
Wave Fun
tion for Classi
al Me
hani
sJ. M. Karimäki, Department of Physi
s, University of Helsinki28th April 2000Abstra
tIn this paper the relationship of 
lassi
al physi
s and quantum physi
sis studied by introdu
ing a partial di�erential equation, whi
h des
ribes
lassi
al me
hani
s, but looks very similar to the S
hrödinger wave equa-tion of quantum me
hani
s. This work is largely based on David Bohm's
ausal interpretation of quantum me
hani
s, but is in some sense 
omple-mentary to it. In Bohm's theory the S
hrödinger wave equation is usedto derive 
lassi
al looking equations of motion for quantum physi
s. Hereexa
tly the opposite is done. The equations of 
lassi
al physi
s are putinto a form resembling the S
hrödinger equation of quantum physi
s.1 Introdu
tionThere has been 
onsiderable debate over the role of the wave fun
tion in quan-tum me
hani
s and the interpretation of quantum me
hani
s in general. Atthe beginning of the quantum era it was not 
lear whether the wave fun
tionwould represent matter waves that a
tually exist or something else. The prob-lem was partly solved by Max Born who proposed that the wave fun
tion doesnot represent any truly existing physi
al wave, but only gives us the probabilityof �nding the parti
le at a spe
i�
 lo
ation after measurement.There were, however, other opinions and di�erent approa
hes, whi
h did notre
eive mu
h attention. In 1927 Louis de Broglie suggested that the role of thewave fu
tion was to guide the parti
le along a 
ontinuous 
urve [1℄, but thisapproa
h was qui
kly abandoned after having re
eived harsh 
riti
ism. Amongother things, it was 
laimed that the theory would not work for more than oneparti
le.Nevertheless, independently of de Broglie's ideas, in 1952 David Bohm pub-lished a similar theory [3℄, whi
h, in addition, took a

ount of the many parti
le
ase. Bohm's theory, or the 
ausal interpretation of quantum me
hani
s, startsfrom the S
hrödinger wave equation, whi
h is used to derive two equations: The�rst one is similar to the equation of 
lassi
al physi
s and des
ribes parti
le tra-je
tories. The se
ond one des
ribes the probability of the parti
les to be movingalong a spe
i�
 set of traje
tories.In this paper, the equation for the traje
tories of the parti
les is repla
ed bythe 
orresponding equation of 
lassi
al me
hani
s, but the form of the probabil-ity equation remains the same as in Bohm's theory. From these two equations asingle di�erential equation is dedu
ed, whi
h is very similar to the S
hrödingerwave equation of quantum me
hani
s, but whi
h produ
es the results of 
lassi
alphysi
s. 1



2 The Causal Interpretation of QuantumMe
han-i
sIn this se
tion we will reprodu
e the derivation of David Bohm's 
ausal inter-pretation of quantum me
hani
s for the 
ase of a single non-relativisti
 parti
le.We shall go into more detail than is usual, sin
e the results of this se
tion willbe needed in the developments of later se
tions.We will start from the S
hrödinger wave equationi�h�	=�t = � �h22mr2	+ V	: (1)The wave fun
tion 	(x; t) 
an be written as a produ
t of two parts, 
orrespond-ing to an amplitude and a phase:	 = R exp(iS=�h); (2)where R and S are real fun
tions of x and t. When this expression is insertedto the wave equation, and the resulting equation is divided by �	, we get a
omplex equation, whose real part is�S�t = �h22mr2RR � (rS)22m + V; (3)and imaginary part � i�hR �R�t = i�h2m [r2S + 2rR � rSR ℄: (4)We 
an reorder the terms in equation (3) and multiply the equation (4) by�R=i�h to get a pair of 
oupled equations for R and S:�S�t = �[ (rS)22m + V � �h22mr2RR ℄; (5)�R�t = � 12m [Rr2S + 2rR � rS℄: (6)Now the original 
omplex wave equation (1) of the 
omplex valued fun
tion	 has been transformed into two real equations of two real valued fun
tions.These are the sought for equations of the 
ausal interpretation of quantumme
hani
s in the form written by Bohm [3℄. Let us take a 
loser look at theirphysi
al meaning.The equation (5) is the same as the Hamilton-Ja
obi equation of 
lassi
alme
hani
s apart from an additional �quantum potential�Q = � �h22mr2RR : (7)A

ording to the 
ausal interpretation of quantum me
hani
s the parti
lemoves along a 
ontinuous 
urve and its velo
ity 
an be 
al
ulated from thephase S using the Hamilton-Ja
obi-relation:v(x; t) = rS(x; t)m : (8)2



It is furthermore assumed that, before any measurements are performed, thea
tual position of the parti
le is unknown, but the probability density for theparti
le to be at x at time t is given by the square of the amplitude R:P (x; t) = R(x; t)2: (9)The equation (6) 
an be written in a more familiar form by multiplying itby 2R and using the above de�nitions of P and v:�P�t = �r � (Pv): (10)This is a 
onservation equation for the probability. It ensures that the assump-tion (9) is valid for t > t0, if it is valid at t0 and the system has not beendisturbed between t0 and t.To �nd the traje
tory of the parti
le one has to �nd a solution for theequations (5) and (6). The velo
ity 
an then be obtained from S using (8) andthe position of the parti
le. On
e the initial position of the parti
le is known thetraje
tory 
an be 
al
ulated from the velo
ity v. In reality the initial position ofthe parti
le 
annot be known exa
tly and only the initial probability distributionR is available. However, we 
an imagine that the initial position exists, even if itis impossible to know it exa
tly. The initial positions 
an then be 
onsidered tobe so 
alled �hidden variables� and the 
ausal interpretation a �hidden variable�theory of quantum me
hani
s.Instead of (8) it is also possible to use the following equation of motion to
al
ulate the parti
le traje
tories:md2xdt2 = �r(V +Q): (11)This di�ers from the Newtonian equation of motion only in that the quan-tum potential Q has been added to the 
lassi
al potential V . The quantumpotential 
an be thought of as exerting an additional �quantum for
e� �rQ tothe parti
le. The equation (11) is perhaps intuitively the most appealing linkbetween 
lassi
al and quantum me
hani
s and its value lies in its philosophi
alimpli
ations rather than its usefulness in 
al
ulations.Finally, it is perhaps worth mentioning that the theory 
an be formulatedwithout expli
it referen
e to the fun
tions R and S. The formula (8) for thevelo
ity of the parti
le 
an be written using 	 only:v(x; t) = �hmImr		 : (12)Sin
e the probability density 
an be written in the more familiar formP = j	j2 (13)and the quantum potential asQ = � �h22mr2j	jj	j ; (14)we only need to solve the original S
hrödinger equation (1) to be able to 
al
ulatethe parti
le traje
tories. 3



3 The Classi
al Limit of Quantum Me
hani
sHow 
lassi
al physi
s 
an be retrieved as a limit 
ase of quantum physi
s is adeli
ate question involving both mathemati
s and interpretation. In the 
ausalinterpretation of quantum me
hani
s the question be
omes easier than in thestandard, or Copenhagen, interpretation.Let us �rst see how things work in the 
ausal interpretation. If we set �h = 0in the equation (5), we get the Hamilton-Ja
obi equation of 
lassi
al me
hani
s:�S�t = �[ (rS)22m + V ℄: (15)This equation des
ribes the behaviour of the exa
t 
lassi
al 
ounterpart ofthe quantum system. A solution for the phase fun
tion S(x; t) 
an be foundusing the standard methods of 
lassi
al me
hani
s and the velo
ity of the parti
le
an be determined from the expression (8). There is no more need for theequation (6), sin
e R does not appear in (15).In the standard interpretation of quantum me
hani
s we have to start fromthe S
hrödinger equation (1), but here we 
annot dire
tly put �h = 0, for thiswould lead to the trivial equation 0 = V	; (16)whi
h obviously does not des
ribe the above mentioned 
lassi
al situation.Thus, it seems that, whereas the standard interpretation of quantum me-
hani
s is 
on
erned, 
lassi
al physi
s 
an only be approa
hed as a limit 
aseby letting �h! 0. In pra
ti
e, we 
an do this by repla
ing �h in the S
hrödingerequation (1) by ��h, where the fa
tor � is a positive real number:i(��h)�	=�t = � (��h)22m r2	+ V	: (17)Let us take a 
lassi
al parti
le moving in the potential V . For ea
h 
hoi
e of� we 
an 
hoose a wave pa
ket 	� whi
h obeys the equation (17). Moreover,these wave pa
kets 
an be 
hosen so that their motion approa
hes the motionof the given 
lassi
al parti
le as �! 0.Nothing prevents us from using the limit value approa
h in the 
ausal in-terpretation too. We 
an repla
e �h by ��h in the equations (2) and (5) and use(8) for the velo
ity. An alternative way, whi
h again uses the wave fun
tion	 dire
tly and avoids S and R, is to use the equation (17) and the followingvelo
ity formula: v(x; t) = ��hm Imr		 : (18)Whether we use 	 or S and R is more or less a matter of taste at this point. Wemention both ways here, be
ause the expressions (17), (8) and (18) are neededlater. What is interesting, though, is that by using the 
ausal interpretation we
an smoothly 
hange from quantum me
hani
s to 
lassi
al me
hani
s (or vi
eversa) just by moving the value of � between 1 and 0.To sum up things: in the 
ausal interpretation the 
lassi
al limit 
an berea
hed either by using a limit value or simply by repla
ing �h by 0, but in thestandard interpretation the use of the limit value seems ne
essary.4



4 The Wave Equation for Classi
al Physi
sThere is, however, another possible approa
h to restore 
lassi
al physi
s. We
an make a small modi�
ation to the equation (5) of the 
ausal interpretationand work ba
kwards. To get the 
lassi
al situation we start dire
tly from theHamilton-Ja
obi equation (15) and the probability equation (10)�S�t = �[ (rS)22m + V ℄; (19)�P�t = �r � (Pv): (20)These 
an be written in the following form:�S�t = �[ (rS)22m + V � �h22mr2RR + �h22mr2RR ℄; (21)� i�hR �R�t = i�h2m [r2S + 2rR � rSR ℄: (22)By multiplying these by �	 = �R exp(iS=�h) and adding them together we get,after some manipulations, the S
hrödinger equation and an additional term:i�h�	=�t = � �h22mr2	+ V	+ �h22m exp(iS=�h)r2R: (23)Although this equation looks very mu
h like the S
hrödinger equation, itprodu
es exa
tly the 
lassi
al behaviour for the parti
le. To show this theequation (23) must be interpreted the same way as the S
hrödinger equationis interpreted in the 
ausal interpretation of quantum me
hani
s, i.e. we mustsolve the equation (23) and then �x an initial position for the parti
le at theinitial time and use the Hamilton-Ja
obi relation v(x; t) = rS(x; t)=m for thevelo
ity of the parti
le.As an additional result we 
an now also work with initial probability distri-butions as in the quantum 
ase, sin
e the equation (10) is still valid.The equation (23) 
an be put into a more elegant form using 	 only:i�h�	=�t = � �h22m(r2	� 	j	jr2j	j) + V	: (24)or, using the de�nition (7) of the quantum potential Q:i�h�	=�t = � �h22mr2	+ (V �Q)	: (25)It is 
lear from (24) that the new equation is not linear with respe
t to	. Although this equation should not be 
onsiderably more di�
ult to solvethan the original S
hrödinger equation, we lose the possibility to 
reate newsolutions by linear 
ombination. This is one of the features that make 
lassi
aland quantum physi
s distin
t.A se
ond remark to be made from (24) is that it still 
ontains �h. However,the a
tual value of �h has absolutely nothing to do with the solution of theequation! Any value of �h would lead to exa
tly the same 
lassi
al physi
s.5



5 Initial Conditions for the One Parti
le CaseAny wave fun
tion 	(x; 0) that 
an be used as an initial value in the quantum
ase 
an also be used in the 
lassi
al 
ase. So, the amplitude R and the phaseS 
an be 
hosen quite freely. For example, it is always possible to 
hoose a
onstant velo
ity for the parti
le at time zero. It is also possible to 
hooseany di�erentiable velo
ity �eld on a given 2-dimensional plane of the three-spa
e. However, this is not possible for the whole 3-dimensional spa
e, sin
e thevelo
ity �eld must satisfy v(x; 0) = rS(x; 0)=m, whi
h restri
ts the availableinitial velo
ity �elds to those that are non-rotational (r� v = 0).The subsequent evolution of the wave fun
tion may di�er from the quantum
ase, be
ause there is a possibility of arriving at singularities. This is due to thefa
t that 
lassi
al traje
tories 
an 
ross ea
h other, whereas in the one parti
le
ase of the 
ausal interpretation of quantum me
hani
s it is not possible.6 Free Parti
leAs an example, we shall 
onsider a 
lassi
al free parti
le moving at the velo
ityv. The equation (23) now be
omesi�h�	=�t = � �h22m (r2	� exp(iS=�h)r2R): (26)One possible solution is	 = 	0(x� vt) exp[i(mv � x� 12mv � vt)=�h℄; (27)where the real fun
tion 	0(x) is the initial amplitude of the wave fun
tion.This solution represents a wave pa
ket moving with 
onstant velo
ity v andmaintaining its initial shape during the motion. It should be noted that in thisexample there is no un
ertainty for the momentummv and that the wave pa
ket
an be 
on�ned to an arbitrarily small volume, thus allowing the un
ertaintyfor the parti
le position to be de
reased under any given value.7 N parti
lesLet us �rst take a look at the 
ausal interpretation of quantum me
hani
s forN non-relativisti
 parti
les. The starting point is the S
hrödinger equation:i�h�	=�t = �[ NXj=1 �h22mjr2j	℄ + V (x1; :::;xN ; t)	; (28)where	 is a fun
tion ofN positions xj and time t andrj stands for the gradientrespe
tive to xj . As in the single parti
le 
ase the wave fun
tion 
an be writtenas a produ
t of an amplitude and a phase fa
tor:	(x1; :::;xN ; t) = R(x1; :::;xN ; t) exp[iS(x1; :::;xN ; t)=�h℄: (29)Inserting this to (28) leads us to the equations of the 
ausal interpretationfor N parti
les: 6



�S�t = � NXj=1( (rjS)22mj + �h22mj r2jRR ) + V; (30)�P�t = � NXj=1rj � (Pvj): (31)The probability density P and the parti
le velo
ities vj are de�ned the sameway as in the single parti
le 
ase:P (x1; :::;xN ; t) = [R(x1; :::;xN ; t)℄2; (32)vj(x1; :::;xN ; t) = rjS(x1; :::;xN ; t)=mj : (33)(Here it must be remembered that the index j denotes the jth parti
le and thatea
h ve
tor vj has three 
omponents.) The de�nition of the quantum potentialQ for N parti
les is: Q(x1; :::;xN ; t) = � NXj=1 �h22mj r2jRR : (34)In the single parti
le 
ase the quantum potential is responsible for the in-terferen
e e�e
ts of quantum me
hani
s, but in the N parti
le 
ase Q is alsoresponsible for quantum non-lo
ality ([5℄, p. 57).The 
lassi
al 
ounterpart of the S
hrödinger equation 
an be dedu
ed thesame way as in the single parti
le 
ase, and it is simply:i�h�	=�t = �[ NXj=1 �h22mjr2j	℄� [ NXj=1 exp(iS=�h)r2jR℄ + V	; (35)where R and S are de�ned as in (29). Using (34) we 
an write the equation(35) as: i�h�	=�t = � NXj=1 �h22mjr2j	+ (V �Q)	: (36)Now the parti
le velo
ities are given by (33) as in the quantum 
ase.8 A generalized family of equationsIn the previous se
tions we have presented two fundamentally di�erent methodsfor retrieving 
lassi
al me
hani
s from quantum me
hani
s:1. repla
ing �h by ��h and letting �! 0, (se
tion 4)2. repla
ing V by V �Q, (se
tion 5)We will 
ombine these two approa
hes to get a more general result. We shall
onsider the one parti
le 
ase, sin
e the generalization to many parti
les istrivial. 7



First, we 
an repla
e �h by ��h in the equation (5) to get the equation�S�t = �[ (rS)22m + V � (��h)22m r2RR ℄: (37)This is equivalent to repla
ing �h by ��h in the S
hrödinger equation (1) andusing the relation 	 = R exp[iS=(��h)℄ (38)instead of (2).Se
ond, we 
an add the quantum potential Q multiplied by a 
onstant ��2to the right side of the equation (37)�S�t = �[ (rS)22m + V � (�2 � �2)�h22m r2RR ℄: (39)This equation 
oupled with the equation (6) is equivalent to the following mod-i�ed S
hrödinger equation:i(��h)�	=�t = � (��h)22m r2	+ (V � �2Q)	: (40)Now, it 
an be seen from the form of the equation (39) that if �2 � �2 =0 it be
omes the Hamilton-Ja
obi equation and thus (40) gives the 
lassi
alme
hani
s and, similarly, if �2 � �2 = 1 the equation (40) represents quantumme
hani
s. However, 
are must be taken to use the 
orre
t de�nition of S (38)and velo
ity (8), whi
h using 	 takes the formv(x; t) = ��hm Imr		 : (41)9 TablesWe have 
olle
ted the main results of our analysis of the 
lassi
al and quantumequations into a table. For simpli
ity, only the single parti
le 
ase is presented.	 Quantum Me
hani
s Classi
al Me
hani
sWave eq. i�h�	�t = � �h22mr2	+ V	 i�h�	�t = � �h22mr2	+ (V �Q)	Quantum pot. Q = � �h22m r2j jj j Q = � �h22m r2j jj jProb. dens. P (x; t) = j	(x; t)j2 P (x; t) = j	(x; t)j2Velo
ity v(x; t) = �hmImr		 v(x; t) = �hmImr		Eq. of motion md2xdt2 = �r(V +Q) md2xdt2 = �rVH.-Ja
obi �S�t = �[ (rS)22m + V +Q℄ �S�t = �[ (rS)22m + V ℄Cons. prob. �P�t = �r � (Pv) �P�t = �r � (Pv)Generalized S
hrödinger equation i(��h)�	�t = � (��h)22m r2	+ (V � �2Q)	
8



10 Dis
ussionWe 
ould also keep to the standard interpretation of quantum me
hani
s ininterpreting the equations (23) and (35). It would be interesting from a peda-gogi
al point of view, sin
e many features of quantum physi
s now have 
lassi
al
ounterparts. Su
h 
on
epts as the preparation of the system, unitary evolu-tion, and 
ollapse of the wave fun
tion 
ould be studied and 
ompared withtheir 
lassi
al 
ounterparts.One 
ru
ial di�eren
e between 
lassi
al parti
le me
hani
s and quantumme
hani
s is the existen
e of interferen
e in quantum me
hani
s. In the 
ausalinterpretation it is pre
isely the quantum potential Q that is responsible for theinterferen
e e�e
ts. Sin
e there is no interferen
e in 
lassi
al parti
le physi
s, itmust be that adding the term �Q	 to the right side of the S
hrödinger equationsomehow wipes out all the interferen
e e�e
ts of quantum me
hani
s. However,this 
an be understood as a result of the vanishing of �h from the equation (15)when 
ompared with (5).The approa
h presented in this paper gives the possibility of treating someparti
les of a problem as �
lassi
al� and the others as �quantum� parti
les. This
an be a
hieved by omitting one or more terms from the se
ond sum of theequation (35). One 
ould, for example, study the behaviour of one �
lassi
al�parti
le in an environment of purely �quantum� parti
les, or vi
e versa. This
ould help in understanding how the 
ombined e�e
t of many randomly movingparti
les 
reates a (more or less) 
onstant and uniform potential.Sin
e this paper has so far only 
onsidered non-relativisti
 parti
le quantumme
hani
s, it would be interesting to see what form the relativisti
 parti
leequations, or even �eld equations, would take if similar pro
edures to the onepresented in this paper would be applied to them. The 
onsequen
es to theLorentz invarian
e of the equations would be one point of interest sin
e theoriginal 
lassi
al relativisti
 equations are (by de�nition) Lorentz invariant andthe 
orresponding quantum equations also have a 
ovariant form.Referen
es[1℄ L. de Broglie, La Nouvelle Dynamique des Quanta, in [2℄, p. 105[2℄ Éle
trons et Photons: Rapports et Dis
ussions du Cinquième Conseil dePhysique tenu a Bruxelles du 24 au 29 O
tobre 1927 sous les Auspi
es del'Institut International de Physique Solvay, Gauthiers-Villars, Paris (1928)[3℄ D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of�Hidden� Variables I, Phys. Rev. 85 (1952), p. 166, also in [4℄, p. 369[4℄ J. A. Wheeler and W. H. Zurek (editors), Quantum Theory and Measure-ment, Prin
eton University Press, Prin
eton (1983)[5℄ D. Bohm and B. J. Hiley, The Undivided Universe, Routledge, London andNew York (1993)
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