated weights are then used to construct a weightedpseudo-inverse matrix that replaces the regular pseudo-inverse
JT appearing in (50). See [18] for further details about M-estimation techniques. Let us define weights matrix W which
allows us to decrease influence of outliers

ri = ‖fi(p1, φ1, θ1, ψ1, p12, φ12, θ12, ψ12)‖

medR = median(xi)

Ri = w(ri/medR) (72)

wherei = 1, ..., n andn is number of features.
The weights matrix W(3n × 3n) can be found as follow: for diagonal elements of W we can write: Wii = Rk where k

is integer part of[(i− 1)/3 + 1]. Non-diagonal elements ofWij = 0 for i 6= j.
Instead equation (50) we use new one:

JT =
(

JT
θ WJθ

)−1
JT

θ W

Σθ = JT ·
(

JDΣDJ
T
D

)

· JTT (73)

If we know two positions of camera and features position in the first photo so we can find the features position on the
second photo. If the distance between true position of some correspondent feature on second photo and the position found
by previously described method larger than3σI we would consider the such feature as outlier. Let us defineNi as number
of outliers in initial approximation of cameras position and orientation (i.e. before using visual navigation method)andNf

as number of outliers after visual navigation method corrections. The follow conditions let us to avoid too large numberof
outliers case:

Ni ≥ Nf

Nf

N
< threshold% (74)

where N is full number of features andthreshold% is some threshold value. We choose it to be equal 0.1 .

6.2 Degenerated case large errors.

For degenerate case the matrixJT
θ WJθ in equation (73) can be singular. It gives us follow threshold condition:

rcond(JT
θ WJθ) > thresholdrcond (75)

where rcond() -Matlab function for matrix reciprocal condition number estimate. It is measure for matrix singularity
(0 < rcond() < 1). Threshold valuethresholdrcond is chosen to be10−16.

Degenerated case because of small number of features, flat ground or small field of view of camera gives the follow
threshold conditions:

√

[ΣC2
]ii

(3σI/f)h
< thresholddist (76)

wherei = x, y, z coordinate indexes for diagonal elements of covariance matrix ΣC2
.f = 1 is a focus length of the

camera, h is height of the camera.3σI

f
h gives us the maximum camera position shift allowing the photo feature error to be

smaller than pixel size.Threshold valuethresholddist is chosen to be 40.

3
√

[ΣC2
]ii < Lground−dist (77)
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wherei = x, y, z coordinate indexes for diagonal elements of covariance matrix ΣC2
, Lground−dist is character size of

ground relief change.
√

[ΣC2
]ii

(3σI/f)
< thresholdangle (78)

wherei = φ, θ, ψ angular indexes for diagonal elements of covariance matrixΣC2
.3σI

f
gives us the maximum camera

angular shift allowing the photo feature error to be smallerthan pixel size.Threshold valuethresholdangle is chosen to be
40.

3
√

[ΣC2
]ii <

Lground−dist

h
(79)

wherei = φ, θ, ψ angular indexes for diagonal elements of covariance matrixΣC2
.

Degenerated case because of small baseline (distance between two camera positions used in video navigation method)
gives the follow threshold conditions:

√

[Σθ]ii
‖p12‖

< thresholddist12 (80)

where i = x12, y12, z12 mutual coordinate indexes for diagonal elements of covariance matrixΣθ. Threshold value
thresholddist12 is chosen to be 0.1 .

√

[Σθ]ii
(‖p12‖ /h)

< thresholdangle12
(81)

wherei = φ12, θ12, ψ12 mutual angular indexes for diagonal elements of covariancematrixΣθ.Threshold valuethresholdangle12

is chosen to be 0.1 .

6.3 The initial state of the camera is too far from the its true or final calculated state.

Let us define threshold conditions to avoid the initial stateof the camera to be too far from the its true state.P−
k is covariant

matrix obtained from INS and previous corrections of INS by video navigation method with help of Kalman filter and
described in section about Kalman filter.

3
√

[P−
k ]ii < Lground−dist (82)

wherei = x, y, z coordinate indexes for diagonal elements of covariance matrix P−
k .

3
√

[P−
k ]ii <

Lground−dist

h
(83)

wherei = φ, θ, ψ angular indexes for diagonal elements of covariance matrixP−
k .

Let us define threshold conditions to avoid the initial stateof the camera to be too far from the its final state. The follow
four equations give us differences between initial and finalstate obtain as corrections of INS by video navigation method
with help of Kalman filter.

δp2 = |p2final − p2init| (84)

δp12 = |p12final − p12init| (85)

δα2 = |α2final − α2init| mod (2π) (86)

δα12 = |α12final − α12init| mod (2π) (87)
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3(
√

[P−
k ]ii +

√

[ΣC2
]ii) > δp2i (88)

wherei = x, y, z coordinate indexes for diagonal elements of covariance matrix P−
k andΣC2

3(
√

[P−
k ]ii +

√

[ΣC2
]ii) > δα2i (89)

wherei = φ, θ, ψ angular indexes for diagonal elements of covariance matrixP−
k andΣC2

δp12i

‖p12‖
< thresholddist12 (90)

wherei = x12, y12, z12 mutual coordinate indexes.

δα12i

(‖p12‖ /h)
< thresholdangle12

(91)

wherei = φ12, θ12, ψ12 mutual angular indexes.

7. Simulations Results

7.1 Dependence of error analysis on different factors.

The purpose of the following section is to study the influenceof different factors on the accuracy of the proposed algorithm
estimates. The closed form expression that was developed throughout the previous section is being used to determine the
uncertainty of these estimates under a variety of simulatedscenarios. Each tested scenario is characterized by the following
parameters: the number of optical-flow features being used by the algorithm, the image resolution, the grid spacing of the
DTM (also referred as the DTM resolution), the amplitude of hills/mountains on the observed terrain, and the magnitude of
the ego-motion components. At each simulation, all parameters except the examined one are set according to a predefined
parameters set. In thisdefault scenario, a camera with400× 400 image resolution flies at altitude of 500m above the terrain.
The terrain model dimensions are3 × 3 km with 300m elevation differences (Fig.13(b)). A DTM of 30mgrid spacing
is being used to model the terrain (Fig.10(c)). The DTM resolution leads to a standard-deviation of 2.34m for the height
measurements. The default-scenario also defines the numberof optical-flow features to about 170, where an ego-motion of
‖p12‖ = 40m and‖(φ12, θ12, ψ12)‖ = 10◦ differs the two images being used for the optical-flow computation. Each of the
simulations described below study the influence of different parameter. A variety of values are examined and 150 random
tests are performed for each tested value. For each test the camera position and orientation were randomly selected, except
the camera’s height that was dictated by the scenario’s parameters. Additionally, the direction of the ego-motion translation
and rotation components were first chosen at random and then normalized to the require magnitude.

In Fig.8, the first simulation results are presented. In thissimulation the number of optical-flow features that are usedby
the algorithm is varied and its influence on the obtained accuracy ofC2 and the ego-motion is studied. All parameters were
set to their default values except for the features number. Fig.8(a) presents the standard-deviations of the second frame of the
camera while the deviations of the ego-motion are shown in Fig.8(b). As expected, the accuracy improves as the number of
features increases, although the improvement becomes negligible after the features’ number reaches about 150.

In the second simulation the influence of the image resolution was studied (Fig.9). It was assumed that the image mea-
surements contain uncertainty of half-pixel, where the size of the pixels is dictated by the image resolution. Obviously,
the accuracy improves as image resolution increases since the quality of the optical-flow data is directly depends on this
parameter.

The influence of DTM grid spacing is the objective of the next simulation. Different DTM resolutions were tested varying
from 10m up to an extremely rough resolution of 190m between adjacent grid points (see Fig.10). The readers attention is
drawn to the fact that the obtained accuracy seems to decrease linearly with respect to the DTM grid-spacing (see Fig.11).
This phenomenon can be understood since, as was explained inthe previous section, the DTM resolution does not affect the
accuracy directly but rather it influences the height uncertainty which is involved in the accuracy calculation. As can be seen
in Fig.12, the standard-deviation of the DTM heights increases linearly with respect to the DTM grid spacing which is the
reason for the obtained results.

Another simulation demonstrates the importance of the terrain structure to the estimates accuracy. In the extreme scenario
of flying above a planar terrain, the observed ground features do not contain the required information for the camera pose
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Figure 8: Average standard-deviation of the second position and orientation (a), and the ego-motion’s translation androtation
(b) with respect to the number of flow-features. In both graphs, the left vertical axis measures the translational deviations (in
meters) and corresponds to the solid graph-line, while the right vertical axis measures the rotational deviations (in radians)
and corresponds to the dotted graph-line

Figure 9: Average standard-deviation of the second position and orientation (a), and the ego-motion’s translation androtation
(b) with respect to the image resolution

Figure 10: Different DTM resolutions: (a) grid spacing = 190m, (b) grid spacing = 100m, (c) grid spacing = 30m
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Figure 11: Average standard-deviation of the second position and orientation (a), and the ego-motion’s translation and rotation
(b) with respect to the grid-spacing of the DTM

Figure 12: standard-deviation of the DTM’s height measurement with respect to the grid-spacing of the DTM
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Figure 13: DTM elevation differences: (a) 150m, (b) 300m, (c) 450m

Figure 14: Average standard-deviation of the second position and orientation (a), and the ego-motion’s translation and rotation
(b) with respect to the height differences of the terrain

derivation, and a singular system will be obtained. As the height differences and the variability of the terrain increase, the
features become more informative and a better estimates canbe derived. For this simulation, the DTM elevation differences
were scaled to vary from 50m to 450m (Fig.13). It is emphasized that while the terrain structure plays a crucial role at the
camera pose estimation together with the translational component of the ego-motion, it has no direct affect on the ego-motion
rotational component. As the optical-flow is a composition of two vector fields - translation and rotation, the information for
deriving the ego-motion rotation is embedded only in the rotational component of the flow-field. Since the features depths in-
fluence only the flow’s translational component it is expected that the varying height differences or any other structural change
in the terrain will have no affect on the ego-motion rotationestimation. The above characteristics are well demonstrated in
Fig.14.

Since it is the translation component of the flow which holds the information required for the pose determination, it would
be interesting to observe the effect of increasing the magnitude of this component. The last simulation presented in this work
demonstrates the obtained pose accuracy when the ego-motion translation component vary form 5m to 95m. Although it has
no significant effect on the ego-motion accuracy, the uncertainty of the pose estimates decreases for a large magnitude of
translations (see Fig.15). As a conclusion from the above stated, the time gap between the two camera frames should be as
long as the optical-flow derivation algorithm can tolerate.

7.2 Results of numerical simulation for real parameters of flight and camera.

Inertial navigation systems (INS) are used usually for detection of missile position and orientation. The problem of this
method is that its error increases all time. We propose to usenew method (Navigation Algorithm based on Optical-Flow and
a Digital Terrain Map) [15] to correct result of INS and to make the error to be finite and constant. Kalman Filter is used to
combine results of INS and results of new method [12]. Error analysis with linear first-order approximation is used to find
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Figure 15: Average standard-deviation of the second position and orientation (a), and the ego-motion’s translation and rotation
(b) with respect to the magnitude of the translational component of the ego-motion

error correlation matrix for our new method [14]. We made numerical simulations of flight with real parameters of flight and
camera using only INS and INS and our new method to check usefulness of this new method.

The chosen flight parameters are following:
Height of flight is 700, 1000, 3000 m.
Velocity of flight is 200m/s.
Flight time is 800 s.

Trajectory of the flight we can see on (Fig.16). Digital Terrain Map of real ground was used as cell (Fig.17) for our sim-
ulations. This cell was continued periodically to obtain full Map of the ground (Fig.18). Random noise was used as main
component of INS noise. The more real drift and bias noise give much bigger mistake (about 6000 m instead 1000 m in the
finish point of the flight).

The chosen camera and simulation parameters are following:
FOV (field of view of camera) is 60 degree. ( FOV is field of view of camera. )
Features number found on photos is 100, 120.
Resolution of camera is 500x500, 1000x1000, 4000x4000.( The resolution of camera defines precision of feature detection,

we assume no Optical Flow outliers for features.)
Baseline is 30m, 50m or 200m. ( Baseline is distance between two camera positions used to make two photos for new

method.)
∆time is 5s, 15 s, 30s.(∆time is time interval between measurements. )

The typical results of numerical simulations can be seen on (Fig.3, 4, 5, 6) for different cases of flight, camera and simulation
parameters. Let us demonstrate error tables for typical case with positive results: x, y, z position errors of INS with using
new method and without using new method.

Used flight, camera and simulation parameters for this case:
FOV is 60 degree
Number of features is 120
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Figure 16: Trajectory of the flight.

Resolution is 1000x1000
Baseline is 200m
∆time is 15 s.
Flight velocity is 200 m/s
Heights are 700m, 1000 m, 3000m.

Height 700m 1000m 3000m
Max x error without new method 900m 130m 1300 m

Max x error with new method 25 m 20 m 100 m

Table 1. x axis max error for INS with and without new method for different heights.

Height 700m 1000m 3000m
Max y error without new method 1000m 2000m 400m

Max y error with new method 25m 20m 100 m

Table 2. y axis max error for INS with and without new method for different heights.

Height 700m 1000m 3000m
Max z error without new method 250m 180m 250 m

Max z error with new method 25m 20m 150m

Table 3. z axis max error for INS with and without new method for different heights.
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Figure 17: Map of real ground was used as cell.

Let us demonstrate error tables for typical case with positive results: x, y, z position errors of INS with using new method
for different resolutions of camera. Used flight, camera andsimulation parameters for this case:

FOV 60 degree, Number of features:120, Resolution 500x500,1000x1000, 4000x4000, Baseline 200m, Deltatime 15 s,
Flight velocity 200 m/s, Heights: 1000 m.

Resolution 500x 1000x 4000x
500 1000 4000

Max x error with new method 50m 20m 10m

Table 4. x axis max error for INS with new method for differentresolutions of camera.

Resolution 500x 1000x 4000x
500 1000 4000

Max y error with new method 50m 20m 10m

Table 5. y axis max error for INS with new method for differentresolutions of camera.
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Figure 18: cell was continued periodically to obtain full Map of the ground.

Resolution 500x 1000x 4000x
500 1000 4000

Max z error with new method 35m 20m 10m

Table 6. z axis max error for INS with new method for differentresolutions of camera.

8 Open problems and future method development.

1) If situation is close to degenerated case (for example, for small camera field of view, almost flat ground, small baseline
and so on) we can not used described method because it is impossible to find cameras states from this data. But it is possible
also for this case to used found correspondent features constrains for INS results improvement by help Kalman filter.We can
consider directly these corespondent features (and not calculated position and orientation on basis these features) as result of
measurement for Kalman filter. Example of the such improvement can be found in [16]. But in this case errors of method
will increase with time similar to INS. So after some time measured position is too far from the true position and we can not
use DTM constrains for error correction, but only epipolar constrains. For described in this paper method the error stops to
increase and remains constant so we are capable to use DTM constrains all time.

2)It is possible to consider more optimal and fast methods for looking for minimum of function giving position and
orientation of camera.For example it is possible to improveinitial state for described method , using epipolar equations (25 )
for R12 andp12 up to constant calculations. The next step can be use equation (21) forR1 calculation. And final step using
equation (18) forp12 andp1 calculation.The result can be improved by described iteration method.

3)We can look for not only some random features. Also hill tops, valleys and hill occluding boundaries can be used for
position and orientation specifying.

4) using distributed (not point) features and also some character object recognition.
5) Using the used methods in different practical situations: orientation in rooms, inside of man body.
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9 Conclusions

An algorithm for pose and motion estimation using corresponding features in images and a DTM was presented with using
Kalman filter. The DTM served as a global reference and its data was used for recovering the absolute position and orientation
of the camera. In numerical simulations position and velocity estimates were found to be sufficiently accurate in order to
bound the accumulated errors and to prevent trajectory drifts.

An error analysis has been performed for a novel algorithm that uses as input the optical flow derived from two consecutive
frames and a DTM. The position, orientation and ego-motion parameters of the the camera can be estimated by the proposed
algorithm. The main source for errors were identified to be the optical-flow computation, the quality of the information about
the terrain, the structure of the observed terrain and the trajectory of the camera. A closed form expression for the uncertainty
of the pose and motion was developed. Extensive numerical simulations were performed to study the influence of the above
factors.

Tested under reasonable and common scenarios, the algorithm behaved robustly even when confronted with relatively
noisy and challenging environment. Following the analysis, it is concluded that the proposed algorithm can be effectively
used as part of a navigation system of autonomous vehicles.

On basis results of numerical simulation for real parameters of flight and camera we also can conclude follow:
1) The most important parameter of simulations is FOV: for the small FOV the method diverges. For FOV 60 degree the

results are very good. The reason for this is that for small FOV (12 or 6 degree) the situation is close to degenerated state,
also we must choose small baseline and observed ground patchis too small and almost flat.

2) Resolution of camera is also very important parameter: for better resolution we have much more better results, because
of much more better precision of features detection.

3) The precision of new method depends on flight height. Initially precision increases with height increasing because we
can use bigger baseline and can see bigger patch of ground. But for bigger heights precision begin to decrease because of
small parallax effect.
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