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Abstract

It appears not to be known that subjecting the axioms to certain con-
ditions, such as for instance to be physically meaningful, may interfere
with the logical essence of axiomatic systems, and do so in unforeseen
ways, ways that should be carefully considered and accounted for.
Consequently, the use of “physical intuition” in building up axiomatic
systems for various theories of Physics may lead to situations which
have so far not been carefully considered.

“Of all things, good sense is the most fairly dis-
tributed : everyone thinks he is so well supplied
with it that even those who are the hardest to
satisfy in every other respect never desire more
of it than they already have.” ) ) )

R Descartes
Discourse de la Méthode
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creativity often consists of finding hidden
assumptions. And removing those assumptions
can open up a new set of possibilities ...”

Henry R Sturman

“History is written with the feet ...”

Chinese Ex-Chairman Mao,
of the Long March fame ...

Science is not done scientifically, since it is mostly
done by non-scientists ...

Anonymous

Physics is too important to be left to
physicists ...

Anonymous

Is the claim about the validity of the so called
“physical intuition” but a present day version of
medieval claims about the sacro-sanct validity of

theological revelations ?

Anonymous

1. Prologue



The fact that in our times the various scientific theories of Physics
are formulated in terms of Mathematics is by a free choice of physi-
cists, certainly not imposed in any way on them, and least of all by
mathematicians. The conscious and clear expression in this regard
goes back at least as far as Galileo Galilei, according to whom the
book of Nature is written in the language of Mathematics. And one
can note that this statement refers not only to Physics, but to all
disciplines which in those times were seen as constituting Philosophia
Naturalis. Not much later, Newton gave the title “Principia Math-
ematicae Philosophia Naturalis” to his most important work. And
nearer to our own days, in 1960, the Nobel laureate physicist Eugene
Wigner addressed this very same issue in his paper “The Unreasonable
Effectiveness of Mathematics in Natural Sciences”.

So much for the state of affairs according to which modern Physics
ended up being formulated in terms of Mathematics ...

As for Mathematics itself, ever since Fuclid and his Geometry, more
than two millennia ago, the rigorous way to present a theory of Math-
ematics means to present it as an axiomatic system ...

And so it comes to pass that, no wonder, there are any number of
axiomatic presentations, or attempts to such a presentation, in the-
oretical Physics, the first among them, as far as we happen to know
nowadays, is the mentioned “Principia” of Newton.

Related to the above, the main issue addressed in this paper is :

e How come that the “physical intuition” based search for physi-
cally meaningful axioms can create problems in the axiomatiza-
tion of various theories of Physics 7

This issue seems so far to have escaped the awareness of most of physi-
cists ...

Yet the answer to this question should be obvious to everybody who
happens to have even a first grasp of the essence of the axiomatic
method as such. Indeed, the axiomatic method is in its essence within
the domain of Mathematical Logic, thus it does not involve consid-
erations from other disciplines of science. The aim of this method,
as already envisaged and attained by Euclid in his Geometry, is to



organize a set 7 of theorems which are supposed to formulate a given
theory, and do it in the following way. Certain theorems, constituting
a set A, preferably a small subset of 7, are considered to be true,
while the rest of the theorems in 7 are supposed to be obtainable as
purely logical consequences of the theorems in A. And whenever such
a program can be achieved, then the theorems in A are called the
axioms of the theory given by the theorems 7.

Clearly, for a given set 7 of theorems there may in general exist more
than one set of axioms A.

However, equally clearly, one simply cannot impose on the set A of
axioms absolutely arbitrary requirements, no matter how much one’s
intuition would impel one to do so. Indeed, the two requirements any
set of axioms A can be asked to satisfy are :

e A has to be a subset of 7, that is, A C T

e 7 has to be a logical consequence of A

And what is crucial to understand is that any other conditions re-
quired on a set of axioms A may make it impossible for such a set to
exist, or alternatively, may lead to another set of theorems 7. Details
in this regard are presented in sections 2 and 3 below.

In order to better focus on the relevance of this issue within the con-
text of Physics, we shall mention a certain aspect in the axiomatization
of Special Relativity, [4-9,25,26], and then note that, during the last
decades, one of the active research fields in theoretical Physics has
been the axiomatization of Quantum Mechanics. This research aims
to replace the original von Neumann axiomatic system of quanta, for-
mulated in the early 1930s and presently still taught in many places
as Quantum Mechanics 101, with a system in which the axioms are
supposed to have a clear and obvious physical meaning. And need-
less to say, it is precisely with this aim to find a system of physically
meaningful axioms for quanta that the so called “physical intuition”
is not only supposed to come into play, but it is simply expected, and
in fact, required to do so.



And one could certainly ask : what may possibly be wrong with find-
ing a system of physically meaningful axioms for a theory of Physics,
such as for instance, Quantum Mechanics 7

Well, so far, apparently this question has never been asked, simply
because the answer to it is automatically considered to be so obvi-
ous by all those involved in the axiomatization of various theories of
Physics. And their answer, of course, is : there can absolutely nothing
be wrong !

And then, as recently noted in [26,25], and also mentioned above re-
lated to the way axiomatic systems work, it may indeed can come as
a surprise to find out that :

e By requiring a condition such as “to be physically meaningful”
on the axioms of a theory of Physics can lead to certain strange
effects in the respective theory.

2. A Brief Review of Axiomatization in Mathematics

For convenience, let us recall the way axiomatic systems are conceived
in Mathematics, a way which in its essence, even if not in its specific
formulation, goes back at least as far as the Geometry of Euclid in an-
cient Egypt more than two millennia ago. Namely, in terms of modern
Mathematical Logic, this way, presented briefly, is as follows.

One starts with a setup of a formal deductive system. Namely, let A
be an alphabet which can be given by any nonvoid finite or infinite set.
Then a procedure is given according to which one constructs - by using
the symbols in A - a set F of well formed formulas, or in short wf f-s.
Next, one chooses a set R of logical deduction rules which operate as
follows

21) FoP & QCF

that is, from any set P of wif-s which are the premises, it leads to a
corresponding set () of wif-s which are the consequences.



And now come the axioms which can be any subset A C F of wf f-s.

Once the above is established, the respective axiomatic theory follows
easily as being the smallest subset 7 C F with the properties

(22) ACT
(23) ToPQcCT

in which case the wf f-s in 7 are called the theorems of the axiomatic
system A.

Of course, one should not forget that the set 7 of theorems depends
essentially not only on the axioms in A, but also on the logical deduc-
tion rules R. Consequently, it is appropriate to write

(24)  Tr(A)
for the set 7 of theorems.

Here are some of the relevant questions which can arise regarding such
axiomatic systems :

e are the axioms in A independent ?
e are the axioms in A consistent ?
e are the axioms in A complete ?

Independence means that for no axiom P € A, do we have Tx(A) =
Tr(B), where B = A\ {P}. In other words, the axioms in A are min-
imal in order to obtain the theorems in 7z (A). This condition can be
formulated equivalently, but more simply and sharply, by saying that
for no axiom P € A, do we have P € Tx(B), where B = A\ {P}.

As for consistency, it means that there is no P € Tr(A), such that for
its negation non P, we have non P € Tz (A).

Completeness, in one possible formulation, means that, given any ad-
ditional axiom P € F \ A which is independent from .4, the axiom
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system B = AU {P} is inconsistent.

In the case of axiomatic systems for various theories of Physics, one is
interested in the independence and consistency of the respective ax-
ioms. Independence means that the set of axioms is minimal, thus no
axiom is a consequence of the other ones, therefore, no axiom can be
eliminated without losing certain theorems. Consistency means that
one cannot obtain contradictory consequences of the axioms.

The completeness of an axiomatic system for a given theory of Physics
apparently has not yet been considered in the literature.

3. Back Now to Physically Meaningful Axioms

Let us see now in some more detail what can happen in case we start
requiring certain conditions on the axioms of an axiomatic system.
And to be specific, let us see in the general terms of section 2 above
what may happen when we try to replace a set of axioms with another
set which is supposed to satisfy certain conditions.

Namely, let be given a set A C F of axioms. Then, as in section 2
above, we have the corresponding theorems 7z (A) of the axiomatic

system A.

Now, assume that we are not happy with the axioms in A, and there-
fore, we want to replace them with another set B C F of axioms.

Of course, in case such a replacement is not supposed to lead to an-
other theory, then we must have

3.1)  Tr(B) = Tr(A)

Let us now look more closely to what can happen in such a process of
replacement of axioms.

The fact that we are not happy with the initial axioms in A means
that we want to choose the axioms not from the whole set F of w f f-s,
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but only from a special subset Fpp,s C F, say for example, the subset
Fphys of so called “physically meaningful” wf f-s in F.

In other words, in addition to condition (3.1), and in fact, prior to it,
we also require the condition that

(3.2) B < Fpnys

And now, it is obvious that, in general, conditions (3.1) and (3.2) may
happen to be incompatible.

And in such a case, the natural way to proceed is to weaken the re-
quirement (3.1), by replacing it with

(3.3)  Tr(B) 2 7r(A)

In other words, instead of (3.1) and (3.2) which are incompatible, we
have now (3.2) and (3.3). This means that the new set B of axioms
certainly recovers all the theorems 7% (.A) in the axiomatic system .4
which was replaced. However, we risk to have additional theorems in
Tr(B), which were not among the theorems in 7z (A). Thus in (3.3),
we may in fact have

(34)  Tr(A) & Tr(B)

due to the restriction (3.2).

4. The Physically Meaningful Axioms of Special Relativity

The above situation in (3.3) appears to happen in Special Relativity,
[4-9,25,26]. Indeed, the usual two axioms, [3], which have a clear
physical meaning are :

e Galilean Relativity : the Laws of Physics are the same in all
inertial reference frames.

e Constancy of the Speed of Light : in all inertial reference frames
the speed of light has the same value c.
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However, as shown in [4-9,25,26], in order to obtain the Lorentz Trans-
formations of inertial reference frames, which as is known, contain the
essence of Special Relativity, one only needs the following weaker ax-
ioms :

e the homogeneity and isotropy of space,

e the homogeneity of time,

e the Axiom of Reciprocity which means that, given two inertial
reference frames S and S’, and a speed v € R, the laws of Physics
are the same whether S’ moves related to .S with speed v, or with
speed —w,

e the upper limit of all physical speeds, which already results from
the above three axioms for all inertial reference frames, [9,5], is
the speed c of light in void.

Here we note that the homogeneity and isotropy of space and the ho-
mogeneity of time are assumed as well when one axiomatizes Special
Relativity with mentioned two usual axioms.

It follows that if we denote by A the above four axioms, while by B
we denote the mentioned two usual axioms of Special Relativity, plus
the two above axioms about space and time, then

(4.1)  Tr(A)
already contains the Lorentz Transformations of inertial reference frames.

Thus the following questions arise :

e are the axioms in B independent ?
and in case they are not, as suggested by [4-9,25,26], then :

e what is the point in stating the two usual axioms of Special
Relativity in such a redundant manner, just in order to have an
obvious physical meaning ?



Here one can, of course, note that the axioms A themselves have al-
ready an obvious physical meaning. Not to mention that both sets of
axioms have the same number, namely, four, of axioms, thus none of
them is shorter than the other one.

5. A Memento for the Axiomatization of Quantum
Mechanics

Recently, a number of impressive attempts have been seen in the lit-
erature which present an axiomatization of Quantum Mechanics that
can replace the classical one given by von Neumann in the early 1930s,
and which is quite widely perceived as not being formulated in terms
sufficiently meaningful physically. A remarkable feature of some of
such recent axiomatization is that they manage to come up with the
axioms formulated in terms of information.

Since we try to avoid pointing out for special attention one or another
of such axiomatizations, we refer the reader to the Quantum Physics
section of the well known web site arXiv, where a cursory browsing
can provide with a good amount of related literature.

What is obvious related to such axiomatizations is the following. The
axiomatization of von Neumann has stood its ground for more than
eight decades by now, and it did so both theoretically and experimen-
tally, the main objections, and quite numerous at that, being related
not to the axioms themselves, as to the classical Copenhagen Interpre-
tation which, rightly or wrongly, tends to be closely associated with
it.

Consequently, a main reason for replacing the von Neumann axioms
should perhaps be, if at all, their alleged association with the Copen-
hagen Interpretation, rather than the lack of clear physical meaning
of the respective axioms.

Needless to say, to the extent the axioms of Quantum Mechanics are
desired to be formulated in terms of information, that in itself may be
sufficient reason to do so, taking into account that information is, so
far, by far the most subtle concept used in Physics, far more subtle
indeed than mass, position, momentum, energy, and so on.
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However, in view of the facts mentioned in sections 2 - 4 above concern-
ing axiomatic systems, one should perhaps ask the following simple
looking question, a question which seemingly never got a consciously
enough formulated answer, and an answer which was sufficiently an-
alyzed in order to reveal more fully its possible relevance in Physics,
or if one prefers, its physical relevance :

e Which are in general the truly significant advantages in replac-
ing one set of axioms with another one in the case of a given
theory 7 And specifically in Quantum Mechanics, which are
such advantages if the new axioms are formulated in physically
meaningful ways, let alone, in terms of information ?

Needless to say, none of the arguments above should be construed in
any way as objecting against new axiomatizations of existing theories
of Physics, or for that matter, of any other scientific theories.

What is to be considered more carefully, however, is that changing one
set of axioms for a given theory with another set of axioms should,
first of all, have a clearly expressed and significant reason, and second,
subjecting the new set of axioms to certain requirements, such as for
instance to be physically meaningful, may interfere with the logical
essence of axiomatic systems, and do so in unforeseen ways, ways that
should be carefully considered and accounted for.
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