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Abstract

In this paper the relationship of classical physics and quantum physics
is studied by introducing a partial differential equation, which describes
classical mechanics, but looks very similar to the Schrédinger wave equa-
tion of quantum mechanics. This work is largely based on David Bohm’s
causal interpretation of quantum mechanics, but is in some sense comple-
mentary to it. In Bohm’s theory the Schrodinger wave equation is used
to derive classical looking equations of motion for quantum physics. Here
exactly the opposite is done. The equations of classical physics are put
into a form resembling the Schrédinger equation of quantum physics.

1 Introduction

There has been considerable debate over the role of the wave function in quan-
tum mechanics and the interpretation of quantum mechanics in general. At
the beginning of the quantum era it was not clear whether the wave function
would represent matter waves that actually exist or something else. The prob-
lem was partly solved by Max Born who proposed that the wave function does
not represent any truly existing physical wave, but only gives us the probability
of finding the particle at a specific location after measurement.

There were, however, other opinions and different approaches, which did not
receive much attention. In 1927 Louis de Broglie suggested that the role of the
wave fuction was to guide the particle along a continuous curve [1], but this
approach was quickly abandoned after having received harsh criticism. Among
other things, it was claimed that the theory would not work for more than one
particle.

Nevertheless, independently of de Broglie’s ideas, in 1952 David Bohm pub-
lished a similar theory [3], which, in addition, took account of the many particle
case. Bohm’s theory, or the causal interpretation of quantum mechanics, starts
from the Schrodinger wave equation, which is used to derive two equations: The
first one is similar to the equation of classical physics and describes particle tra-
jectories. The second one describes the probability of the particles to be moving
along a specific set of trajectories.

In this paper, the equation for the trajectories of the particles is replaced by
the corresponding equation of classical mechanics, but the form of the probabil-
ity equation remains the same as in Bohm’s theory. From these two equations a
single differential equation is deduced, which is very similar to the Schrodinger
wave equation of quantum mechanics, but which produces the results of classical
physics.



2 The Causal Interpretation of Quantum Mechan-
ics

In this section we will reproduce the derivation of David Bohm’s causal inter-
pretation of quantum mechanics for the case of a single non-relativistic particle.
We shall go into more detail than is usual, since the results of this section will
be needed in the developments of later sections.

We will start from the Schrédinger wave equation

: h o,
ihQW [0t = = —V>¥ + V. (1)

The wave function ¥(x,t) can be written as a product of two parts, correspond-
ing to an amplitude and a phase:

¥ = Rexp(iS/h), (2)

where R and S are real functions of x and ¢. When this expression is inserted
to the wave equation, and the resulting equation is divided by —¥, we get a
complex equation, whose real part is
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We can reorder the terms in equation (3) and multiply the equation (4) by
—R/ih to get a pair of coupled equations for R and S:
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Now the original complex wave equation (1) of the complex valued function
¥ has been transformed into two real equations of two real valued functions.
These are the sought for equations of the causal interpretation of quantum
mechanics in the form written by Bohm [3]. Let us take a closer look at their
physical meaning.

The equation (5) is the same as the Hamilton-Jacobi equation of classical
mechanics apart from an additional “quantum potential”
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According to the causal interpretation of quantum mechanics the particle
moves along a continuous curve and its velocity can be calculated from the
phase S using the Hamilton-Jacobi-relation:
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It is furthermore assumed that, before any measurements are performed, the
actual position of the particle is unknown, but the probability density for the
particle to be at x at time ¢ is given by the square of the amplitude R:

P(x,t) = R(x,t)?. (9)

The equation (6) can be written in a more familiar form by multiplying it
by 2R and using the above definitions of P and v:

oP
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This is a conservation equation for the probability. It ensures that the assump-
tion (9) is valid for ¢ > to, if it is valid at ¢p and the system has not been
disturbed between ¢y and t.

To find the trajectory of the particle one has to find a solution for the
equations (5) and (6). The velocity can then be obtained from S using (8) and
the position of the particle. Once the initial position of the particle is known the
trajectory can be calculated from the velocity v. In reality the initial position of
the particle cannot be known exactly and only the initial probability distribution
R is available. However, we can imagine that the initial position exists, even if it
is impossible to know it exactly. The initial positions can then be considered to
be so called “hidden variables” and the causal interpretation a “hidden variable”
theory of quantum mechanics.

Instead of (8) it is also possible to use the following equation of motion to
calculate the particle trajectories:

m=— =-V(V +Q). (11)

This differs from the Newtonian equation of motion only in that the quan-
tum potential @ has been added to the classical potential V. The quantum
potential can be thought of as exerting an additional “quantum force” —V@ to
the particle. The equation (11) is perhaps intuitively the most appealing link
between classical and quantum mechanics and its value lies in its philosophical
implications rather than its usefulness in calculations.

Finally, it is perhaps worth mentioning that the theory can be formulated
without explicit reference to the functions R and S. The formula (8) for the
velocity of the particle can be written using ¥ only:
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Since the probability density can be written in the more familiar form
P =¥ (13)
and the quantum potential as
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we only need to solve the original Schrédinger equation (1) to be able to calculate
the particle trajectories.



3 The Classical Limit of Quantum Mechanics

How classical physics can be retrieved as a limit case of quantum physics is a
delicate question involving both mathematics and interpretation. In the causal
interpretation of quantum mechanics the question becomes easier than in the
standard, or Copenhagen, interpretation.

Let us first see how things work in the causal interpretation. If we set 7~ =0
in the equation (5), we get the Hamilton-Jacobi equation of classical mechanics:
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This equation describes the behaviour of the exact classical counterpart of
the quantum system. A solution for the phase function S(x,t) can be found
using the standard methods of classical mechanics and the velocity of the particle
can be determined from the expression (8). There is no more need for the
equation (6), since R does not appear in (15).
In the standard interpretation of quantum mechanics we have to start from
the Schrodinger equation (1), but here we cannot directly put i = 0, for this
would lead to the trivial equation
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which obviously does not describe the above mentioned classical situation.

Thus, it seems that, whereas the standard interpretation of quantum me-
chanics is concerned, classical physics can only be approached as a limit case
by letting i — 0. In practice, we can do this by replacing & in the Schrodinger
equation (1) by af, where the factor « is a positive real number:
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Let us take a classical particle moving in the potential V. For each choice of
a we can choose a wave packet ¥, which obeys the equation (17). Moreover,
these wave packets can be chosen so that their motion approaches the motion
of the given classical particle as a — 0.

Nothing prevents us from using the limit value approach in the causal in-
terpretation too. We can replace fi by afi in the equations (2) and (5) and use
(8) for the velocity. An alternative way, which again uses the wave function
¥ directly and avoids S and R, is to use the equation (17) and the following
velocity formula:

v
v(x,t) = %hlm%.

Whether we use ¥ or S and R is more or less a matter of taste at this point. We
mention both ways here, because the expressions (17), (8) and (18) are needed
later. What is interesting, though, is that by using the causal interpretation we
can smoothly change from quantum mechanics to classical mechanics (or vice
versa) just by moving the value of o between 1 and 0.

To sum up things: in the causal interpretation the classical limit can be
reached either by using a limit value or simply by replacing & by 0, but in the
standard interpretation the use of the limit value seems necessary.

(18)



4 The Wave Equation for Classical Physics

There is, however, another possible approach to restore classical physics. We
can make a small modification to the equation (5) of the causal interpretation
and work backwards. To get the classical situation we start directly from the
Hamilton-Jacobi equation (15) and the probability equation (10)
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These can be written in the following form:
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By multiplying these by —% = —Rexp(iS/h) and adding them together we get,
after some manipulations, the Schréodinger equation and an additional term:
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Although this equation looks very much like the Schrédinger equation, it
produces exactly the classical behaviour for the particle. To show this the
equation (23) must be interpreted the same way as the Schrédinger equation
is interpreted in the causal interpretation of quantum mechanics, i.e. we must
solve the equation (23) and then fix an initial position for the particle at the
initial time and use the Hamilton-Jacobi relation v(x,t) = VS(x,t)/m for the
velocity of the particle.

As an additional result we can now also work with initial probability distri-
butions as in the quantum case, since the equation (10) is still valid.

The equation (23) can be put into a more elegant form using ¥ only:
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or, using the definition (7) of the quantum potential Q:

2
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It is clear from (24) that the new equation is not linear with respect to
¥. Although this equation should not be considerably more difficult to solve
than the original Schrodinger equation, we lose the possibility to create new
solutions by linear combination. This is one of the features that make classical
and quantum physics distinct.

A second remark to be made from (24) is that it still contains . However,
the actual value of i has absolutely nothing to do with the solution of the
equation! Any value of i would lead to exactly the same classical physics.



5 Initial Conditions for the One Particle Case

Any wave function ¥(x,0) that can be used as an initial value in the quantum
case can also be used in the classical case. So, the amplitude R and the phase
S can be chosen quite freely. For example, it is always possible to choose a
constant velocity for the particle at time zero. It is also possible to choose
any differentiable velocity field on a given 2-dimensional plane of the three-
space. However, this is not possible for the whole 3-dimensional space, since the
velocity field must satisfy v(x,0) = VS(x,0)/m, which restricts the available
initial velocity fields to those that are non-rotational (V x v = 0).

The subsequent evolution of the wave function may differ from the quantum
case, because there is a possibility of arriving at singularities. This is due to the
fact that classical trajectories can cross each other, whereas in the one particle
case of the causal interpretation of quantum mechanics it is not possible.

6 Free Particle

As an example, we shall consider a classical free particle moving at the velocity
v. The equation (23) now becomes

2
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One possible solution is
1
U = Uy(x — vt)expli(mv - x — Smv - vt) /], (27)

where the real function ¥o(x) is the initial amplitude of the wave function.
This solution represents a wave packet moving with constant velocity v and
maintaining its initial shape during the motion. It should be noted that in this
example there is no uncertainty for the momentum mv and that the wave packet
can be confined to an arbitrarily small volume, thus allowing the uncertainty
for the particle position to be decreased under any given value.

7 N particles

Let us first take a look at the causal interpretation of quantum mechanics for
N non-relativistic particles. The starting point is the Schrédinger equation:
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where ¥ is a function of N positions x; and time ¢ and V; stands for the gradient
respective to x;. As in the single particle case the wave function can be written
as a product of an amplitude and a phase factor:

U(xq,...,XN,t) = R(x1, ..., XN, t) exp[iS(xq, ..., xn, t) /B]. (29)

Inserting this to (28) leads us to the equations of the causal interpretation
for N particles:
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The probability density P and the partlcle velocities v; are defined the same
way as in the single particle case:

P(x1, ..., XN, t) = [R(x1, ..., xn, 1)]?, (32)

Vi(X1,.., XN, t) = V;S(x1, ..., XN, 1) /my. (33)

(Here it must be remembered that the index j denotes the jth particle and that
each vector v; has three components.) The definition of the quantum potential
Q@ for N particles is:

B2 V2R

2m;

N
Q(x1,...,xXN,1t) Z

=1

(34)

In the single particle case the quantum potential is responsible for the in-
terference effects of quantum mechanics, but in the N particle case @) is also
responsible for quantum non-locality ([5], p. 57).

The classical counterpart of the Schrédinger equation can be deduced the
same way as in the single particle case, and it is simply:
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where R and S are defined as in (29). Using (34) we can write the equation
(35) as
N h2
iho¥ /0t = jEZl 5 jVj\Il +(V -Q)V. (36)

Now the particle velocities are given by (33) as in the quantum case.

8 A generalized family of equations

In the previous sections we have presented two fundamentally different methods
for retrieving classical mechanics from quantum mechanics:

1. replacing i by ah and letting o — 0, (section 4)
2. replacing V by V — @, (section 5)

We will combine these two approaches to get a more general result. We shall
consider the one particle case, since the generalization to many particles is
trivial.



First, we can replace i by afi in the equation (5) to get the equation
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This is equivalent to replacing & by ah in the Schrodinger equation (1) and
using the relation

¥ = Rexp[iS/(ah)] (38)

instead of (2).
Second, we can add the quantum potential () multiplied by a constant +/32
to the right side of the equation (37)
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This equation coupled with the equation (6) is equivalent to the following mod-
ified Schrodinger equation:

(39)
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Now, it can be seen from the form of the equation (39) that if o F 3% =
0 it becomes the Hamilton-Jacobi equation and thus (40) gives the classical
mechanics and, similarly, if o F % = 1 the equation (40) represents quantum
mechanics. However, care must be taken to use the correct definition of S (38)
and velocity (8), which using ¥ takes the form
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v(x,t) = Elmv. (41)

9 Tables

We have collected the main results of our analysis of the classical and quantum
equations into a table. For simplicity, only the single particle case is presented.

| v || Quantum Mechanics || Classical Mechanics |
| Waveeq. [ inQ =-Ev20 4+ vy [ ind¥ = V20 4 (V- Q)¥ |
‘ Quantum pot. H Q= —%V;ﬁ‘ H Q= _%V‘l"” ‘
| Prob.dens. [ P(x,8) =[x | P(x,t) = |¥(x,t)]? |
[ Velocity [ v(x,t)=ZEIm%E v(x,t) = EIm3F |
‘ Eq. of motion H m% =-V({V+Q) H m”fi%‘ =-VV ‘
‘ H.-Jacobi ‘ 25 = —[(an)z +V +Q] H o5 — _[(Zi)z +V] ‘
| Cons. prob. || %—f =—-V-(Pv) || %—It) =—-V-(Pv) |

‘ Generalized Schrodinger equation H i(ah) 2 = —%V%If + (V¥ 32Q)¥ ‘




10 Discussion

We could also keep to the standard interpretation of quantum mechanics in
interpreting the equations (23) and (35). It would be interesting from a peda-
gogical point of view, since many features of quantum physics now have classical
counterparts. Such concepts as the preparation of the system, unitary evolu-
tion, and collapse of the wave function could be studied and compared with
their classical counterparts.

One crucial difference between classical particle mechanics and quantum
mechanics is the existence of interference in quantum mechanics. In the causal
interpretation it is precisely the quantum potential () that is responsible for the
interference effects. Since there is no interference in classical particle physics, it
must be that adding the term —QW¥ to the right side of the Schrodinger equation
somehow wipes out all the interference effects of quantum mechanics. However,
this can be understood as a result of the vanishing of 7 from the equation (15)
when compared with (5).

The approach presented in this paper gives the possibility of treating some
particles of a problem as “classical” and the others as “quantum” particles. This
can be achieved by omitting one or more terms from the second sum of the
equation (35). One could, for example, study the behaviour of one “classical”
particle in an environment of purely “quantum” particles, or vice versa. This
could help in understanding how the combined effect of many randomly moving
particles creates a (more or less) constant and uniform potential.

Since this paper has so far only considered non-relativistic particle quantum
mechanics, it would be interesting to see what form the relativistic particle
equations, or even field equations, would take if similar procedures to the one
presented in this paper would be applied to them. The consequences to the
Lorentz invariance of the equations would be one point of interest since the
original classical relativistic equations are (by definition) Lorentz invariant and
the corresponding quantum equations also have a covariant form.
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