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Abstract

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth
wrapped-up spatial dimension is inspiration for many modern attempts
to develop new physical theories. For a number of reasons the theory is
incomplete and generally considered untenable. An alternative approach
is presented that includes torsion, unifying gravity and electromagnetism
in a Kaluza-Cartan theory. Emphasis is placed on admitting important
electromagnetic fields not present in Kaluza’s original theory, and on the
Lorentz force law. This is investigated via a non-Maxwellian kinetic def-
inition of charge related to Maxwellian charge and 5D momentum. Two
connections and a new cylinder condition are used. General covariance
and global properties are investigated via a reduced non-maximal atlas.
Conserved super-energy is used in place of the energy conditions for 5D
causality. Explanatory relationships between matter, charge and spin are
present.

PACS numbers 04.50.Cd ; 02.40.Ky ; 04.20.-q ; 04.40.Nr

1 Introduction

Kaluza’s 1921 theory of gravity and electromagnetism [1][2][3][4] using a fifth
wrapped-up spatial dimension gives a taste of unification of electromagnetism
with gravity in a way that ultimately couldn’t be made to work and is generally
believed to be untenable. However the underlying aim was particularly promis-
ing in terms of explanatory power. The coincidence represented by Kaluza's
original theory is tantalising. Hower it may instead be a subset of a more
comprehensive and explanatory theory. But how to search for it? Certain re-
quirements are evident: the Lorentz force law [6] must be explained, Maxwell’s
laws [6] must be present, the Lorentz transformation [6] must define inertial
frames, general relativity [6] must be a limit. Of these the Lorentz force law is
the most enigmatic and conceptually unsatisfying within current theory. Yes, it
comes from the Einstein-Maxwell stress-energy tensor [6], but where does that



come from? The Lorentz force law is but the relativistic form of Coulomb’s law.
Surely it should be as fundamental geometrically as the inverse square law of
gravity? It is in this vein that search for a variant Kaluza theory makes sense.

The Lorentz force law herein requires a constant scalar field, this places
constraints on admissible solutions. The emphasis is then on eliminating the
constraint in Kaluza theory that prevents the so-called non-null electromagnetic
solutions. Explicit existence proofs are not necessary. It is sufficient to show
that the constraint that causes the problems on solutions has been weakened in
the new theory. The constraint is the third field equation in [1], and equation
(3.2.3) here. When the scalar field is constant this equation becomes one of two
equations that characterize the null electromagnetic fields. This equation is as
follows, and fields that satisfy this will be called ‘nullish’:

Definition 1.0.1: ‘Nullish’ electromagnetic fields satisfy: F,, F* = 0. Null
electromagnetic fields have the nullish property plus the following condition,
where the star is the Hodge star operator: F,,(*F%) = 0.

Kaluza’s original theory [1] prohibits non-nullish solutions (or even near
non-nullish solutions) for constant scalar field. Nullishness is too tight to admit
important electromagnetic fields, in particular the essential electrostatic fields.
That electrostatic or near-electrostatic fields are non-nullish and therefore a
problem in any theory that omits them can be seen by comparing definition
(1.0.1) with the following well-known fact from special relativity, that is by
considering a special relativistic limit:

F4F®=2(B-B—FE-E) (1.0.2)

At first the objective of the research undertaken here, that is before torsion
was finally admitted, was actually to try to discount the need for torsion since
its lack of presence is geometrically an obvious assumption in many physical
theories. This is analogous to Euclid’s fifth postulate in that its assumption
is an addition and its removal actually enabled geometric theories like general
relativity to be possible. Whilst few would consider it necessary to investigate
such an assumption, that was the original program here. The research was
therefore based around showing that sufficient missing electromagnetic fields
could be obtained (without torsion) from existing Kaluza theory. That program
failed and the result was to explicitly allow torsion in this variant theory. It is
claimed that the theory presented here is an example of a Kaluza variant theory
that better satisfies the requirements of observable classical physics in having
a wide range of electromagnetic fields permitted whilst providing a Lorentz
force law by construction. This paper therefore shows that such Kaluza variant
theories exist and exemplifies a new route in the search for such theories, thus
revivifying Kaluza theory from the untenable. The theory presented here can
thus be seen as at least an example of such a theory, and has value as such. In
addition it can also be considered as a candidate empirical theory, though this



is not necessary for it to have the previously mentioned theoretical value.

A new kinetic charge will be defined as the 5th-dimensional component
of momentum as in [8]. The Lorentz force law will follow. As momentum
the kinetic charge has a divergence law via the (torsionless) Einstein tensor.
Maxwellian charge also has a vector potential, see (4.4.1), and thus local con-
servation, but the kinetic charge being covariant is more fundamental.

2 Conventions

The following conventions are adopted unless otherwise specified. Though un-
familiar in places these are necessary for following the multiple systems used.
Five dimensional metrics, tensors and pseudo-tensors and operators are given
the hat symbol. Five dimensional indices, subscripts and superscripts are given
capital Roman letters. Lower case indices can either be 4D or generic for def-
initions depending on context. Index raising is referred to a metric gap if
5-dimensional, and to g4 if 4-dimensional. Terms that might repeat dummy
variables or are otherwise in need of clarification use additional brackets. The
domain of partial derivatives carries to the end of a term without need for brack-
ets, so for example we have J,9apAc + Gavbgac = (Oa(gavAc)) + (gdbgac). Terms
that might repeat dummy variables or are otherwise in need of clarification use
additional brackets. Square brackets can be used to make dummy variables lo-
cal in scope. Space-time is given signature (—, +, +, +), Kaluza space (—, +,
+, +, +) in keeping with [6]. Under the Wheeler et al [6] nomenclature the sign
conventions used here as a default are [+, +, +]. The first dimension (index
0) is time and the 5" dimension (index 4) is the topologically closed Kaluza
dimension. Time and distance are geometrized throughout such that c = 1. G
is the gravitational constant. The scalar field component is labelled ¢2. The
matrix of g.q can be written as |g.q|. The Einstein summation convention may
be used without special mention. O represents the 4D D’Alembertian [6].
Connection coefficients with torsion will take the form: T'¢, or T'%¢. The
metric with a torsion tensor defines a unique connection. Therefore two unique
connections for a given metric are one with and one without torsion. The unique
Levi-Civita connection (ie without torsion) is written as: F ¢,, and the covariant

ab’
Levi-Civita derivative operator (ie without torsion): A,. So we have:

Fab = AaAb - AbAa = 8aAb — 8bAa equally F=dA (201)

In order to distinguish tensors constructed using torsion G, and R (i.e.
where the Ricci tensor is defined in terms of I'¢,) from those that do not use
torsion (ie that are defined in terms of F¢,), the torsionless case uses cursive:
Gap and Rgp. On any given manifold with torsion both these parallel systems
of connection coefficients and dependent tensors can be used. That is, the Ricci
tensor (with torsion), Rap, and the Ricci tensor, R4, are both defined and are in
general different. Further each of these can have hats on or hats off, giving: Rag
and Rap. It is an extremely confusing part of this work that all four systems
can be used at the same time in the same equations! This particularly occurs



when the 4D components of a 5D tensor are being used, e.g. looking at Rap
and 7A€ab. Torsion introduces non-obvious conventions in otherwise established
definitions. The order of the indices in the connection coefficients matters, and
this includes in the Ricci tensor definition and the definition of the connection
coefficient symbols themselves:

Vowy = Oqwpy — I'gpwe (2.0.2)

Some familiar defining equations consistent with [1] define the Ricci tensor
and Einstein tensors in terms of the connection coefficients along usual lines,
noting that with torsion the order of indices can not be carelessly interchanged
as they can with the symmetric Levi-Civita coefficients:

Rab = aCFga - ab]'—‘ga + Flc)argc - gargc (203)
1
Gab = Rab — iRgab = 87TGTab (2.0.4)
For convenience we will define o = %%. Analogous definitions can also be

used with the Levi-Civita connection to define R, and G, in the obvious way.

3 Kaluza’s Original Theory And Foundational
Problems

Kaluza’s 1921 theory of gravity and electromagnetism [2][3][4] using a fifth
wrapped-up spatial dimension is at the heart of many modern attempts to
develop new physical theories [1][5]. From supersymmetry to string theories
topologically closed small extra dimensions are used to characterize the vari-
ous forces of nature. It is therefore inspiration for many modern attempts and
developments in theoretical physics. However it has a number of foundational
problems and is often considered untenable in itself. This paper looks at these
problems from a purely classical perspective.

3.1 The Metric

The original Kaluza theory assumes a (1,4)-Lorentzian Ricci flat manifold to be
the 5D metric, split as shown below (and for interest this can be compared to
the later ADM formalism [9]). A, is to be identified with the electromagnetic
potential, ¢? is to be a scalar field, and g4, the metric of 4D space-time:

gAB _ Gab + ¢2AaAb ¢2Aa
P* Ay ¢?
Note that a scaling factor has been set to k = 1 and so is not present, this
will be reintroduced later in the text (4.4.1), it is mathematically arbitrary, but
physically scales units when units are geometrized. By inverting this metric as
a matrix (readily checked by multiplication) we get:

(3.1.1)



b a
JAB s -1 _ | 9° —AT
g7 =loaslT =] Zpe L paa

Maxwell’s law are automatically satisfied, using (2.0.1) to define F' with
respect to the potential: dF=0 follows from dd = 0. d*F= 47*] can be set
by construction. d*J=0, local conservation of charge follows also by dd=0 on
most parts of the manifold, although a more fundamental conservation law is
therefore required.

In order to write the metric in this form (3.1.1) and (3.1.2) there is a subtle
assumption, that gqp, which will be interpreted as the usual four dimensional
space-time metric, is itself non-singular. This will always be the case for moder-
ate or small values of A, which will here be identified with the electromagnetic
4-vector potential. The raising and lowering of this 4-vector are defined in the
obvious way in terms of g,p. The 5D metric can be represented at every point on
the Kaluza manifold in terms of this 4D metric g, (when it is non-singular), the
vector potential A, and the scalar field $2. We have also assumed that topol-
ogy is such as to allow the Hodge star operator and Hodge duality of forms
to be well-defined (see [6] p.88). This means that near a point charge source
the argument that leads to charge conservation potentially breaks down as the
potential may cease to be well-defined. Whereas the kinetic charge that will be
defined in the sequel does not have this problem. So two different definitions of
charge are to be given: the Maxwellian, and the kinetic charge. It is the kinetic
charge that will obey a more general conservation law.

With values of ¢? around 1 and relatively low 5-dimensional metric curva-
tures we need not concern ourselves with this assumption beyond stating it on
the basis that physically these parameters encompass tested theory. Given this
proviso A, is a vector and ¢ is a scalar - with respect to the tensor system
defined on any 4-dimensional submanifold (or region of a submanifold) that can
take the induced metric g.

(3.1.2)

3.2 Kaluza’s Cylinder Condition And The Original Field
Equations

Kaluza’s cylinder condition is that all partial derivatives in the 5th dimension
ie. 94 and 040, etc... of all metric components and of all tensors and their
derivatives are zero. A perfect ‘cylinder’. This leads to constraints on g, given
in [1] by three equations, the field equations of the original Kaluza theory, where
the Einstein-Maxwell stress-energy tensor can be recognised embedded in the
first equation. Beware in particular that the conventions are as used by the
referenced author and not those used in this paper.

k2¢2 1 wd . 1
Gab = 5 ZgachdF — Fanc - g{va(ab¢) — gablj(b} (321)
Vv Fap = —387;;5Fab (3.2.2)
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T FoFab (3.2.3)

Do

Note that there is both a sign difference and a possible factor difference
with respect to Wald’s [7] and Wheeler’s [6] Einstein-Maxwell equation. The
sign difference appears to be due to the mixed use of metric sign conventions in
[1]. A k factor is present and this scaling will be investigated. These equations
will be referred to as the first, second and third torsionless field equations, or
original field equations, respectively. They are valid only in Kaluza vacuum,
that is, outside of matter and charge models, and when there is no torsion.
That is when R4, = 0 and torsion is vanishing.

3.3 The Foundational Problems

The main issue addressed in this paper is the variety of electromagnetic solutions
that are a consequence of Kaluza theory, whilst maintaining the Lorentz force
law. This is either not usually considered such a big problem, which is not
convincing: a sufficient variety of electromagnetic fields must be available, and
the Lorentz force law should be explicitly derivable. Or by others, confusingly,
it is considered insurmountable and Kaluza theory written off, which is too
negative. Either way this remains the real problem with Kaluza theory as it
prevents a convincing geometric unification of gravity and electromagnetism.
The missing solutions are the non-nullish solutions and include the important
electrostatic fields. So they include some really important fields!

One inadequate and arbitrary fix in standard Kaluza theory is to set the
scalar field term large to ensure that the second field equation (3.2.2) is ap-
proximately zero despite scalar fluctuations. This approach will not be taken
here as it is contrived. The stress-energy tensor under scalar field fluctuations is
different from the Einstein-Maxwell tensor [6][7] and the accepted derivation of
the Lorentz force law (for electrovacuums [6]) can not be assumed. A variable
scalar field as required by the third field equation for non-nullish fields (3.2.3)
also implies non-conservation of Maxwell charge via the second field equation
(3.2.2), and problems also arise with respect to the Lorentz force law in the
case of a variable scalar field. Thus, in this paper, the scalar field will be fixed
and the non-nullish solutions will need reintroducing by increasing the available
degrees of freedom. This is done via the introduction of torsion. The electro-
magnetic field devoid of matter and charge sources will then be characterized
by Rap = 0 instead of 7@,43 =0.

Another foundational issue of Kaluza theory is that even with a scalar field
it does not have convincing sources of mass or charge built in. The second field
equation (3.2.2) has charge sources, but it’s unlikely that realistic sources are
represented by this equation. The better interpretation is that real matter and
charge sources must be defined as being when RaB # 0 in Kaluza’s originl
theory.

By identifying electromagnetic fields with R4z = 0 with torsion we presum-
ably have to identify matter and charge sources now with Rag # 0. However



the mass-energy conservation law remains by definition in terms of Gap - ie.
the torsionless Einstein tensor. Further the causality of solutions of the form
Rap =0no longer follows, this will lead to additional considerations.

The nature of matter and charge is investigated further in this paper to
clarify the consequences of the use of torsion.

Charge will be given an alternative definition: kinetic charge will be defined
as the 5th-dimensional component of momentum following a known line of rea-
soning [8] within Kaluza theory. This will enable a derivation of the Lorentz
force law. As momentum the kinetic charge is of necessity locally conserved,
provided there are no irregularities in the topology of the Kaluza 5th dimension.

Note that conservation of Maxwellian charge (which will be shown to be
identifiable with kinetic charge) is locally guaranteed by the existence of the
potential and the exterior derivative, but breaks-down under curvature. The
two definitions will be shown to be related, but the kinetic charge deemed more
fundamental as it admits a curvature-independent local divergence-free law via
the (torsionless) Einstein tensor.

3.4 A Solution?

The Lorentz force law is to be derived from the theory independently of the
electrovacuum solutions of general relativity, and the missing non-nullish solu-
tions included at the same time to create a more complete theory. Note that in
addition the derivation of the Lorentz force law within general relativity (from
an assumed Einstein-Maxwell stress-energy tensor) is not without problems of
principle [6], so it is not the Einstein-Maxwell stress-energy tensor that is neces-
sarily here being sought but just those experimental results that classical physics
explains using it. A Lorentz force law is here derived from first principles.

The combination of torsion and the 5th spatial dimension justifies the label
Kaluza-Cartan theory.

The new definition of charge, the momentum in the fifth dimension, will
be introduced and Maxwellian charge (defined with respect to the field as a
2-form) will be shown to coincide at an appropriate limit. The collocation of
torsion with electromagnetism is different from other Einstein-Cartan theories
where the torsion is limited to within matter models. Here certain specific
components of torsion are an essential counterpart of electromagnetism, and
other components of torsion could potentially exist outside of matter models.

Restrictions to the geometry and certain symmetries will be handled by
reducing the maximal atlas to a reduced Kaluza atlas that automatically handles
the restrictions and symmetries without further deferment to general covariance.
Physically this represents the idea that in 4D charge is a generally covariant
scalar, whereas in 5D charge is dependent on the frame. That this is meaningful
stems from the global property of a small wrapped-up fifth spatial dimension
with cylinder condition. The Kaluza atlas is a choice of subatlas for which
(among other criteria) a global Kaluza direction is defined that satisfies the new
cylinder condition. This leads to useful constraints on the connection coefficients



for all coordinate systems in the Kaluza atlas. The 5D metric decomposes into
a 4D metric and the electromagnetic vector potential and the scalar field.

4 Overview Of Kaluza-Cartan Theory

4.1 Postulates

The following K1-K4 are the core Postulates of the new Kaluza-Cartan theory.
For a survey of the torsion mathematics required and for a discussion about the
geodesic assumption K4, see Appendix I.

POSTULATE (K1): Geometry. A Kaluza-Cartan manifold is a 5D smooth
Lorentzian manifold with metric torsion connection.

POSTULATE (K2): Well-behaved. Kaluza-Cartan space is assumed glob-
ally hyperbolic in the sense that there exists a 4D spatial cauchy surface plus
time, such that the 4D hypersurface is a simply connected 3D space extended
around a 1D loop. And Kaluza-Cartan space is oriented and time-oriented.

POSTULATE (K3) versionl: We start with effectively the old and original
version: Cylinder condition (original). One spatial dimension is topologi-
cally closed and ‘small’, the Kaluza dimension. This is taken to mean that there
are global unit vectors that define this direction, the Kaluza direction. The par-
tial derivatives of all tensors in this Kaluza direction are taken to be zero in
some coordinate system. The other spatial dimensions and time dimension are
‘large’. ‘Large’ here simply means that the considerations given to ‘small’ do not
apply. We further add an additional constraint that is novel, Cylinder condi-
tion (additional). The covariant derivative V, (with torsion) of all tensors in
the Kaluza direction is zero.

We have that the global unit vectors defining the Kaluza direction form unit
vectors (index 4) in ‘torsion-normal’ coordinates via analogous reasoning to the
normal coordinates case without torsion in Wald [7] eqn 3.1.17. We can further
refine this variation of the original cylinder condition, replacing in full versionl
with a more intuitive version2

POSTULATE (K3) version2: Cylinder condition (new). As with ver-
sionl: one spatial dimension is topologically closed and ‘small’, the Kaluza
dimension. This is taken to mean that there are global unit vectors that define
this direction, the Kaluza direction, and that the covariant derivative V, with
torsion of all tensors in the Kaluza direction is zero. However, the torsion is
constrained to be such that in torsion-normal coordinates the partial derivatives
of all tensors in the Kaluza dimension are vanishing.

POSTULATE (K4): Geodesic Assumption. That any particle-like model,
that is to be identified with a charge, approximately follows 5D auto-parallels.

Definitions 4.1.1: The Kaluza-Cartan vacuum is a Ricci flat region of a
Kaluza-Cartan manifold with respect to the torsion connection definition of the
Ricci tensor. Similarly the Kaluza vacuum is a Ricci flat region with respect



to the Levi-Civita connection. They are different: R a5 =0 and Rag = 0 re-
spectively. Here they are both defined in terms of the geometry implied by the
cylinder condition. Kaluza vacuum will be associated with nullish electromag-
netic solutions when there is no torsion, Kaluza-Cartan vacuum will encompass
all electromagnetic fields. Kaluza-Cartan matter and Kaluza mass-energy follow
as complements to their vanishing respective Ricci tensors.

Observe that Kaluza-Cartan matter, unlike Kaluza mass-energy, but like
common matter, does not have its own divergence law.

LIMIT POSTULATE (B1): There is a Kaluza atlas, see definition (4.2.1),
possibly only over a region, such that ¢ = 1 at every point. The scalar field re-
sults from the the decomposition of the Kaluza metric into 4D metric, potential
vector and scalar field. It is contained within the metric explicitly in (4.4.1).
Thus B1 is a constraint on the 5D metric. (See Appendix II for further issues.)

Additional postulates that can be interpreted as forming conditions neces-
sary for a classical limit now follow. L1-L3 constitute a weak field limit that
will be applied by way of approximation for the ‘classical’ limit of behaviour.
The deviation from the 5D-Minkowski metric is given by a tensor h ap. This
tensor belongs to a set of small tensors that we might label O(h). Whilst this
uses a notation similar to orders of magnitude, and is indeed analogous, the
meaning here is a little different. This is the weak field approximation of gen-
eral relativity using a more flexible notation. Partial derivatives, to whatever
order, of metric terms in a particular set O(z) will be in that same set at the
weak field limit. In principle we are doing nothing more than following the weak
field limit procedure [6] of general relativity. In the weak field approximation of
general relativity, terms that consist of two O(h) terms multiplied together get
discounted and are treated as vanishing at the limit. We might use the notation
O(h?) to signify such terms. There is the weak field approximation given by
discounting O(h?) terms. But we might also have a less aggressive limit given
by, say, discounting O(h?) terms, and so on. We can talk about weak field limits
(plural) that discount O(h™) terms for n > 1, but they are based on the same
underlying construction.

LIMIT POSTULATE (L1): The metric can be written as follows in terms
of the 5D Minkowski tensor and h € O(h):

gap = fiap + hap
Torsion will also be considered a weak field under normal observational con-
ditions, similarly to L1. Torsion is defined in terms of the Christoffel symbols.
Christoffel symbols are in part constructed from the partial derivatives of the
metric and that part is constrained by L1 to be O(h). The contorsion term
being the difference. See [11]. The contorsion (and therefore the torsion) will
be treated as O(h) accordingly.



LIMIT POSTULATE (L2): The contorsion (and therefore the torsion) will
be an O(h) term at the weak field limits.

One further constraint is required at the weak field limit. Its use will be
minimized (both the application of the antisymmetry and the allowance for some
small symmetry terms), but it will nevertheless be important. In L3, symmetric
parts of the torsion and contorsion tensor (and their derivatives) are treated as
particularly ‘small’ in that they are small relative to any antisymmetric parts of
the torsion and contorsion tensor, torsion already assigned to O(h) by L2. The
torsion tensor will be given the following limit: It is to be weakly completely
antisymmetric - a weak antisymmetric limit, this will be so even with respect to
L1 and L2. Thus the symmetric parts of the contorsion and torsion tensors will
be O(h?) at the weak field limit. All derivatives thereof follow the same rule:

LIMIT POSTULATE (L3): The symmetric parts of the contorsion and tor-
sion tensors will be O(h?) at the weak field limits.

It is claimed that such a limit may be approached without loss of generality
of the solutions from a physical perspective. In other words at the L1-L2 weak
field limit equation (5.1.10) is compatible with the weak antisymmetric limit
L3, and poses no constraint due to the product of the potential and field also
being discounted at the weak field limit via L1.

SUPER-ENERGY POSTULATE (SE1): That the conserved super-energy
hypothesis (see Appendix I for details) applies fully to Kaluza-Cartan space.

This both ensures causality and provides a well-defined conservation law for
5D Kaluza-Cartan space that can potentially be used in place of the energy
conditions currently used in general relativity.

4.2 The Cylinder Condition And Charts

The cylinder condition by construction allows for an atlas of charts wherein
the Kaluza dimension is naturally presented by the fourth index. The atlases
that are compliant are restricted. This means that the cylinder condition can
be represented by a subatlas of the maximal atlas. The set of local coordi-
nate transformations that are compliant with this atlas (called a Kaluza atlas)
is non-maximal by construction. A further reduction in how the atlas might
be interpreted is also implied by setting c=1, and constant G. The existence
of a single unit for space and time can be assumed, and this must be scaled
in unison for all dimensions. Consistently with cgs units we can choose either
centimetres or seconds. This would leave velocities (and other geometrically
unitless quantities) unchanged in absolute magnitude. This doesn’t prevent re-
flection of an axis however, and indeed reflection of the Kaluza dimension is here
equivalent to a (kinetic) charge inversion. However, given orientability and an
orientation we can remove even this ambiguity. We can further reduce a Kaluza
atlas by removing boosts in the Kaluza dimension. Space-time is taken to be
a subframe within a 5D frame within a Kaluza subatlas of a region wherein
uncharged matter can be given a rest frame via a 4D Lorentz transformation.
Boosting uncharged matter along the Kaluza axis will give it kinetic charge.

10



The Kaluza atlas represents the 4D view that kinetic charge is 4D covariant.
The justification for this assertion will be given later. Rotations into the Kaluza
axis can likewise be omitted. This results in additional constraints on the con-
nection coefficients associated with charts of this subatlas, and enables certain
geometrical objects to be more easily interpreted in space-time. The use of this
subatlas does not prevent the theory being generally covariant, but simplifies
the way in which we look at the Kaluza space through a 4D physical limit.

Definition 4.2.1: AKaluza atlas is:

(i) A subatlas (possibly just over a region) of the maximal atlas of Kaluza-
Cartan space where boosts and rotations into the Kaluza dimension (as defined
by the cylinder condition K3) are explicitly omitted.

(ii) All partial derivatives in the Kaluza direction are vanishing.

(iii) Inversion in the Kaluza direction and rescalings can also be omitted so
as to establish units and orientation.

(iv) For each point on the Kaluza atlas a chart exists with ‘torsion-normal’
coordinates (see Appendix) where index 4 is the Kaluza dimension.

4.3 Kinetic Charge

Kinetic charge is defined as the 5D momentum component in terms of the 5D
Kaluza rest mass of a hypothesised particle: ie (i) its rest mass in the 5D Lorentz
manifold (myo) and (ii) its proper Kaluza velocity (dxs/dr*) with respect to
a frame in the maximal atlas that follows the particle. And equally it can be
defined in terms of (i) the relativistic rest mass (my), relative to a projected
frame where the particle is stationary in space-time, but where non-charged
particles are stationary in the Kaluza dimension, and in terms of (ii) coordinate
Kaluza velocity (dz4/dto):

Definition 4.3.1: kinetic charge (scalar): Q* = myodzs/dr™ = modxy/dty

This makes sense because mass can be written in fundamental units (i.e. in
distance and time). And the velocities in question defined relative to particular
frames. It is not a generally covariant definition but it is nevertheless mathe-
matically meaningful. This kinetic charge can be treated in 4D space-time, and
the Kaluza atlas, as a scalar: the first equation above is covariant with respect
to the Kaluza atlas. It can be generalized to a 4-vector, and it is also conserved
as shown. In general relativity at the special relativistic Minkowski limit the
conservation of momenergy can be given in terms of the stress-energy tensor as
follows [9], j # O:

o1 o1 1% 9T
T + e 0 an T + prae 0 (4.3.2)

This is approximately true at a weak field limit and can be applied equally
to Kaluza theory, via the (torsionless) connection. We have a description of
conservation of (torsionless) momentum in the 5th dimension as follows:

11



o1 oT™
=0 4.3.3
We also have i=4 vanishing by the cylinder condition. Thus the conservation

of kinetic charge becomes (when generalized to different space-time frames) the
property of a 4-vector current, which we know to be locally conserved:

BT oM 1 0,1 4 0,7 — (1.3.0

As in relativity this can be generalized to a new definition that is valid
even when there is curvature. Nevertheless the original kinetic charge definition
(4.3.1) has meaning in all Kaluza atlas frames as a scalar. Kinetic charge current
is the 4-vector, induced from 5D Kaluza-Cartan space as follows (using the
Kaluza atlas to ensure it is well-defined as a 4-vector):

J = —aG® (4.3.5)

Using Wheeler et al [6] p.131, and selecting the correct space-time (or Kaluza
atlas) frame, we have:

Q* = J3(1,0,0,0)" (4.3.6)

So we have a scalar, then a vector representation of relativisitic invariant
charge current, and finally a 2-tensor unification with conserved (torsionless)
mass-energy via the (torsionless) Einstein tensor. It follows that the vanishing
of the divergence of kinetic charge in 4D is only approximate, in 5D not.

Definition 4.3.7: Kinetic charge current is defined to be the 4-vector J** =
—aG®, with respect to the Kaluza atlas. Note the divergence of the (torsionless)
Einstein tensor:

AAGAB =0 and AAQA4 =0~ Aa_C’;‘“

4.4 Two Types Of Geometrized Charge

The metric components used in [1] will be used here as the Kaluza-Cartan
metric. The vector potential and electromagnetic fields formed via the metric
are sourced in Maxwell charge Q ;. Maxwell’s law are automatically satisfied,
using (2.0.1) to define F' with respect to the potential: d =0 follows from dd = 0.
d*F= 47*]J can be set by construction. d*J=0.

A, is to be identified with the electromagnetic potential, ¢? is to be a scalar
field, and g4p the metric of 4D space-time:

Definition 4.4.1: The 5D Kaluza-Cartan metric.

] gan +K2QPALAL kA,
gAB = k(bQAb ¢2
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b a
) g® —kA
gAB

= kAt L RAAl (4.4.1)

This gives (without torsion [1]) nullish solutions under the original Kaluza
cylinder condition and constant scalar field, such that G, = f% Fo o Fy. Com-
pare this with [7] where we have G, = 2F,.F¢ in geometrized units for osten-
sibly the same fields. The units need to be agreed between the two schemes.
We would need to set either k = 2 or k = —2 for compatibility of results and
formulas. And this is particularly important as we wish to derive the Lorentz
force law with the same units as [7]. N.B. the sign change introduced by [1] -
where it appears that the Einstein tensor was defined relative to (+, —, —, —),
despite the 5D metric tensor being given in a form that can only be (—, +, +,
+, +), which is confusing. This makes no fundamental difference, but must be
noted. It is a confusion seemingly introduced by accident in [1]. The use of
conventions in this type of work are excruciatingly tricky.

The geometrized units, Wald [7] p470-471, define units of mass in terms of
fundamental units. This leads to an expression for kinetic charge in terms of
Kaluza momentum when k¥ = 2 and G = 1. G and k are not independent
however. If we fix one, the other is fixed too: A consequence of requiring the
Lorentz force law written in familiar form and compatibility with the units
used in [7]. The relation between G and k is given in equation (6.5.5) via the
derivation of the Lorentz force law. Simple compatibility with Wald [7] results
where £k = 2 and G = 1. The sign of k is also fixed by (6.1.4). The result of
dimensional analysis gives kinetic charge, @*, in terms of 5D momentum:

N c

=—P 4.4.2

Q e (4.4.2)

This calculation and the consistency of the construction with special rela-
tivity are detailed further in Appendix 1.

5 The Field Equations

5.1 The New Cylinder Condition And Scalar Field

Here we look at how the new Kaluza-Cartan cylinder condition affects the con-
nection coefficients of any coordinate system within the Kaluza atlas (using
k = 1). The Appendix (see section containing 10.1.1 and related) contains a
reference for connection coefficients working both with and without the torsion
component.

The following requires the selection of coordinates (the Kaluza atlas) that set
the partial derivatives in the Kaluza dimension to zero and from the relationship
between these two and the Christoffel symbols given in Wald [7] p33 eqn (3.1.14)
as applied to a number of test vectors. Note that there is no symmetry of
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the (with torsion) connection coefficients suggested here. That is, these terms
are forced zero by the fact that both the partial derivatives and the covariant
derivatives in the Kaluza direction are zero. Cf equation (2.0.2), where the
consequences of setting both the partial derivatives and the covariant derivative
to zero can be seen on the connection coefficients.

0=20% = §*0ugca + 016 AcAg + 0c¢* Ag — 9ad® Ac) + 504 — 2K,
d

(5.1.1)

0=207 =2 §4040°Ag = > 504" + 941049 — 2K, (5.1.2)
d d

2K, = §(0.0° Ag — 0a* Ac) + 5 0.0” (5.1.3)

2K = — 190,07 (5.1.4)

Inspecting these equations, and given that & aBcy = 0(9.1.4), and applying
A=c without summing, we have a constraint on the scalar field in terms of the
vector potential. This constraint is used in Appendix II to show how postulate
B1 may be natural. The result, applying B1, is as follows (using & = 1):

2K, = 540 Aa — DuA.) (5.1.5)

2K, =0 (5.1.6)

This gives the contorsion a very clear interpretation in terms of the electro-
magnetic field.

3 1
Ky =k (5.1.7)

54 14

Ky'= -5 A"F (5.1.8)

We also have from (5.1.1) the following:

f‘ic + K4c4 - IA{C44 = f‘ic + K4c4 = f‘zclél (519)

In the case of complete antisymmetry of torsion/contorsion, again using
(5.1.1), this specialises to:

fiC:0:K44:7Kc44:KC44:Achd (5110)

C

M +Kk -K, =14, =0 (5.1.11)
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In particular (5.1.10) presents too tight a constraint on electromagnetism as
it employs more degrees of freedom than any gauge conditions. For this reason
non-completely antisymmetric torsion is allowed, yet constrained at the weak
field limits by L3. Using (5.1.9) for the last equation of (5.1.13), in the general
case we have:

S S S 1
Ky + Ky =K' = —§Achd

(4c¢) c
o4 o4, - 4
K. =0=-K, '+ K, (5.1.12)
N A Y
K[4c] - K(4c) - §K4c - _ZA Feq
Kj=T{=0
N 1
Kyl =12 =5 A% (5.1.13)

We can see from this section why postulate L3 is necessary, that is, why
non-completely antisymmetric torsion terms must be allowed.

5.2 The First Field Equation With Torsion, k =1

The first field equation in this theory is somewhat complicated (5.2.3), but
an analysis here will show that Kaluza-Cartan theory and the original Kaluza
theory share a limit for certain nullish solutions.

Looking at the Ricci tensor, but here with torsion (using equations 10.1.7
repeatedly, and the cylinder condition as required):
Ray = 00T, — 016, + T, Be - T5.0i%
Rab = acfga - 6bf2a + fl?:zfgC - IA—‘gaf‘bDC
Rap = 0.1%, — g1, + TS T, — TG T (5.2.1)
Doing the same for the without torsion definitions (using equations 10.1.6
repeatedly, and the cylinder condition as required):

ﬁab:aCﬁgl—abﬁga‘f'ﬁglﬁgc_ﬁ(Djaﬁch
B - - 1 fe o n o -
Rab = Ocl G0 = Ouf o+ 506(A Fad) + F iul Do = F Dul b0 (5.2.2)

In the original Kaluza theory the Ricci curvature of the 5D space is set to 0.
The first field equation (3.2.1) comes from looking at the Ricci curvature of the
space-time that results. An advantage of this is the conservation law (4.3.7).
We show that this identification of electromagnetism with the Kaluza vacuum is
not possible if we wish to reproduce electromagnetism sufficiently, even with the
presence of torsion. Setting Rap =0 (as would be required, that is, identifying
electromagnetic fields with the Kaluza vacuum) allows:
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Rab = Rap — Rab
= Ol o~ Ol S Dol o+ 00T G — GOB(AFud) + SO A Fog + ALF)
Hhak e = Fak he = Fiaf Do+ FhaF e
= SO AES 4 AES) + Fiub b~ Foal e = F i Bot PO
= féac(AbFac + AaF,) + F il Ge — Faf e
~Fiaf Dot Fpalf e+ Fpaf 13
= —%ac(AbFaC + AaF°) + FioF 3o — FGaF be
(Pt g (A E S+ AB(F ot 5 (AaF HAE D) (b 5 (A4 ALE,)) (3 AFra)

1 . 1 1. 1
+(F2a+§(AdFaC+AGFd ))(Flcjlc+§(Achd+ACde))+(§Fa )(_Angc+§(abAC+aCAb))
1

1 1 1
H(—Aeh G0 + 5004 + aaAd>)<§de> + (=5 A Fua) (=5 AFc)

1
= 7§8C(AbFac + Aanc)

1 .
_§(AbFaC + AU«FbC)Fgc
1 1 . 1 w1
ol (A T AR )+ 5 (AdF, A+ AaF ) §ot 5 (AaF, + AaF ) 5 (A F + AF)
1 1
+§Fac(_Angc + 5(81)140 + 80Ab))
c 1 La 1 d c
+(_A0Fda + 5(6dAa + aaAd))in + ZA FadA Fbc

1 1 1 1
=~ A0 FS — S ADE, — (0. A)ES = 5 (0cAa) By — S (AVF, + A S,

1 1
2 2
1 ¢ A d 1A ¢ r—d 1 A c c A d A d
+§Fda ch +§ anFbc—i_z( dFa +AaFd)( ch + CFb)
1 1 1 .
+7Fa (O Ac + 0cy) + 7(0da + duAa)F," + iAdFadA°Fbc

1 1
= -~ AyDF.C — ~A,0.F,°
5 A0l — 5 AadeFy

1 1 1 1
—5 (AN FS — 5(acAa)Flf + 1 F Dy Ac + 0eAp) + 7 (0aAa + OuAa)F,*

1 . c 1 . 1 c
—S(AFS + AR Gt 51 G0 AbF + S AT,
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1 . 1
o (AaFS + Ao F, JAFS + AFY) + ZAdFadACFbC

1 1 1
= S A FS — S ADFS + SFouFyf
2 b a 2 b + 2 b

1 . 1 1 .
—S(AFS + AR Gt 51 G AbF + S AT,
1 . 1
5 (AaFS + Ao F, NALF + AR + ZAdFadACFbC (5.2.3)

The electrovacuum terms for a nullish electromagnetic field can be seen em-
bedded in this equation as the third term, this shows that we are not producing
a completely new theory from Kaluza’s original theory. Kaluza-Cartan theory
has a limit in common with Kaluza theory. Taking O(h3) L1-L3 weak field clar-
ifies this. Only the first three terms of (5.2.3) survive, of which the first two are
charge terms and the latter is the stress-energy of nullish solutions. However, if
the charge terms are ignored then there is a lack in the above equation of likely
significant terms to provide any other type of solution, non-nullish electromag-
netic fields in particular. It is therefore too restrictive when the scalar field is
constant just like Kaluza’s original theory.

For this reason we can try an alternative formulation of electromagnetism
in order to obtain a fuller range of geometries via the torsion bearing Ricci
tensor instead: Rap = 0. That is, by identifying electromagnetism with the
Kaluza-Cartan vacuum instead of the Kaluza vacuum. Using (5.2.1) gives:

Rab = Rap = Rap = Ocl o — Ol e + F il e — I iak b

9,15, + aL¢, —To T4 + T, (5.2.4)
Detailing each term here without a specific point to make is not profitable,
is lengthy, and shall not be undertaken. There are however clearly more degrees
of freedom than before, and this is the main requirement. There is a limit in
common for both formulations of electromagnetism when there is no appreciable
torsion (noting that nullish solutions under the first formulation need no such
torsion). More generally allowing torsion terms allows for non-nullish electro-
magnetic fields. Similarly other formulations of electromagnetism are likely to
provide the required degrees of freedom. However in all cases it is necessary
to show that prospective electromagnetic solutions also obey the Lorentz force
law as the general relativistic Einstein-Maxwell equation will not be satisfied
in general. This will be done later. Here the fairly simple principle has been
shown via the first field equation that releasing the Kaluza constraint on van-
ishing (torsionless) Ricci curvature is an effective way to obtain the required
missing solutions. It is further required that Maxwell’s laws without sources be

approximately satisfied. This will be studied via the second field equation.
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5.3 The Second Field Equation With Torsion

Rederivation of the second field equation under the cylinder condition:
7%&4 = Bcﬁfa - a4ﬁga +ﬁfaﬁgc - ﬁgaﬁfc
:acffla—’_lf?lalfgc_lf%aﬁﬁz:acfécla—’_lfflalfgc_ﬁiz,fgc
1

1 1 1 1
= iacF; + §Fachc + ZF;Achd - E(Fglu + 5(14de + AJF)))FY

Looking at this at an O(h?) L1-L3 weak field limit (re-inserting general k):

. k
Ras = 50cF; (5.3.1)

This couldn’t be a clearer (albeit approximate at the O(h?) weak field limit)
conception of Maxwell charge. This coincides with the Einstein (without tor-
sion) tensor at the same limit, thus providing an alternative conception of the
conservation of Maxwell charge locally (cf 6.1.1):

Ga4 — 7%114 — gacF; (532)

On the other hand, by definition (and the cylinder condition, and 10.1.7),
we immediately get:

Ry =0 (5.3.3)
Whereas Ry, simplifies at the O(h?) weak field limit to:

~ 1 ~ ~
Ry — §8ch° — 85Kb4c + 6bKC4C (5.3.4)

This is also approximately conserved Maxwell charge (re-inserting general
k) given at the O(h?) L1-L3 weak field limit. Using L3 and equation (5.1.7):

Rap — kO Ff (5.3.5)

This means that the Kaluza-Cartan vacuum may not have stray charges in
it of any significance, which is a required quality of a sourceless electromagnetic
field. Any low significance charge source, further, necessarily implies antisym-
metric components of the Kaluza-Cartan Ricci tensor: %(Rm — Ra4), which at
the completely antisymmetric (and also weak field) limit implies also no spin
sources by (9.1.17). The Kaluza-Cartan vacuum can not contain significant spin
sources.

5.4 The Third Field Equation With Torsion, k£ =1

This section shows how torsion releases the constraint of the third torsionless
field equation (3.2.3), thus allowing non-nullish solutions. The constraint that
the Ricci tensor be zero leads to no non-nullish solutions in the original Kaluza
theory. This is caused by setting Ry = 0 in that theory and observing the
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terms. The result is that (when the scalar field is constant) 0 = F.4F°? in the
original Kaluza theory. The same issue arises here:

We have:
Rus = 0cF §) — 0aF Gy + FGF Bo — F SaF it
=0-0+0~F5uf i =—Faufi
- —iFgFCd (5.4.1)

The result is that whilst we can have non-nullish solutions, we can only have
them outside of a Kaluza vacuum, for example in a Kaluza-Cartan vacuum.
By definition (and the cylinder condition, and 10.1.7), we immediately get:

Ry =0 (5.4.2)

There is no reason in general for equation (5.4.1) to be 0, and so non-nullish
solutions are generally available in the presence of torsion providing we are not
constrained to the Kaluza vacuum as with Kaluza’s original theory.

6 The Lorentz Force Law

Toth [8] derives a Lorentz-like force law where there is a static scalar field and
Kaluza’s cylinder condition applies in the original Kaluza theory. The resulting
‘charge’ is the momentum term in the fifth dimension and it was not apparent
how this related to the Maxwell current. Here we make use of the Geodesic
Assumption K4. First the identification of kinetic charge and Maxwell charge
is investigated.

6.1 Kinetic Charge

Now to investigate the relationship between kinetic charge and Maxwell charge.
For this we need the O(h?) weak field limit defined by L1 (cf equation 5.3.2)
and discounting O(h?) terms:
5a4 5 ad 1A¢14 > 5 a4 1 a\ P 5 a4
72(14 — aCﬁC4a _ a4ﬁ%a + ﬁCbaﬁBC _ ﬁCDaﬁDbC

G — R = 9,f e (6.1.1)

Putting k back in, and by using Appendix equation (10.2.1) for the Christof-
fel symbol, we get:

. 1
R — 5 OckF (6.1.2)
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And so by (4.3.7),

JE = —%kacFac (6.1.3)

So kinetic and Maxwell charges are related by a simple formula. The right
hand side being Maxwell’s charge current (see p.81 of [6]), and has the correct
sign to identify a positive kinetic charge Q* with a positive Maxwell charge
source 4m(Qys, whenever ak > 0. In the appropriate space-time frame, and
Kaluza atlas frame, using (4.3.6), and approaching the O(h?) limit given by L1:

2
4 —Q* 1.4
WQM%#*akQ (6 )

This correlates the two definitions of charge at the required limit.

6.2 A Lorentz-Like Force Law

The Christoffel symbols and the geodesic equation are the symmetric ones de-
fined in the presence of completely antisymmetric torsion. We will here initially
use k = 1, a general k can be added in later.

Ff4b) 9°4(649bd + OpGad — 5dg4b) + 354 (64Gb4 + Ovgaa — Oagap) =

%QCd[ (¢2Ad) - 5d(¢2Ab)] 29 d54gbd +d29 45p0aa =
29°6y Ag — 64Ap] + 39°CAaded® — $9°Apdad® + 59 64Gea + 59°0p07 =

?¢2Fbc %ngA a0 * — ?QCdAb(Sd(b? $9°049ba + 2904517(252 =
FOPFE — £9°0AL0q0% + 59°U04Gba = 0P —39°CApdad? (6.2.1)
[5y = 160 (84gap + 64Gap — Opgaa) = - 146,40 (6.2.2)

f({ab) = 29°U6agab + 6v9da — Oagas)
+29°U(8a(d2 AgAp) + 05 (0> Aa Aa) — 5a(* Aa Ap))+ %Q (5a94b+5b94a —04Jab)
=T(y +39°(0a(¢®AaAy) + 05(¢* AaAd) — a(¢* AaAy))

—A(029 Ap + 0p$* Ay) (6.2.3)

So, for any coordinate system within the maximal atlas:

B da®
0= + F(BC') dr dr
_ dz® dx° dzt dx® - dx® dx* Sa det dxt
- 2 + F(bc) dr dr + F(4(:) dr dr + F( b4) dr dr + FZ4? dr
G+ Dy B B (07— 9" Ay G 4 — 59™0a0 G 55 (6.2.4)

Taking ¢? = 1 and the charge-to-mass ratio to be:

dzt
Q' /myo = I (6.2.5)

We derive a Lorentz-like force law:
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d?z* . dzbdz° dx?
—— 41— — = —(Q F— 6.2.6
dr2 o) dr dr (Q/mxo) Fy dr ( )
Putting arbitrary k and variable ¢ back in we have:
d?z® . dabdat de 1 dx* da*
Z 2 aTre 7 — k(O 2Fa_ adA(s LA ad(S 2 &b Wb
PR (5 R (Q'/mo) (9" Fy — 9" Apdad”) —— = 59" ¢ d(TG 2d77-)

6.3 Constant Kinetic Charge

Having derived a Lorentz-like force law we look also at the momentum of the
charge in the Kaluza dimension. We look at this acceleration as with the Lorentz
force law. We have, with torsion (and k = 1):

0_d2x4+A4 da:B@
 dr? (BEY dqr dr
_ d?zt ., dabdxt ., dxtdz ., dabdxt ., dx? dfaj4

b b pa @O0 pae O G ar
dr? o) dr dr 1) dr dr L dr dr thaa dr dr

Lot da’

5 el
a¢ dr dr

d?z* ., dabdaxc ., dx* dzc % d (6.3.1)

R G e

6.4 Unitary Scalar Field And Torsion

Both equations above (6.2.7) and (6.3.1) have a term that wrecks havoc to any

similarity with the Lorentz force law proper, the terms at the end. Both terms

can however be eliminated by setting the scalar field to 1. This is postulate B1.
The two equations under B1 become (for all k):

d?z® ., dxbdz¢ , dx?

2z Lo gy = k@ mko) (6.4.1)
>zt ., dxbdat Ldab
Tz Lo g g = ~K(Q ko) AcFy —— (6.4.2)

This certainly looks more hopeful. The more extreme terms have disap-
peared, the general appearance is similar to the Lorentz force law proper. The
right hand side of (6.4.2) is small, but in any case the well-behaved nature of
charge follows from local momentum conservation (divergence of the torsionless
Einstein tensor) and the consequential constraints on charge models.
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6.5 The Lorentz Force Law

It is necessary to confirm that equation (6.4.1) not only looks like the Lorentz
force law formally, but is indeed the Lorentz force law. Multiplying both sides
of (6.4.1) by 4%, 9T wwhere 7/ is an alternative affine coordinate frame, gives:

dr’ dt'?’
>z -, dz? dz° dr “ da®
Tz Tl g = kg (@m0 B (6.5.1)
Given Q* = ’j; and therefore TT’“OOQ* = Q’C‘l% by definition, we can set

the frame such that 7/ = ¢y via the projected 4D space-time frame of the charge.
And the Lorentz force is derived:

d?ze . dabdzt . , dx®

Gz Tleo o g = —k(Q" /mo) Fy y (6.5.2)

In order to ensure the correct Lorentz force law using the conventions of Wald

[7] p69, this can be rewritten as follows, using the antisymmetry of Fi¥ = —F%:
. o da’
= k(Q"/mo)F b T (6.5.3)

Using (6.1.4) as its L1 weak field limit is approached, this can be rewritten
again in terms of the Maxwell charge:

ak , dxb
- k(?(‘lWQM)/mo)F b

The result is that we must relate G and k to obtain the Lorentz force law
in acceptable terms:

(6.5.4)

Pz . u dxb dz° “ dx®
Gz Ll g g = (@u/mo) i
k=2VG (6.5.5)

This shows that the Lorentz force law proper can be derived given (6.1.4)
and the required limit.

7 Analysis Of The Electromagnetic Field; Super-
energy

In this theory the sourceless electromagnetic field has been identified with van-
ishing Ricci curvature, where the Ricci curvature, in contradistinction from the
original Kaluza theory, is defined in terms of the torsion tensor. This is the
Kaluza-Cartan vacuum as opposed to the Kaluza vacuum. The Kaluza-Cartan
vacuum has tight restrictions on the presence of charge and spin sources: it
approximately follows the sourceless Maxwells laws, in that respect quite simi-
lar to the original Kaluza theory, but has more variety of solutions and better
admits electrostatic or near electrostatic fields.
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In this variant theory all particles following auto-parallels obey the Lorentz
force law. It is assumed that particle-like charge sources follow auto-parallels.
The derivation of the Lorentz force law works for all auto-parallel-following
paths whether charged or not however. The derivation is quite general. In the
absence of non-completely anti-symmetric torsion this is essentially geodesic
motion. In any case the two are herein required to be close via the weak field
limit postulates.

The fundamental conservation/divergence-free law for mass-energy belongs
to the (torsionless) Einstein tensor. Noting that what we really mean by conser-
vation also requires energy conditions. The complement of the Kaluza-Cartan
vacuum is therefore called Kaluza-Cartan matter (rather than mass-energy).
Matter and fields are able to transfer Kaluza mass-energy (the complement of
the Kaluza vacuum) to and from each other. Unlike (torsionless) mass-energy,
the divergence law for Kaluza-Cartan matter depends on the torsion tensor as
seen by combining (9.1.13) and (9.1.15). It is only vanishing at the completely
antisymmetric limit. We thus have no a priori guarantee that a Kaluza-Cartan
vacuum (when not also a Kaluza vacuum) might not just evolve so as to cease
being a Kaluza-Cartan vacuum even when there are energy conditions imposed.

By imposing the conserved super-energy hypothesis, SE1, causality is im-
posed. The result is that on Kaluza vacuums well-behaved characteristics glob-
ally are ensured, but more importantly causality is also imposed on Kaluza-
Cartan vacuums. This imposes the time evolution of Maxwell’s laws at least
locally and approximately, and any divergence from the Lorentz force law in
extremis will at least be manifest deterministically.

Kinetic charge is also fundamental in its conservation under definition (4.3.7),
though perhaps not in the way that charge is usually understood. Here it is a
part of (torsionless) 5D mass-energy conservation. The correlation with Maxwell
charge comes from the weak field limit L1. See identity (6.1.4).

With respect to spin, spin current obeys the fundamental divergence law
(9.1.13). This is then also a fundamental quantity in Kaluza-Cartan theory,
and complementary to (torsionless) mass-energy in that sense. It is divergence-
free relative to the 5D torsion connection.

In all matters of divergence and conservation we must note the well-behaved
postulates such as K2. Otherwise topology can be manipulated to create un-
physical results.

Maxwell charge requires spin, at least at a local O(h?) L1-L3 weak field
and completely antisymmetric limit. This follows from (9.1.17) and (5.3.5). By
definition of kinetic charge, components of 5D (torsionless) mass-energy are also
required. A matter model defined by Kaluza-Cartan matter can have charge, but
stray charges in a Kaluza-Cartan vacuum region are limited in significance by
the weak field assumptions. Further a minimum component of Kaluza-Cartan
matter and (torsionless) conserved mass-energy is required to form a charge
model, in addition to the (with torsion) divergence-free spin. The weak field
assumptions therefore keep a certain amount of matter and spin assigned and
bound to any charge model. And even if such diverge far from these limits, they
must be reassigned and rebound upon return.
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Since Maxwell charge is not necessarily conserved in this theory but merely
identified with the divergence-free (with respect to the torsionless connection)
kinetic charge at the weak field limit, it is the spin that becomes the fundamental
quantity (9.1.13) that gives matter models their character. (Torsionless) mass-
energy is also important but does not distinguish matter from fields, a distinction
that is needed: what we mean by matter, intuitively, whilst at first glance
Kaluza-Cartan matter, is perhaps more fundamentally characterized by its spin
content.

Approximate conservation or divergence laws arise at the weak field anti-
symmetric limit: (9.1.15), and that implied by applying this in turn to (9.1.17).
The result is the appearance of Maxwell charge as a significant term in (9.1.17),
via (5.3.5) and (5.3.3) - approximately divergence-free (relative to the torsion
connection). Components of the spin current/charge also get identified at this
limit with the Maxwell current/charge.

Matter models (here omitting the Kaluza-Cartan prefix) are more broadly
any region where a significant (in the sense that it can not be discounted by
L1-L3) amount of charge, spin or matter is present. The presence of charge
ensures the presence of spin, both ensuring the presence of matter at this limit.
The problem of spins cancelling out is a non-issue as there is an additional
dimension whose spin components must be more obviously cumulative with
increased charge, at least until the L3 limit ceases to be valid. Consistent with
observation, matter does not necessarily imply the presence of spin or charge,
but in itself cannot be distinguished as fully separate over time from adjacent
fields. The quantity is not in itself necessarily conserved or divergence-free,
and mass-energy is free to pass from Kaluza-Cartan vacuum to Kaluza-Cartan
matter and vice versa. Spin is therefore more fundamental in matter-charge-
spin particle models and in characterizing them as distinct from any surrounding
fields. This can be interpreted as shedding light on the nature of matter and
an explanation as to why local matter is such a hard thing to define in general
relativity.

8 Conclusion

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth wrapped-
up spatial dimension is inspiration for many modern attempts to develop new
physical theories. However for a number of reasons it is generally considered
untenable.

A cylinder condition based on torsion was imposed as with Kaluza’s original
theory. A number of other constraints and definitions were provided. The result
was the appearance of missing and needed electromagnetic fields (in particular
essential electrostatic fields) and a new definition of charge in terms of momen-
tum in the fifth dimension. The entire theory was in effect derived from the
need for these missing solutions to be present: they include the electrostatic
fields. Conservation of charge was generalized into the vanishing divergence of
the torsionless Einstein tensor. The new definition of kinetic charge and the
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Maxwellian charge coincide at an appropriate limit. In order to obtain the
missing electromagnetic fields it was necessary to generalize Kaluza’s original
theory to the vanishing of the Ricci tensor defined in terms of torsion.

Classical electrodynamics is rederived in the spirit of Kaluza’s original the-
ory but more fully. Gravity and electromagnetism are unified in a way not
fully achieved by general relativity, Einstein-Cartan theory or Kaluza’s origi-
nal theory. The collocation of torsion with electromagnetism is different from
many other Einstein-Cartan theories where the torsion is often bound to mat-
ter models. Here certain specific components of torsion are an essential part
of electromagnetism. The scalar field (which is present in the original Kaluza
theory), on the other hand, was fixed constant. This was to ensure the Lorentz
force law.

Some interesting results such as that spin and charge can exist only in the
presence of matter (to any significance) follow. An issue is raised as to when
the limit postulates that characerterize the classical general relativistic limit
break-down and how that would relate to real phenomena and experiment.

One outstanding issue is that realistic charge models are not possible without
involving imaginary numbers (imaginary proper velocities in the Kaluza dimen-
sion and imaginary Kaluza rest mass). Obviously to deal properly with this the
Kaluza-Cartan space or the Kaluza-Cartan theory would have to be adapted
further in some way. But on the other hand limiting the theory solely to the 4D
resultant space-time region or manifold, and applying a realistic charge model
by hand need cause no such problems provided the net result makes sense, pro-
vided all the 4D numbers are real. Barring this failure to provide realistic charge
models, which poses challenges to the 5D theory, the postulates currently re-
quired are straight forward. It is in a certain sense a simple theory. In effect all
we have is a 5D manifold with a cylinder condition on one spatial dimension and
torsion with an approximately completely antisymmetric metric torsion tensor
limit, with certain well-defined weak fields and limits. Interpretation of many
of the postulates can be made in physically appealing terms. However, many of
the consequences are really very complicated.

Super-energy was here introduced to resolve problems of causality, time evo-
lution and stability. This replaces the need to worry too much about energy
conditions as in general relativity, but is not unique in its contribution to the
theory: alternatives could perhaps be applied.

Why go to all this effort to unify electromagnetism and gravitation and
to make electromagnetism fully geometric? Because experimental differences
could be detectable given sufficient technology on the one hand, and, on the
other, simply because such an attempt at unification might be right or lead
in the right direction. Such an attempt may also widen the search. This the-
ory differs from both general relativity and Einstein-Cartan theory and may be
empirically testable. Also the expected w-consistency of Einstein-Cartan the-
ory together with the derivation of a Lorentz force law via the Kaluza part of
the theory gives a theoretical motivation, as does the fact that the other ap-
proaches beyond general relativity have not fulfilled their promise in terms of
approaching unification. Attempting to extend and unify classical theory prior
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to a unification with quantum mechanics may even be a necessary step in a
future unification whether Kaluza-Cartan theory turns out to be the right way
or not. It may be that current attempts are more difficult than necessary as the
problem may not yet have been framed correctly.

It is often asserted that the true explanation for gravitational theory and
space-time curvatures will most likely, by reductionist logic, emerge out of its
constituent quantum phenomena. Such an approach has merit, but is overly
optimistic, and does not optimize the search [23]. Before constituent quan-
tum parts can be properly defined and subdivided the larger scale whole must
have been present initially to then be so divided. Something of the context is
evidently missing from quantum mechanics, general relativity or both on ac-
count of the difficulty of squaring the two. The dividing and putting together
of parts assumes a context, and a context assumes a whole [22]. Implicitly re-
ductionism assumes contextual knowledge. There is paradoxically an implicit
non-reductionist assumption within reductionism. Generally we may take our
conception of such a whole for granted, but we should bear in mind that this
is a limited approach, speaking more of our limitations and need for easy con-
cepts than of reality. Taking a global, more ‘synthetic’ perspective can be more
difficult but may also be more insightful. A more holistic (in the sense of
non-reduction or post-reductionist, but nevertheless empirical) approach may
be required at both the large and small scale. Such considerations are further
justification for the approach attempted here to unify gravity with electromag-
netism.

9 Appendix I: Appendix To The Overview

9.1 Introducing The Geometry Of Torsion

5D Cartan torsion is here admitted. This provides extra and required degrees
of freedom. It is noted that Einstein-Cartan theory, that adds torsion to the
dynamics of relativity theory is most probably a minimal w-consistent extension
of general relativity [13][14] and therefore the use of torsion is not only natural,
but arguably a necessity on philosophical and physical grounds. That argument
can also be applied here. What we have defined by this addition can be called
Kaluza-Cartan theory as it takes Kaluza’s theory and adds torsion. We assume
that the torsion connection is metric.

For both 5D and 4D manifolds (i.e. dropping the hats and indices notation
for a moment), torsion will be introduced into the connection coefficients as
follows, using the notation of Hehl [11]. Metricity of the torsion tensor will be
assumed [19], the reasonableness of which (in the context of general relativity
with torsion) is argued for in [20] and [21]:

1

2

This relates to the notation of Kobayashi and Nomizu [12] and Wald [7] as
follows:

k k k
(5 —T5) =5, (9.1.1)
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T'jr =28 =%, — T}, (9.1.2)
We have the contorsion tensor Kif [11] as follows, and a number of relations

[11]:

1
Iy = §gkd(3igdj + 0igai — Oagij)—K,) = Fi;— K.} (9.1.3)

k k k k k
Notice how the contorsion is antisymmetric in the last two indices.
With torsion included, the auto-parallel equation becomes [11]:

d?z* p  dztdxd
4Tk -
ds? () ds ds

=0 (9.1.5)

k  _ k_ gk E _ [k k
Ly = Fij T8 =S¢y = Fiat25 @) (9.1.6)
Only when torsion is completely antisymmetric is this the same as the ex-
tremals [11] which give the path of spinless particles and photons in Einstein-
Cartan theory: extremals are none other than geodesics with respect to the

Levi-Civita connection.

d?z* g dzt dad
Yo Rl
ds? " ds ds

=0 (9.1.7)

With complete antisymmetry we have many simplifications such as:

K,f=-8F (9.1.8)

ij
Stress-Energy And Conservation Laws
Inspired by the Belinfante-Rosenfeld procedure [12][15], by defining the tor-

sionless Einstein tensor in terms of torsion bearing components, yields what can
be interpreted as extra spin-spin coupling term X 4p5:

Gap = Gap +Vap + Xap (9.1.9)

N 1. R . R
VAB:_ivC(UABC'FUBAC'FO—CBA) (9.1.10)

Where o is defined as the spin tensor in Einstein-Cartan theory. However,
here we do not start with spin (and some particle Lagrangians), but with the
torsion tensor. So instead the spin tensor is defined in terms of the torsion
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tensor using the Einstein-Cartan equations. Here spin is explicitly defined in
terms of torsion:

Gapc = 25apc +20acSph — 2980540 (9.1.11)

This simplifies definition (9.1.10):

VAB = —§VC(6CBA) = —?C(S’CBA +QCA;§B[1)) — gBASCg) (9.1.12)
By considering symmetries and antisymmetries we get a divergence law:

VeVAB =0 (9.1.13)

The Case Of Complete Antisymmetry

Note that the mass-energy-charge divergence law for the torsionless Einstein
tensor is in terms of the torsionless connection, but the spin source divergence
law here is in terms of the torsion-bearing connection. However, for completely
antisymmetric torsion we have:

@CQAAB = ACQAB + KCADGDB + KCBDQAD
So,
VAGap =040+ IA{ABDC;AD = —KBADGAD

= —Kp""Gpa=+K"Gpa=+K;"Gap =0 (9.1.14)

@A(GAB-FXAB) =0 (9.1.15)

And so there is a stress-energy divergence law with respect to the torsion
connection also, at least in the completely antisymmetric case.

Further, still assuming complete antisymmetry of torsion, by definition of
the Ricci tensor:

Rap =Rap + Kpi Kpd — 00Ky — KpiF Do+ KpiFBe— Kpg F Re
=Rap — K, 5Kl —VSapc (9.1.16)

Grap) = Riap) = —VSapc = —Vag (9.1.17)

—VA p is the antisymmetric part of G 4B at this limit. And X AB Is a sym-
metric spin-torsion coupling adjustment - again only in the case of completely
antisymmetric torsion.
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These divergence laws can function as 5D Kaluza-Cartan ‘conservation’ laws,
given postulate K2, in the presence of positivity conditions.

Torsion-Normal Coordinates

By using the same argument, verbatim, as in Wald [7] p. 41-42 normal
coordinates can be defined about any point also in the presence of torsion using
the auto-parallel equation instead of the geodesic equation. Completely anti-
symmetric torsion yields the same normal coordinates as without torsion, the
paths varying only due to non-completely anti-symmetric terms.

Further, postulate L3 means that local normal and local torsion-normal co-
ordinates will be comparable. This gives an interpretation of L3 that is more
intuitive in terms of a limit of low significance of the difference between torsion-
less geodesics and auto-parallels.

9.2 Geodesic Motion, An Assumption

This theory assumes some sort of particle model of matter and charge is possi-
ble, that it can be added to the original theory without significantly changing
the ambient space-time solution and thus its own path, which is approximate
here as it is also in general relativity. Here however there are more complications
such as the lack of an explicit matter-charge model, and the presence of torsion.
We might imagine that what has been described is a particle whizzing around
the fifth dimension like a roller coaster on its spiralled tracks. The cylinder
conditions can also be maintained if, instead of a 5D particle, the matter and
charge sources were rather a ‘solid’ ring, locked into place around the 5th di-
mension, rotating at some predetermined proper Kaluza velocity. Of course this
is misleading as, as has already been shown, both velocity and rest mass would
have to be complex numbers. An exact solution could perhaps involve changes
in the size of the 5th dimension. None of that is investigated here, the objective
is to see whether non-nullish solutions can be found in a variant Kaluza theory.

In Einstein-Cartan theory geodesics, or extremals, are followed by spinless
particles in 4D Einstein-Cartan theory [11]. Other particles follow different
paths when interaction with torsion is present. Auto-parallels and extremals
are two analogs of geodesics used when torsion is present, but neither of which
in the most general case determine the paths followed by all particles in Einstein-
Cartan theory. Note that spinless particles according to [11] follow extremals.
Extremals coincide with auto-parallels when torsion is completely antisymmet-
ric. Particles with spin may interact in other ways. So the assumption is that
torsion-spin coupling does not significantly effect the path of the particle, at
least to some approximation. Here we choose to use auto-parallels. Exactly
how sensitive this assumption is would require further research. Here however
it is packaged into a single clean assumption.
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POSTULATE (K4): Geodesic Assumption. That any particle-like model,
that is to be identified with a charge, approximately follows 5D auto-parallels.

9.3 The Conserved Super-Energy Hypothesis

The Generalized Bel tensor for a Lorentz manifold (or simply Bel tensor) is
the super-energy tensor associated with the (torsionless) Riemannian curvature
[17]. The discussion here requires metricity from the torsion connection.

The definition of super-energy tensor does not require that torsion be van-
ishing in either the connection or any of the defining tensors [17], and the im-
portant dominant super-energy property [17] follows in all cases. However here
the 5D torsionless definition will be primarily used. This leads to the causality
of the Rieman tensor [16] under specific conditions without deference to energy
conditions. The super-energy tensor definition depends on the antisymmetries
of the Riemannian tensor definition, that is [17] that it is a double symmet-
ric (2,2)-form. The definition of the super-energy tensor with respect to basic
properties such as it being a 4-tensor are dependent on the admissibility of the
interpretation of the Riemann tensor as a (2,2)-form.

Now the Riemann tensor can be written as [12] (not using hat, index or
cursive notation, indicating the most general case, but using indices that show
compatibility of conventions with eqn 2.0.3):

szkb = akrzl;a - abr;‘ca + Flc)a ?Cc - za ?)c (931)

It is a (2,2)-form if its antisymmetries are as follows: R[;q)pke). This is clearly
the case for [k,b]. For [i,a] it is a known result provided that the torsion-bearing
connection is metric. The argument requires the torsion analog of Wald’s equa-
tion (3.2.12) [7] and then follows for the same reasons as given there for the
torsionless case. Thus generalized Bel super-energy is a (2,2)-form whether
defined in terms of the torsion or not.

In [16] the derivation of the causality of the fields underlying any particular
super-energy tensor is given in terms of the divergence of the field’s super-
energy tensor. A divergence condition is given that ensures causality of the
underlying field associated with any such super-energy tensor. The divergence of
the generalized Bel tensor would therefore need to be bounded by this condition
if the Riemannian curvature were to remain causal. This condition is theorem
4.2 in [17].

A sufficient case would be if the divergence of the superenergy tensor were
zero (and assuming global hyperbolicity -i.e. postulate K2). The important de-
tails are on page 4 of [16]. The argument does not require that the definition be
torsion free. Thus the vanishing divergence of the generalized Bel tensor would
yield causal Riemannian curvature assuming the Riemann tensor remained a
(2,2)-form (as indicated above), with no deferment to energy conditions in both
the case when torsion is used to define the Bel tensor and when it isn’t.
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On p24 of [17] we have a calculation of this divergence under vanishing tor-
sion, and it can be seen that when the Ricci curvature is zero that the divergence
of super-energy is also zero. This however references symmetry properties (in
addition to antisymmetry properties) and thus further consideration of the case
with torsion would be required to extend or generalize this theorem. Theorem
6.1 on p25 of [17] may well not apply in the case that the tensors and connection
are defined in terms of torsion. Nevertheless it nicely characterizes an important
property of the Kaluza vacuum, that it can not be a source of Bel super-energy.

The Conserved Super-Energy Hypothesis: is that the divergence of the
Generalized Bel superenergy tensor be vanishing (when defined with respect to
the torsionless connection and torsion free tensors) over a Kaluza-Cartan space
that does have torsion.

This then ensures the causality sought for Kaluza-Cartan vacuums, as well
as over any Kaluza-Cartan matter.

It can be noted that in 4D and 5D in particular, see p29 of [17], the torsionless
generalized Bel tensor has the nice property of being completely symmetric. It
is curious that it should be completely symmetric precisely in the 4D and 5D
cases.

Theorem 6.1 of [17] (not proven for its torsion analog) links divergence of
torsionless generalized Bel super-energy with what Senovilla et al [17] call the
matter current.

The divergence of the Bel super-energy is given as follows [17] (still not using
the hat, cursive or index notation but understanding that torsion is omitted from
the definitions):

1
vaBablm — RbrlstST + RbrnZJlsr _ 5glwz‘Rb Jsur (932)

rsy

Jimb = —Jmiv = ViRyp — Vi Rip (9.3.3)

Jimp = 0 then implies conservation of (torsionless) generalized Bel super-
energy. We can put this in the 5D hat notation used elsewhere in this paper as
follows:

A oA A A A A 1. A A
VABABLM — RBRI:SJJV[SR + RB;%ASIJLSR . igLMRB}{SYjSYR (934)

Jims =~Jure =ViRup — VuRis (9.3.5)

By the conserved super-energy hypothesis this would have to be satisfied
even by matter and charge models to ensure causality.
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9.4 Consistency With Special Relativity

Kinetic charge is identified with 5D momentum in a space-time rest frame. This
is already known in the original Kaluza theory to obey a Lorentz-like force law,
but will be extended to the current setting.

That this is consistent with special relativity can be investigated: the rela-
tivistic mass created by momentum in the 5th dimension is kinematically iden-
tical to the relativistic rest mass.

The additions of velocities in special relativity is not obvious. Assume a flat
5D Kaluza space (i.e without geometric curvature or torsion, thus analogously to
special relativity at a flat space-time limit, a 5D Minkowski limit). Space-time
can be viewed as a 4D slice (or series of parallel slices) perpendicular to the 5th
Kaluza dimension that minimizes the length of any loops that are perpendicular
to it. Taking a particle and an inertial frame, the relativistic rest frame where
the particle is stationary with respect to space-time but moving with velocity
u in the 5th dimension, and a second frame where the charge is now moving in
space-time at velocity v, but still with velocity w in the 5th dimension, then the
total speed squared of the particle in the second frame is according to relativistic
addition of orthogonal velocities:

52 = u? +v? — uv? (9.4.1)

The particle moving in the Kaluza dimension with velocity u, but stationary
with respect to 4D space-time, will have a special relativistic 4D rest mass (mg)
normally greater than its 5D Kaluza rest mass (mgo). We can see that the
Kaluza rest mass definition (mgo) is consistent with the orthogonal addition of
velocities as follows:

o = % where u = tanh[sinh ™ (Q* /(myo))] (9.4.2)
MTrel = =0 = kO X ! - k0
rel \/(1—’()2) \/(1—u2) \/(1_U2) \/(1_U2 —U2+u21}2)

(9.4.3)

By putting u = tanh[sinh™*(Q*/(muo))] (keeping the hyperbolics to recall
the conversion between unidirectional proper and coordinate velocities) into the
definition of relativistic rest mass in terms of Kaluza rest mass and solving, we
get that charge, whether positive or negative, is related to the relativistic rest
mass according to the following formula:

oy
dr*

= V(Q*/(my))? + 1 (9.4.4)

cosh[sinh ™ (Q* /(mo))] = mo/mxo =
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Using k = 2 we also have, for a typical unit charge:

me = 9.1094 x 107 %¢ (9.4.5)
Q* = 4.8032 x 10~ statcoulomb = 4.8032 x 3.87 x 107 103¢ = 1.859 x 10~ %¢
(9.4.6)

If we take these figures and equate m, = mg then we end up with imaginary
myo and imaginary proper Kaluza velocity. Obviously to detail this the Kaluza-
Cartan space would have to be adapted further in some way. However, what is
important physically is that the figures we know to be physical in 4D remain
so. And this is so.

Further issues are pertinent.

Observed electrons have static charge, angular momentum, a magnetic mo-
ment, and a flavor. The only thing distinguishing the electron from the muon
is the flavor. The mass difference between the muon and the electron is about
105 MeV, perhaps solely due to this difference in flavor. The issue of modeling
particles within a classical theory is, not surprisingly, a difficult one! Thus at
this stage the idealized hypothetical charges used here, and real particles, can
only be tentatively correlated.

It is possible to proceed without concern for the foundational issues of such
charge models or attempting to interpret this quandary, instead simply devel-
oping the mathematics ‘as is’ and seeing where it leads without prejudging it.

Proper Kaluza Velocity As A Scalar

This section shows that the proper velocity W (written as a vector) with
only one component in the Kaluza dimension is invariant under 4D space-time
boosts orthogonal to it. The proper Kaluza velocity therefore is a constant with
respect to local coordinate changes within a Kaluza atlas. It could be claimed
that this result should follow in any case from the definition of proper velocity
if the local coordinate transformation is only in the 4 dimensions of space-time,
however this is not true for rotations - a rigorous proof is always better. The
result here simply says that with respect to the Kaluza atlas the value is a
scalar.

W, = dzy4/dr proper velocity in a stationary space-time frame, but following the particle

Uy = ———=— coordinate velocity using proper velocity formula

1—|—W42

Using orthogonal addition of coordinate velocities formula to boost space-
time frame by orthogonal coordinate velocity V:

V = (V,0,0,0)
U = (0,0,0,U,)
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Coordinate velocity vector in new frame, using the orthogonal velocity ad-
dition formula:

U=V++/1-V2U
So,

_ Wy
Us=V1-V2i——
! V1I+WE

Define proper velocity in new frame: W, using proper velocity definition:

R E—
V1i-v2-T7,’
_ 1_‘/2\/1V-V+4w42
= \/l_vg_ (mgl‘/}fwf)z
= Wy
VIFWE 1= ()

Wy

—_— =W,

(9.4.7)
W4 = Wy is the result required

9.5 Geometrized Charge

The geometrized units, Wald [7], give a relation for mass in terms of funda-
mental units. This leads to an expression for kinetic charge in terms of Kaluza
momentum when £k =2 and G = 1.

G=1=6.674 x 107 8cm3g 1572 = 6.674 x 10~ 3em3g~! x (3 x 10%cm)~2
= 6.674 x 10~ 8cmg! x (3 x 1010)~2

lg ~ 7.42 x 10~%%em for c=1, G=1 (9.5.1)
lg ~ G/c*cm for c=1, G=1 (9.5.2)
For k = 2, c=1, G=1 we have:

Lstatcoulomb = 1em®%s71g /% = em'/? x (7.42 x 107%°em) /2 /(3.00 x 101°)

=8.61 x 107 Pem/(3 x 10'%) ~ 2.87 x 107?°cm ~ 3.87 x 10%g (9.5.3)
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Using cgs (Gaussian) units and the cgs versions of G and ¢, ie G = 6.67 x
107 7em3g~'s™ ! and ¢ = 3 x 10%cms~!, the charge can be written in terms of
5D proper momentum P, as follows:

2

Lstatcoulomb = 1em®/?s7 1 ¢g"/% = 1(em/s)em/?

1/2 _

. cm/s
Ve

C

VG
9.6 A Complete Set of Postulates

Q" Py (9.5.4)

By way of summary a complete set of postulates can be given for this version
of Kaluza-Cartan theory:

{K1, K2, K3, K4, B1, L1, L2, L3, SE1}

Of these only {K1, K3} need be fundamental to the theory. {K2, K4, B1}
relate to well-behaved assumptions. {L1, L2, L3} to a weak field limit. And
{SE1} takes the place of the energy conditions of general relativity and may not
be unique or universal, pending experimental testing or deeper analysis.

It would be nice however to give a clearer physical interpretation of some of
these postulates. K2, K4, B1 need no special justification. With the exception
of B1 there are classical analogs. The sensitivity of the theory to K4 is bounded
by L3 in that when the non-completely antisymmetric terms are zero there
is no difference between extremals and auto-parallels. Bl is shown to be a
consequence of non-zero potential field components in the Appendix, and so a
near consequence of a variable electromagnetic field, making it a surprisingly
reasonable physical postulate. K1 and K3 are foundational to the theory, core
postulates with no immediate need for interpretation. SE1, if true, stands out
as requiring specific empirical testing, and other similar energy conditions may
turn out to be better either theoretically or empirically.

Heuristically L1 gives a scale and a proportionality to tensors, in the sense
that there is a balance of contributions from different types of tensors as a result.
L2 continues this sense of proportionality so that, all other things being equal,
such tensors as for example the Einstein tensors (with and without torsion) can
be expected to be comparable in order of magnitude, in significance, to each
other. This has an impression of physical reasonableness about it.

This leaves only L3 as in any way enigmatic. A possible interpretation is
suggested in the Appendix under Torsion-Normal Coordinates, but exactly why
it should be so important in this formulation is not clear, but it has many
consequences here.
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10 Appendix II: Appendix To The Field Equa-
tions And Further Working

10.1 The Christoffel Symbols And Connection Coefficients

Here we assume only the definitions of the Christoffel symbols and the cylinder
condition. (Without torsion terms shown, k set to 1)

2f 40 =>,0*P(98Gcp + Ocipr — OpisC)

>y 02 (08Gcd + Ocdan — Oadnc)
+ 0 (0pdca + Ocdup — Oaine)

2F 1 =315 Obgca + Ocgap — Oague)
+ 30U OP? Ac Ay + 002 AgAp — 0ad® ApAc)
+ gA4 (ab¢2Ac + 8c¢214b - 64gbc - a4¢2AbAc)

2 4 =31 G%(01gea + 010 AcAg + 0c¢* Aq — 0a9* Ac) + §740.¢*

2f fy =23, 51040 Aa — 3, 670ud? + 41040
(10.1.1)
The Electromagnetic Limit ¢% =1

Now putting in ¢? = 1,

2F 3 =, 92U0bgea+ Ocgap — Oagne) + D g G4 (OpAcAq+ 0 AgAp—OaApA.)
+ gA4(abAc + a614?) - 64gbc - 8414[)140)

Z'ﬁfc = Zd gAd(a4gcd + 04 AcAq+ 0. Aq — adAc)

Fiy=240%0,Aq

(10.1.2)
Simplifying...
2 p. =2F g+ > 9" ApFea + AcFya) + A%Ougpe + A“04Ap A,
2F b = — >4 AUObGed + Ocgar — Oagoe) — Dy AN AvFeqg + AcFya)
— (14, AiAY) (04gbe + 01 AbAc) + (OpAc + D:Ap)
2ﬁic = Zd gad(a4gcd + 84A6Ad) + Zd gachd
2ﬁic = - Zd Ad(84gcd + 84AcAd) - Zd Achd
ﬁi4 = Ed 9”3414(1
Fila=—24A%4Aq
(10.1.3)

The Scalar Limit A; =0
The scalar limit is similarly defined,

208 =5, 5"U0bGed + OcGab — Oagne) —G40agpe

36



2F 4 = 3249401904 + 911007

2 == .00+ Mo
(10.1.4)
Simplifying...
Fhe="Fie
2F§C = _#849110
2€Zc = Zd gada4gcd
2F G = 320:0°
2/:?24 == Zd gadad¢2
2/ §y = 32010
(10.1.5)

The Electromagnetic Limit And Cylinder Condition

By applying equations (5.1.13) and the cylinder condition in order to simplify
terms of the electromagnetic limit with k = 1, and without torsion noting that
these Christoffel symbols are symmetric in the lower indices:

QI: gc = 2f gc + (Acha + ACFba)

2F 3. = =3 4 AYObgea + Ocgar — Oagve) + (OpAc + 0:Ap)
= _2AdFlC)lC + (abAc + acAb)

QﬁZc = Fca

ﬁﬁc:*%Achd and f§ =4, =0
(10.1.6)

Now with torsion used to define the connection coefficients, using equations
(5.1.13) and others from that section, and noting that these connection coefli-
cients are not necessarily symmetric in the lower indices:

21¢ = g°(bgea + Ocgap — Oagvc) + (AvF,% + AF,)") — 2K, ¢

=2 ¢+ (AF* + AF") — 2K,°
ot = — 3, A4 OpGea + Ocgar — Dagve) + (OpAc + DeAp)

— Ad(Achd + Achd) — QKb;l

= 244 %+ (BpAe 4 0 Ap) — AYApFog + AcFpg) — 2K, 2
fZC =0and ¥, =19, =T4,=0
I, =—1A9F,
]'—Vcl4 = %Fca - kc4a

(10.1.7)
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10.2 Raised Levi-Civita Christoffel Symbols

Following the same procedure as with Christoffel symbols of the first and second
kind a raised version of the Christoffel symbols can be derived, a third kind.
It takes the value that would be guessed at (a guess because you can not raise
across partial derivatives without caution) by inspecting the elements of the
Christoffel symbol of the second kind and raising each element individually.
Starting from the covariant derivative of the raised metric tensor being zero:

Cycling indices we have:
0= &gl 4 ki 4 ki
0 = gkt 4 Thit 4 ik
Adding the first two and subtracting the third:
8 gik & 9 gii — i gkt — otk

So, exactly as would be guessed:
rik = 5(839”9 + 0% g7 — 0'gk) (10.2.1)

10.3 The Physicality Of The Constancy Of The Scalar
Field

For this section the Einstein summation rule is not applied. Using eqn(5.1.3)
and the anti-symmetry of the last two indices of contorsion:

0=2K,.° = §°U0.0%Aq — Dap® A.) + §°40.0* (10.3.1)
= g°10? (0cAd — DaAe) + g°(Aaded® — AcDy¢?) — A°De0? (10.3.2)

Using properties of derivatives of scalar fields ([7] eqn 3.1.10):
_ cd g2 o cd 2 2\ gc 2
= g“P* (0. Aq — 04Ac) + g°(Aaledp® — AcDNgd?) — A°O. ¢ (10.3.3)

From this we get:

0= A°D.0? (10.3.4)

This works to the extent ¢? can be decomposed from the metric as a scalar
field. Without Einstein summation this shows that the postulate B1 is physically
reasonable when the vector potential components are non-zero.
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