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A theorem producing the fine structure constant inverse
and the quark and lepton mixing angles
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The value 137.036, an excellent approximation of the fine structure constant inverse, is shown to
occur naturally in connection with a theorem employing a pair of closely-related functions. It is
also shown that the formula producing this approximation contains terms expressible using the sines
squared of the experimental quark and lepton mixing angles, implying an underlying relationship
between these constants. This formula places the imprecisely measured neutrino mixing angle θ13
at close to 8.09◦, so that sin22θ13 ≈ 0.0777.

PACS numbers: 06.20.Jr

The value 137.036, an excellent approximation of the
fine structure constant (FSC) inverse 1/α [1], is shown to
occur naturally in connection with a theorem employing
a pair of closely-related functions [2]. It is also shown
that the formula producing this FSC approximation con-
tains terms expressible using the sines squared of the ex-
perimental quark and lepton mixing angles, implying an
underlying relationship between these constants.

I. TWO FUNCTION DEFINITIONS

We begin by defining the pair of related functions that
the theorem will exploit. LetM andN be positive integer
constants, so that

h(u) =
M3 − u3

N3
+M2 − u3

j(u) =

(
M − u
N

)3

+ (M − u)
2

where u is a variable such that

0 < u ≤ 0.1 (1.1)

and

M ≥ 10 . (1.2)

II. THE FSC THEOREM

We then specify and prove the theorem making use of
these functions.
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Theorem 1. (The FSC Theorem.) Let

j(y) = h(x) (2.1)

satisfying

M =
N3

3
+ 1 . (2.2)

Then at

x =
1

M
(2.3)

we get

dy

dx
≈ 1

M3
. (2.4)

Proof. Equation (2.1) gives(
M − y
N

)3

+ (M − y)
2

=
M3 − x3

N3
+M2 − x3 ,

which expands and simplifies to

−3M2y

N3
+

3My2

N3
− y3

N3
− 2My + y2 = − x3

N3
− x3 ,

or

3M2y − 3My2 + y3 + 2MN3y −N3y2 = (N3 + 1)x3 .

It follows that

(3M2 − 6My + 3y2 + 2MN3 − 2N3y)dy = 3(N3 + 1)x2dx ,

so that

dy

dx
=

3(N3 + 1)x2

3M2 − 6My + 3y2 + 2MN3 − 2N3y
.

We now want to identify and remove the smallest terms
from the denominator. As Eq. (2.2) requires that

N3 = 3M − 3 ,
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substituting for N3 gives

dy

dx
=

3(3M − 3 + 1)x2

3M2 − 6My + 3y2 + 2M(3M − 3)− 2(3M − 3)y

=
3(3M − 2)x2

3M2 − 6My + 3y2 + 6M2 − 6M − 6My + 6y

=
3(3M − 2)x2

9M2 − 12My + 3y2 − 6M + 6y

=
(3M − 2)x2

3M2 − 4My + y2 − 2M + 2y

=
(3M − 2)x2

3M2 − 2M − 4My + y2 + 2y

=
(3M − 2)x2

(3M − 2)M − 4My + y2 + 2y
. (2.5)

But by Eq. (1.1) y ≤ 0.1 and by Eq. (1.2) M ≥ 10, so
that 4My, y2, and 2y are small compared to (3M−2)M .
Hence,

dy

dx
≈ 3M − 2

3M − 2
× x2

M
.

Accordingly,

dy

dx
≈ x2

M
,

so that at

x =
1

M

we get

dy

dx
≈ 1

M3
.

III. THE FINE STRUCTURE CONSTANT
INVERSE

Now inspection reveals that M = 10 and N = 3 are
the smallest positive integers fulfilling Eq. (2.2). For this
minimal case Eq. (2.1) gives(

10− y
3

)3

+ (10− y)
2

=
103 − x3

33
+ 102 − x3 .

Then, by Theorem 1, at

x =
1

M
= 0.1

we get

dy

dx
≈ 1

M3
= 0.001 ,

where Eq. (2.1) gives

y ≈ 0.000 033 333 408 73 .

Moreover, substituting M = 10 into Eq. (2.5) gives

dy

dx
=

28x2

(28− y)(10− y)

≈ 0.001 000 004 524 ,

which shows the approximation’s excellent accuracy.
The key point, however, is that this solution to Eq.

(2.1) simultaneously produces

h(x) =
M3 − x3

N3
+M2 − x3

=
103 − 0.13

33
+ 102 − 0.13

= 137.036 ,

the fine structure constant inverse approximation
promised at the outset, fit to within seven parts per bil-
lion [1]. Hence, Theorem 1 will be termed The FSC The-
orem, and Eq. (2.1) The FSC Equation. In this way
this excellent approximation occurs as the natural and
uniquely minimal result of the analysis of the above pair
of closely-related functions, showing that 137.036 is rel-
evant to pure mathematics independent of its role as a
constant well known to physicists.

IV. THE QUARK AND LEPTON MIXING
ANGLES

But the above solution also gives

j(y) =

(
M − y

3

)3

+ (M − y)
2

≈
(

10

3
− 0.000 033 3334

3

)3

+ (10− 0.000 033 3334)
2

= 137.036 ,

whose four terms can be replicated, within the limits of
experimental error, by the sines squared of the six quark
and lepton mixing angles [3, 4]:

M/3 = 1/sin2L12

y/3 = sin2Q13

M = sin2L23× 1/sin2Q12

y = sin2Q23× sin2L13 .

Accordingly,

10/3 = 1/sin2L12 (4.1a)

0.000 033 3334/3 ≈ sin2Q13 (4.1b)

10 = sin2L23× 1/sin2Q12 (4.1c)

0.000 033 3334 ≈ sin2Q23× sin2L13 , (4.1d)
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TABLE I: Quark mixing data compared against predictions.

|Vus| |Vub|
Prediction 0.2236 0.003 333

2012 a 0.225 34+0.000 65
−0.000 65 0.003 51+0.000 15

−0.000 14

Error in SD 2.7 1.3

aRef. [3]. Particle Data Group 1σ global fit.

TABLE II: Lepton mixing data compared against predictions.

sin2 L12 sin2 L23 sin2 L13

Prediction 0.3 0.5 0.0198a

2012 (Aug.)b 0.320+0.016
−0.017 0.427+0.034

−0.027
c 0.0246+0.0029

−0.0028

Error in SD 1.2 2.1 1.8

aThis prediction rests on the assumption that Q23 = 2.35◦, which
derives from [3]. See [5] for a mixing model predicting all six mixing
angles, where Q23 ≈ 2.367 442◦, making L13 ≈ 8.034 394◦ and
sin2 L13 ≈ 0.019 53 .
bRef. [4]. A 1σ global fit that assumes the normal hierarchy.
cRef. [4]. One of two minima, the other being 0.613+0.022

−0.040. Max-
imal mixing (i.e., L23 = 45◦) is disfavored at ∼90% C.L.

so that

j(y) =

(
1

sin2L12
− sin2Q13

)3

+

(
1

sin2Q12
× sin2L23− sin2L13× sin2Q23

)2

= 137.036 .

Now, if we assume that

sin2L23 = 0.5

then

sin2Q12 = 0.05 .

Moreover, given that Eq. (4.1d) implies that

sin2L13 ≈ 0.000 033 3334

sin2Q23
, (4.2)

while we know that Q23 measures roughly 2.35 degrees
[3]. Accordingly,

sin2L13 ≈ 0.0198

L13 ≈ 8.09◦

sin22L13 ≈ 0.0777 .

The fit of the above predictions in the quark sector
can be seen in Table I, where Q12 and Q13 are primarily

responsible for |Vus| and |Vub|, respectively. The largest
of these errors is 2.7 SD, for |Vus|.

The fit of the above predictions in the leptonic sector
can be seen in Table II. The largest of these errors is 2.1
SD, for sin2 L23.

And, finally, here are all of the predicted leptonic mix-
ing angles [4]

L23 = 45◦

L13 ≈ 8.09◦

L12 ≈ 33.210 911◦

and the predicted CKM mixing angles [3]

Q13 ≈ 0.190 987◦

Q12 ≈ 12.920 966◦ .

(Note: In 2007 the author’s first mixing model set L13
equal to, not ∼8◦ as above, but ∼1/73rd of a degree [6],
with the value for sin2L13 equaling ∼0.000 033 333 mul-
tiplied by sin2Q23, instead of ∼0.000 033 333 divided by
sin2Q23, as in Eq. (4.2). See [5] for a version of the 2007
model incorporating this important change, which gives
all six mixing angles, including Q23 ≈ 2.367 442◦ and
L13 ≈ 8.034 394◦.)

V. CONCLUSION

Consider that Theorem 1 is purely mathematical: it
possesses neither constants nor equations chosen for
physical reasons, which means that whatever physical
predictivity it achieves has not been superimposed by
a succession of expedient choices. And yet its minimal
case gives values that reproduce four of the six mixing
angles, as well as eight decimal digits of the precisely-
measured fine structure constant. For this theorem to
generate closely either the above angles or the fine struc-
ture constant would, by itself, be powerful evidence that
it has physical significance; as it is, it closely reproduces
both.

Moreover, [7] offers an alternative to Theorem 1 that
employs even simpler initial assumptions, while still man-
aging to produce the same empirical constants, a remark-
able result given the greater economy of this more fun-
damental approach.

And, finally, the author has shown that rotation ma-
trices can be used to impose three additional, entirely in-
dependent constraints on the mixing angles, where these
constraints mesh neatly with the framework described
in this article and make possible a model fitting all six
mixing angles [5]. Such convergence of independent ap-
proaches is likewise unlikely to occur purely coinciden-
tally.
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