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Abstract

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth
wrapped-up spatial dimension is at the root of many modern attempts to
develop new physical theories. Lacking important electromagnetic fields
however, and having other problems, the theory is incomplete and gen-
erally considered untenable. An alternative approach is presented that
includes torsion. Coulomb’s law in the form of the Lorentz force law is
investigated starting with a non-Maxwellian definition of charge, this is
shown to be related to Maxwellian charge. It is concluded that Kaluza’s
5D space and torsion should go together in what is here called a Kaluza-
Cartan theory in order to form a unified theory of gravity and electro-
magnetism. A new cylinder condition is proposed that takes torsion into
account and is fully covariant. Different formulations of the vacuum and
matter models are called matter model regimes and are compared. Two
connections are used, one with, and one without torsion. The concept of
general covariance is investigated with respect to global properties that
can be modelled via a non-maximal atlas. Differences from existing the-
ories, general relativity being a limiting case, suggest experimental tests
may be possible.

PACS numbers 04.50.Cd ; 02.40.Ky ; 04.20.-q ; 04.40.Nr

1 Conventions

The following conventions are adopted unless otherwise specified:

Five dimensional metrics, tensors and pseudo-tensors are given the hat sym-
bol. Five dimensional indices, subscripts and superscripts are given capital
Roman letters. So for example the five dimensional Ricci flat 5-dimensional
superspace-time of Kaluza theory is given as: gap, all other tensors and indices
are assumed to be 4 dimensional, if a general non-specified dimensional case is
not being considered, for which either convention can be used. Index raising
is referred to a metric §4p if 5-dimensional, and to gup if 4-dimensional. The
domain of partial derivatives carries to the end of a term without need for brack-
ets, so for example we have 0y9apAc + davgac = (Ou(gapAc)) + (9avgac). Terms



that might repeat dummy variables or are otherwise in need of clarification use
additional brackets. Square brackets can be used to make dummy variables
local in scope.

Space-time is given signature (—, +, +, +), Kaluza space (—, +, +, +, +)
in keeping with [6], except where stated and an alternative from [1] is referred
to. Under the Wheeler et al [6] nomenclature, the sign conventions used here
as a default are [+, +, +]. The first dimension (index 0) is always time and the
5" dimension (index 4) is always the topologically closed Kaluza dimension.
Universal constants defining physical units: ¢ = 1, and G as a constant. The
scalar field component is labelled ¢? (in keeping with the literature) only as a
reminder that it is associated with a spatial dimension, and to be taken as pos-
itive. The matrix of g4 can be written as |g.q| when considered in a particular
coordinate system to emphasize a component view. The Einstein summation
convention may be used without special mention.

Some familiar defining equations consistent with [1] (using Roman lower-case
for the general case only for ease of reference):

Rap = 0T, — 0T, + T5, T — TauTh (1.0.1)
Gy = Rupy — %Rgab — 87GTy (1.0.2)

For convenience we will define o = 2.
Foy =V Ay — VA, = 0, Ay — Op A, equally F = dA (1.0.3)

Any 5D exterior derivatives and differential forms could also be given a hat,
thus: dB. However, the primary interest here will be 4D forms. [ represents
the 4D D’Alembertian.

Torsion introduces non-obvious conventions in otherwise established defini-
tions. The order of the indices in the Christoffel symbols comes to matter, and
this includes in the Ricci tensor definition and the definition of the Christoffel
symbols themselves:

Vowp = Oqwp — Lopwe (1.0.4)

Christoffel symbols in general will take the usual form: I'¢, or et and
so on. However, often we will need to distinguish a with-torsion Christoffel
symbol from a without-torsion Christoffel symbol in some way. In the completely
antisymmetric case, when the torsion tensor is completely anti-symmetric, we
can write the without-torsion connection coefficients as: I'¢,,. But greater
generality to specify the Levi-Civita connection at all times may call for the
more explicit: {¢,}. More conveniently we may also refer to the Levi-Civita
connection coeflicients using: F¢,, and a covariant derivative operator: A,. In
order to distinguish general G,;, and R, etc. from the case where the torsion

has been explicitly excluded from the definition we use cursive: G,, and Rgp-



2 Introduction

Kaluza’s 1921 theory of gravity and electromagnetism [2][3][4] using a fifth
wrapped-up spatial dimension is at the heart of many modern attempts to
develop new physical theories [1][5]. From supersymmetry to string theories
topologically closed small extra dimensions are used to characterize the vari-
ous forces of nature. It is therefore at the root of many modern attempts and
developments in theoretical physics. However it has a number of foundational
problems and is often considered untenable in itself. This paper looks at these
problems from a purely classical perspective, without involving quantum theory.
This perhaps runs against the grain for modern physics due to the great suc-
cess of quantum mechanics, but is nevertheless worth doing as an independent
enterprise.

The Metric

The theory assumes a (1,4)-Lorentzian Ricci flat manifold to be the under-
lying metric, split (analogously to the later ADM formalism) as follows:

2 2
Jab + (b AaAb (b Aa :| (201)

9gAB = { %A, ¢?
Note that a common scaling factor has been set to & = 1 and so is not

present, this will be reintroduced. By inverting this metric as a matrix (readily
checked by multiplication) we get:

" -4 } (2.0.2)

~AB __ |aA -1 _ g _
97" =138l _[Ab # FAA

Maxwell’s law are automatically satisfied: dF=0 follows from dd = 0. d*F=
47*J can be set by construction. d*J=0, conservation of charge, follows also by
dd=0 on most parts of the manifold.

However, in order to write the metric in this form there is a subtle assump-
tion, that g,p, which will be interpreted as the usual four dimensional space-time
metric, is itself non-singular. However, this will always be the case for moder-
ate or small values of A, which will here be identified with the electromagnetic
4-vector potential. The raising and lowering of this 4-vector are defined in the
obvious way in terms of g,,. The 5D metric can be represented at every point
on the Kaluza manifold in terms of this 4D metric g4, (when it is non-singular),
the vector potential A, and the scalar field ¢2. We have also assumed that
topology is such as to allow the Hodge star to be defined. This means that near
a point charge source the argument that leads to charge conservation potentially
breaks down as the potential may cease to be well-defined. Whereas the Toth
charge that will be defined in the sequel does not have this problem. So two
different definitions of charge are to be given: the Maxwellian, and the Toth
charge.



With values of ¢? around 1 and relatively low 5-dimensional metric curva-
tures, we need not concern ourselves with this assumption beyond stating it on
the basis that physically these parameters encompass tested theory. Given this
proviso A, is a vector and ¢? is a scalar - with respect to the tensor system
defined on any 4-dimensional submanifold that can take the induced metric g.

Kaluza’s Cylinder Condition And The Original Field Equations

Kaluza’s cylinder condition (KCC, or original KCC) is that all partial deriva-
tives in the 5th dimension i.e. d4 and 0404 etc... of all metric components and
of all tensors and their derivatives are zero. A perfect ‘cylinder’. Here we ex-
tend it to torsion terms, and indeed all tensors and pseudo-tensors. This leads
to constraints on g given in [1] by three equations, the field equations of the
original Kaluza theory, where the Einstein-Maxwell stress-energy tensor can be
recognised embedded in the first equation:

k2¢2 1 cd c 1
Gab = 5 zgachdF _ Fanc - g{va(abqﬁ) — gabD¢} (203)
VeFu = —387;/51% (2.0.4)
243
06 = - Fu (2.0.5)
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Note that there is both a sign difference and a possible factor difference with
respect to Wald [7] and Wheeler [6]. The sign difference appears to be due
to the mixed use of metric sign conventions in [1] and can be ignored. A k
factor is present and scaling will be investigated. These will be referred to as
the first, second and third torsionless field equations, or original field equations,
respectively. They are valid only in Kaluza vacuum, that is, outside of matter
and charge models, and when there is no torsion. This requires Kaluza’s original
cylinder condition and the usual conception of matter models.

Definition 2.0.6: Perpendicular electromagnetic solutions.

Fields for which the following equation hold will be called perpendicular elec-
tromagnetic fields, and likewise those that do not satisfy this: non-perpendicular.
Null solutions are perpendicular solutions with a further constraint. But per-
pendicular solutions will be of most interest here.

FF® =0 (2.0.6)

By looking at the third field equation (2.0.5) it can be seen that if the
scalar field does not vary then only a limited range of solutions result, that
have perpendicular electric and magnetic fields. Eg null solutions. The second



field equation (2.0.4) then also imposes no charge sources. Here the scalar
term could be allowed to vary in order to allow for non-zero F,, F®*. This falls
within Kaluza’s original theory. This potentially allows for more electromagnetic
solutions, but there are problems to overcome: the field equations cease being
necessarily electrovacuum.

Foundational Problems

One inadequate and arbitrary fix is to set the scalar field term large, as is
sometimes done to ensure that the second field equation (2.0.4) is identically
zero despite scalar fluctuations. This approach will not be taken here. The
stress-energy tensor under scalar field fluctuations is different from the Einstein-
Maxwell tensor [6][7] and the accepted derivation of the Lorentz force law (for
electrovacuums [6]) can not be assumed. A variable scalar field also implies non-
conservation of Maxwell charge via the third field equation (2.0.5). Attempts
to loosen constraints such as the KCC have also not been successful so far.

Another foundational issue of Kaluza theory is that even with a scalar field
it does not have convincing sources of mass or charge built in. The second
Field equation (2.0.4) has charge sources, but it’s unlikely that realistic sources
are represented by this equation. Matter and charge models in this work will
be governed by different sets of equations in the Kaluza-Cartan space called
‘matter model regimes’, just as matter/energy is analogously assumed to be the
conserved Einstein tensor in general relativity, and vacuum the state where the
Ricci tensor is zero. We may propose alternatives. For example vacuum in the
5D Kaluza space of the original Kaluza theory yields electromagetic fields in
the corresponding 4D space-time. There is room here for some experimentation
with different notions.

As mentioned, charge will be given a possible alternative definition, Toth
charge: as 5-dimensional momentum, following a known line of reasoning [8]
within Kaluza theory. This will enable a derivation of Coulomb’s law, via the
Lorentz force law - leading to a genuine mathematical unification of electro-
magnetism and gravity. As momentum, the Toth charge is of necessity locally
conserved, provided there are no irregularities in the topology of the Kaluza 5th
dimension. Similarly the conservation of Maxwellian charge is normally guar-
anteed by the existence of the potential, except that this may not be valid in
extreme curvatures where the values here associated with the 4-potential may
cease to be a vector.

We will also assume global hyperbolicity in the sense of the existence of a
Cauchy surface as is often done in general relativity to ensure 4 dimensional
causality. Though this will not necessarily guarantee 5D causality in the event
that either KCC is weakened or the theory presented here breaks down due to
singularities. It also requires the usual energy conditions on the resulting 4D
space-time and fields, or a 5D equivalent generalization.

One leading issue is that Kaluza theory offers limited electromagnetic so-
lutions. Non-perpendicular electrovacuums more generally are not so easily
supported as changes in the scalar field may force divergence of the field equa-



tions from those of the electrovacuum (see the first field equation (2.0.3)). This
will lead to the potential failure of the Lorentz Force Law, in effect Coulomb’s
law. This is a fundamental problem to be overcome.

A Solution?

The Lorentz force law/Coulomb’s law is to be derived from the theory (or
theories, if we include different matter model regimes) independently of the elec-
trovacuum solutions of general relativity. Note that in addition the derivation
of the Lorentz force law within general relativity (from an assumed Einstein-
Maxwell stress-energy tensor) is not without problems of principle [6]. But more
importantly the stress-energy tensor that defines the electrovacuum geometry
has to be assumed in classical electrodynamics within general relativity, whereas
in this Kaluza-Cartan theory it is not. The Lorentz force law follows from differ-
ent considerations. Thus, the program is to seek a link between the Toth charge
and Maxwellian charge, so that they might be sufficiently interchangeable - as
this can then be shown to lead to an alternative explanation for the Lorentz

force law. The Lorentz force law, rather than electrovacuum solutions, will be
looked for.

A Torsion Connection And A New Cylinder Condition

A further major change is the definition of a new cylinder condition based
on the to be introduced torsion connection. Matter, charge and spin sources
will also be investigated under the different matter model regimes. To obtain
the sought for range of electromagnetic solutions a particular constraint will
be weakened: that the torsion tensor is necessarily vanishing. Torsion will be
allowed to vary allowing greater scope for solutions. Without this then the new
cylinder condition (also to be defined) would be too strong.

The combination of torsion and the 5th spatial dimension justifies the label
Kaluza-Cartan theory.

3 Overview Of Kaluza-Cartan Theory

The new theory (or theories) presented here, the Kaluza-Cartan theory (or
Kaluza-Cartan theories), purports to resolve the foundational problems of the
original Kaluza theory - even if presenting some new issues of its own.

3.1 The New Cylinder Condition

Throughout this work the limit of a new Kaluza Cylinder Condition (new KCC,
or new cylinder condition) will be taken to be that the covariant derivative of all
tensors in the Kaluza direction are to be zero, and that the covariant derivative
depends on torsion. The 5D metric generally decomposes into 4D metric, vector
potential and scalar field, at least when the embedded 4D metric is non-singular.



The new KCC by construction allows for an atlas of charts wherein also the
partial derivatives are zero. This is true for a subatlas covering the 5D Lorentz
manifold. But charts may exist in the maximal atlas for which these constraints
are not possible. The atlas that is compliant is restricted. This means that
the new KCC can be represented by a subatlas of the maximal atlas for the
manifold. The set of local coordinate transformations that are compliant with
this atlas (call it the Kaluza atlas) is in general non-maximal by design.

A further reduction in how the atlas might be interpreted is also implied
by setting ¢=1, and constant G. The existence of a single unit for space and
time can be assumed, and this must be scaled in unison for all dimensions.
Consistently with cgs units we can choose either centimetres or seconds. This
would leave velocities (and other geometrically unitless quantities) unchanged
in absolute magnitude. This doesn’t prevent reflection of an axis however, and
indeed reflection of the Kaluza dimension will be equivalent to a charge inversion.
However, given an orientation we can also remove this.

Space-time can not be an arbitrary 4D Lorentz submanifold as it must be one
that is normal to a Kaluza axis and that satisfies certain constraints. This will
generally have the interpretation best visualized as a cylinder with a longitudinal
space-time and a perpendicular Kaluza dimension. However this will not be so
simple when considering more than one connection.

We can further reduce the Kaluza atlas by removing boosts in the Kaluza
dimension. Why? This requires the new Kaluza cylinder condition, as it signif-
icantly reduces the possible geometries. Space-time is taken to be a subframe
within a 5D frame within the Kaluza subatlas wherein uncharged matter can
be given a rest frame via a 4D Lorentz transformation. Boosting uncharged
matter along the Kaluza axis will give it kinetic Toth charge (as described in
the Introduction, and as detailed shortly). The Kaluza atlas represents the 4D
view that charge is 4D covariant. Here we require that the Toth charge coin-
cides with Maxwellian charge in some sense. The justification for this assertion
will be clarified later. Rotations into the Kaluza axis can likewise be omitted.
These result in additional constraints on the Christoffel symbols associated with
charts of this subatlas, and enable certain geometrical objects to be more easily
interpreted in space-time. The use of this subatlas does not prevent the theory
being generally covariant, but simplifies the way in which we look at the Kaluza
space through a 4D physical limit and worldview.

Preliminary Description 3.1.1: The Kaluza-Cartan space-time.

In the most general case a Kaluza-Cartan space-time will be a 5D Lorentz
manifold with metric and metric torsion connection. As mentioned above the
new Kaluza cylinder condition will be added (see postulate K7 later) and the
topology of the Kaluza dimension will be closed and geometrically small. A
global Kaluza direction will be defined as normal (relative to the new cylinder
condition) to a 4D Lorentz submanifold. That submanifold, and all parallel
submanifolds as a set, will constitute space-time. The torsionless Levi-Civita
connection will also continue to be available. Charged particles will be those



that are not restricted in movement to within space-time. Uncharged particles
will be restricted to motion within each slice of the set of parallel space-time
slices. The new cylinder condition will ensure that all the parallel space-times
are equivalent. The rigidity of this is expressed via the definition of the Kaluza
atlas.

A complete definition of the global Kaluza-Cartan space-time is given later
in postulates K1-K8.

Definition 3.1.1: The Kaluza atlas.

(i) The Kaluza atlas is a subatlas of the maximal atlas of Kaluza-Cartan
space-time. It can be given geometrized units when interpreted physically.

(i) Boosts and rotations into the Kaluza dimension (as defined by the new
cylinder condition) are explicitly omitted.

(iii) This represents the physical interpretation of charge as a covariant prop-
erty of space-time even if it is not a covariant property of the 5D Kaluza-Cartan
space.

(iv) Mathematically this is also an atlas of charts for which the partial deriva-
tives of tensors and pseudo-tensors in the Kaluza dimension vanish.

(3.1.1)

3.2 Kinetic Toth Charge

Kinetic Toth charge is defined as the 5D momentum component in terms of
the 5D Kaluza rest mass of a hypothesised particle: ie (i) its rest mass in the
5D Lorentz manifold (mygg) and (ii) its proper Kaluza velocity (dx4/dr*) with
respect to a frame in the maximal atlas that follows the particle. And equally
it can be defined in terms of (i) the relativistic rest mass (mg), relative to a
projected frame where the particle is stationary in space-time, but where non-
charged particles are stationary in the Kaluza dimension, and in terms of (ii)
coordinate Kaluza velocity (dz4/dto):

Definition 3.2.1: Toth charge (scalar).

Q* = mk0d$4/d7'* = m0d1‘4/dt0 (321)

This makes sense because mass can be written in fundamental units (i.e. in
distance and time). And the velocities in question defined relative to particular
frames. It is not a generally covariant definition but it is nevertheless mathe-
matically meaningful. In the Appendix (9.8.1) it is shown that this kinetic Toth
charge can be treated in 4D Space-Time, and the Kaluza atlas, as a scalar: the
first equation above is covariant with respect to the Kaluza atlas. It can be
generalized to a 4-vector as follows, and it is also conserved:



In general relativity at the special relativistic Minkowski limit the conser-
vation of momentum-energy /stress-energy can be given in terms of the stress-
energy tensor as follows [9]:

o1 91"
D + 9 0 (3.2.2)
7
Momentum in the j direction:
or% o1

This is approximately true at a weak field limit and can be applied equally to
Kaluza theory, in the absence of torsion. We have a description of conservation
of momentum in the 5th dimension as follows:

o1 9T
=0 3.24
o | om (3:24)
We also have i=4 vanishing by KCC. Thus the conservation of Toth charge

becomes (when generalized to different space-time frames) the property of a
4-vector current, which we know to be conserved:

(T4, 714, 724 T34 (3.2.5)

T + T + 8,7 + 9573 = 0 (3.2.6)

As in relativity this can be extended to a definition that is valid even when
there is curvature. Nevertheless the original Toth charge definition (3.2.1) has
meaning in all Kaluza atlas frames as a scalar.

Kinetic Toth charge current is the 4-vector, induced from 5D Kaluza-Cartan
space as follows (using the Kaluza atlas to ensure it is well-defined as a 4-vector):

J* = —aG™ (3.2.7)
Noting that,

VAGAB =v,G =0 (3.2.8)

Using Wheeler et al [6] p.131, and selecting the correct space-time (or Kaluza
atlas) frame, we have:

Q* = J(1,0,0,0) (3.2.9)

So we have a scalar, then a vector representation of relativisitic invariant
charge current, and finally a 2-tensor unification with mass-energy.

When torsion is introduced this will not prevent the Levi-Civita connection
having meaning and application on the same manifold contemporaneously. Ki-
netic Toth charge is defined in the same way even when torsion is present - via



the Einstein tensor without torsion, and applying conservation of mass-energy
relative to the torsionless connection. The new cylinder condition is defined, on
the other hand, using the torsion connection. Distinction is therefore necessary
between connections. So the 5D geoemtry depends on the torsion connection,
but here a conservation still depends on the Levi-Civita connection.

The definition of kinetic charge and the conservation law of mass-energy-
charge need to be written using the appropriate notation when torsion is used
on the same manifold:

Definition 3.2.10: Toth charge current.

Toth charge current is defined to be the 4-vector J** = —aéa4, with respect
to the Kaluza atlas, and noting:

AAGAE =0

(3.2.10)

3.3 Two Types Of Geometrized Charge

The metric components used in [1] as the 5D Kaluza metric, defined in terms of
the original KCC follow. It will be equally used here in its new context, where
the geometry of this space will depend on the new KCC defined in terms of a
metric torsion tensor. It is called here the Kaluza-Cartan metric to remind us
of this context. The vector potential and electromagnetic fields formed via the
metric are sourced in Maxwell charge Qa;.

Definition 3.3.1: The 5D Kaluza-Cartan metric.

. ab + K202 AL A, kP2 A,
gap = [ Jab k¢f4b b ¢¢2 (3.3.1)
This gives inverse as follows:
ab a
. . g —kA
gAB = |gAB| 1_ |: —]CAb # + k‘QAiAi :| (332)

This gives (with respect to space-time) perpendicular solutions [1] under the
original KCC, such that Gy, = —%2 Fo.F¢. Compare this with [7] where we
have G4 = 2F, Ff in geometrized units we would need to have k = 2 or k = —2
for compatibility of results and formulas. Noting the sign change introduced by
[1] - where it appears that the Einstein tensor was defined relative to (4, —,
—, —), despite the 5D metric tensor being given in a form that can only be
(=, +, +, +, +), which is confusing. Approximately the same result, but with
consistent sign conventions, is achieved here in (5.2.4).

10



The geometrized units, Wald [7], give a relation for mass in terms of funda-
mental units. This leads to an expression for Toth charge in terms of Kaluza
momentum when £ = 2 and G = 1. G and k are not independent however.
If we fix one the other is fixed too, as a consequence of requiring the Lorentz
force law written in familiar form. The relation between G and k is given in
equation (6.5.5). Simple compatibility with Wald [7], where k = 2 and G = 1,
results however. The sign of k is also fixed by (6.1.4). The result as given in
the Appendix, written in terms of the Toth charge Q*, is:

c

Q= Tah (3.3.3)

Generally speaking the approach here will be to do the calculations using
k =1 and then add in the general k term later, as and when needed, simply to
ease calculation.

An important part of this theory is the nature of the relationship between
these two types of charge: Q* and Qs - to be dealt with later.

3.4 Consistency With Special Relativity

Toth charge is identified with 5D momentum in a space-time rest frame. This
is already known in the original Kaluza theory to obey a Lorentz-like force law,
but will be extended here in scope.

That this is consistent with special relativity can be investigated. What this
consistency means is that the relativistic mass created by momentum in the 5th
dimension is kinematically identical to the relativistic rest mass.

The additions of velocities in special relativity is not obvious. Assume a flat
5D Kaluza space (i.e without geometric curvature or torsion, thus analogously to
special relativity at a flat space-time limit, a 5D Minkowski limit). Space-time
can be viewed as a 4D slice (or series of parallel slices) perpendicular to the 5th
Kaluza dimension that minimizes the length of any loops that are perpendicular
to it. Taking a particle and an inertial frame, the relativistic rest frame where
the particle is stationary with respect to space-time but moving with velocity
w in the 5th dimension, and a second frame where the charge is now moving in
space-time at velocity v, but still with velocity v in the 5th dimension, then the
total speed squared of the particle in the second frame is according to relativistic
addition of orthogonal velocities:

s* = u? +0* — u?v? (3.4.1)

The particle moving in the Kaluza dimension with velocity u, but stationary
with respect to 4D space-time, will have a special relativistic 4D rest mass (mg)
normally greater than its 5D Kaluza rest mass (myg). We can see that the
Kaluza rest mass definition (myo) is consistent with the orthogonal addition of
velocities as follows:

11



—&Wereu: anh[sinh =1 (Q*/(m 4.
mo = Vo) h tanh[sinh™ " (Q*/(mko))] (3.4.2)
N mo _ ko 1 _ Mo
Ao JI-w) SO JO-uE— ot ute?)
(3.4.3)

By putting u = tanh[sinh ™ (Q*/(my))] (keeping the hyperbolics to recall
the conversion between unidirectional proper and coordinate velocities) into the
definition of relativistic rest mass in terms of Kaluza rest mass and solving, we
get that charge, whether positive or negative, is related to the relativistic rest
mass according to the following formula:

R dt
cosh[sinh 1(Q /(myo))] = mo/mro = dT(’)*
= V(Q*/(mxo))? +1 (3.4.4)
Using k = 2 we also have, for a typical unit charge:
me = 9.1094 x 10~%8¢ (3.4.5)

Q" = 4.8032 x 10~ VstatC = 4.8032 x 3.87 x 10719%335 = 1.859 x 107 6¢ (3.4.6)

If we take these figures and equate m, = mg then we end up with imaginary
myo and imaginary proper Kaluza velocity. Obviously to detail this the Kaluza-
Cartan space-time would have to be adapted further in some way. But on the
other hand it causes no causality problems provided the net result is compliant
with any energy conditions being applied. And what is important in this respect
is that the figures we know to be physical in 4D remain so.

Further issues are pertinent.

Observed electrons have static charge, angular momentum, a magnetic mo-
ment, and a flavor. The only thing distinguishing the electron from the muon
is the flavor. The mass difference between the muon and the electron is about
105 MeV, perhaps solely due to this difference in flavor. The issue of modeling
particles within a classical theory is, not surprisingly, a difficult one! Thus at
this stage the idealized hypothetical charges used here, and real particles, can
only be tentatively correlated.

It is possible to proceed without concern for the foundational issues of such
charge models or attempting to interpret this quandary, instead simply devel-
oping the mathematics as is and seeing where it leads without judging it a
priori.

3.5 Matter And Charge Models, A Disclaimer

This theory assumes some sort of particle model of matter and charge is possible,
that it can be added to the original theory without significantly changing the

12



ambient space-time solution and thus its own path, which is as approximate
as in general relativity, except as a limit. Secondly we might imagine that
what has been described is a particle whizzing around the fifth dimension like
a roller coaster on its spiralled tracks. The cylinder conditions can in fact be
maintained if, instead of a 5D particle, the matter and charge sources were rather
a ‘solid’ ring, locked into place around the 5th dimension, rotating at some
predetermined proper Kaluza velocity (albeit imaginary). An exact solution
could even involve changes in the size of the 5th dimension. None of that is
investigated here, the aim was originally just to see whether non-perpendicular
solutions can be found in a variant Kaluza theory, and what constraints are
needed.

It is a proviso that a physically realistic matter and charge model has not
been detailed, nor formally identified with a real charge source such as an elec-
tron. The assumption then that such a hypothetical model would necessar-
ily follow (albeit approximately) some predetermined path such as geodesics is
therefore an assumption - though not without analogs in other, experimentally
valid classical theories. However, with the addition of torsion this becomes very
much an assumption. Geodesics, or extremals, being followed by spinless par-
ticles in 4D Einstein-Cartan theory [11]. Other particles follow different paths
when interaction with torsion is present.

An exact differential geometrical model of such a matter and charge source
is presumed too difficult to produce here, even if possible, especially given the
previous discussion about imaginary masses and velocities. In addition, the
fact that real charge sources are quantum mechanical may also be discouraging,
though a classical limit interpretation should be possible regardless. The phi-
losophy here has not been to provide a Lagrangian for a hypothesised charge
model either, but instead to simply delimit what might constitute such models,
and to weaken such constraints as much as possible.

This work assumes limited concepts of particle charge models and attempts
to find non-perpendicular electromagnetic fields and an explanation for the
Lorentz force law. The theory is an attempt to replicate all the important fea-
tures of classical physics, without predicting or imposing a particular model of
charge as the correct one. The following assumption summarizes the preceding:

Geodesic Assumption: That any particle-like matter and charge model
approximately follow extremals. (Auto-parallels and extremals being two analogs
of geodesics used when torsion is present, but neither of which in the most gen-
eral case determine the paths followed by particles).

Note that spinless particles according to [11] will follow extremals. Extremals
coincide with auto-parallels when torsion is completely antisymmetric. Particles
with spin may interact in other ways. So the assumption is that torsion-spin
coupling does not significantly effect the path of the particle, at least to some
approximation.

Further we shall introduce different sets of equations, constraints and defi-
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nitions that exclusively define both matter regions and vacuum regions called
‘matter model regimes’. Different matter model regimes will for the most part
not be mutually compatible. That the vacuum consists of Ricci flat regions with
respect to the Levi-Civita connection is the matter model regime of general rela-
tivity. This works well as the divergence of the Einstein tensor (without torsion)
is zero, and the Einstein tensor (without torsion) is zero in vacuum (as defined
within general relativity) regions. Thus we can say that the vacuum (within that
conception of matter and vacuum) has some sort of ‘integrity’. Alternatives are
possible, and Kaluza’s original theory suggests this in that 5D Ricci flatness
implies 4D electromagnetic fields - it is interesting that a so-called ‘vacuum’ in
one situation can be interpreted as having matter or energy in another. The
definitions cease to follow the basic intuition of general relativity, and a formal
regime, or the possibility to define different regimes, is needed. Generally mat-
ter and charge models will be the complement of the vacuum, which is different
from general relativity.

3.6 Field Equations And Torsion

The detailed formulas for dealing with Christoffel symbols, torsion and other
mathematical necessities are in the Appendix. Exploration of various new field
equations is undertaken in the sequel given the new cylinder condition which is
very tight and the extra degrees of freedom given by torsion.

Torsion is necessary to free up degrees of freedom after they have been
reduced substantially by the new cylinder condition.

The field equations are dependent on the matter model regimes that are to
be defined.

4 Postulates Of The Kaluza-Cartan Theory

In this section an axiomatization of the theory in terms of postulates, assump-
tions, notes and other definitions is presented. K1-K7, together with limit K8,
constitute the core of the theory proper. The matter model regime then chosen
constitutes a variation in the theory proper from one Kaluza-Cartan theory to
another.

4.1 Kaluza-Cartan Space-Time Definition

A definition of Kaluza-Cartan Space-Time, or Kaluza-Cartan Space, follows.
K7 is the new KCC:

Core Definitions and Postulates:
(K1) A Kaluza-Cartan manifold is a 5D smooth Lorentzian manifold.

(K2) One spatial dimension is topologically closed and small, the Kaluza
dimension. There is a global unit vector that defines this direction and they
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form closed non-intersecting loops.

(K3) The other spatial dimensions and time dimension are large.

(K4) There is a connection that is a metric torsion connection with respect
to the geometry, this is the torsion connection.

(K5) Kaluza-Cartan Space is assumed globally hyperbolic in the sense that
there exists a 3D spatial cauchy surface plus time, extended in the obvious way
via the new cylinder condition into 5D.

(K6) Kaluza-Cartan Space is oriented.

(K7) The covariant derivative (with respect to the torsion tensor) of all
tensors and pseudotensors in the Kaluza direction are zero. This is the covariant
derivative with lower index: @4.

(K8) A relatively weak curvature limit will be assumed. The metric will be
approximately flat. This will in effect define the classical limit.

The new KCC given here determines that local charts are possible with
vanishing partial derivatives for all tensors and that a Kaluza atlas (3.1.1) is
possible. That is, partial derivatives with lower index: 04 are all zero. What
we can do now is take a loop by following the Kaluza direction and forming
a l-dimensional submanifold for every point of space-time. By inspecting the
bundles inherited by each loop submanifold we can observe that at every point
they are necessarily static. As a result 9* and V4 must be vanishing for all
tensors.

4.2 The Scalar Field, Torsion And Observation

In the sequel a justification (somewhat empirical - equation 6.4.1) is given for
restricting the scalar field and accordingly the metric, maximal atlas and Kaluza
atlas, as necessary:

(B1) 62 =1

(B2) The torsion tensor will be given the following well-behaved limit: It is
to be weakly completely antisymmetric under B2 - A weak antisymmetric limit
. This will be invoked only as required in the definition of certain matter model
regimes. As with B1 its use will be delayed until necessary. It thus takes on an
empirical quality. B2(a): Approaching this limit, symmetric parts of contorsion
tensor (and their first derivatives) are treated as ‘small’ relative to typical elec-
tromagnetic terms, and any antisymmetric parts of the contorsion tensor. It is
claimed that such a limit may be approached without loss of generality of the
solutions from a physical perspective. In other words at the K8 limit (see S10
for related points), equation (5.1.9) is compatible with the weak antisymmetric
limit, and poses no constraints due to the potential being treated as small as
a metric component. As such we may approximately and with caution apply
certain results associated with complete antisymmetry to this limit, noting that
such results must be taken to be approached only approximately and not abso-
lute. B2(b): We also require that the torsion term K o 1s not disproportionately
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large as it will later be multiplied by a small term, yet the resulting term is to
remain of low significance.

4.3 Secondary Definitions And Points

Some useful observations, definitions and terminology:

(S1) The Kaluza-Cartan vacuum is a Ricci flat region of a Kaluza-Cartan
manifold with respect to the torsion connection definition of the Ricci tensor.
Similarly the Kaluza vacuum is a Ricci flat region with respect to the Levi-
Civita connection. They are different: Rap =0 and Ry =0 respectively. Here
they are both defined in terms of the geometry implied by the new KCC. There
is also the Kaluza space (and hence Kaluza vacuum) of the original Kaluza
theory. So the definition of the vacuum, whichever may be being referenced,
depends by this definition on the cylinder condition being used in two distinct
ways. The Kaluza vacuum in the presence of torsion typically contains fields
when the 4D metric is inspected, and will most often not be Ricci flat in 4D
space-time. Likewise for the Kaluza vacuum under the original KCC, and for
the Kaluza-Cartan vacuum under the new KCC. However, this is the case in
three different ways. Other definitions may lead to similar complexities.

(S2) We will define matter model regimes that pick out the definition of
vacuum we wish to use and that delimit matter and charge models. Note that
the cosmological constant of general relativity could perhaps be included as part
of an alternative regime not used here. Energy conditions may potentially also
be included. There is scope for alternatives and further development.

(S3) A number of possible other global constraints can be experimented
with and applied to matter models, the aim here is to keep the options as broad
as possible. Assumptions pertaining to matter models are therefore defined
separately within matter model regimes. This separation into different regimes
allows for the maximum applicability of the work presented here, and to allow
also for experimental input.

(S4) K7 can be used to decompose the entire 5D geometry into a 4D metric,
a vector potential and a scalar field when curvatures are not so extreme as to
lead to a singularity in the 4D metric. It defines how space-time is a parallel
set of submanifolds.

(S5) Singularities resulting from break-down of the S4 decomposition may
indicate regions where the theory as presented also breaks down. This could
however also be useful in extending the theory to the quantum scale. This is
not dealt with further. K8 is used to avoid this eventuality.

(S6) What is allowed as a physical solution needs to be delimited in some
way, at the very least to avoid acausality as in classical physics. This can be
done by using energy conditions as in relativity for the resultant 4D space-
time, at least as long as the decomposition (S4, S5) doesn’t break-down. The
cylinder condition can then extrapolate that to the whole of the Kaluza-Cartan
manifold. Here we will largely not worry about this problem and assume that it

16



can ultimately be subsumed in an experimentally correct matter model regime
at a later date.

(S7) Matter and charge models, and matter model regimes, must also be
consistent with K7. A realistic elementary charge model would have imaginary
Kaluza rest mass and Kaluza velocity, but this does not prevent it satisfying
the cylinder condition.

(S8) K7 may well be a limit rather than a fundamental postulate. Similiarly
the lack of a scalar field may be true only at a limit. This is not dealt with
further. By definition of B2, it is necessary that complete antisymmetry is a
limit and that it is not an absolute (due to 5.1.9). Even when it is assumed to be
approximately true, it would most likely be just a limit (i.e strictly not always
even approximately empiricially true), as a consequence of its crude definition
in terms of a limit.

(S9) The new KCC is defined in terms of covariant derivatives instead of
the usual frame dependent partial derivatives, and then a restricted Kaluza
subatlas is used in which the partial derivatives are also zero. In particular it
takes account of torsion.

(S10) A locally flat space limit will be invoked characterised by the vanish-
ing of the first derivatives of metric components, S10(a), but not necessarily
the vanishing of second derivatives. This will also correspond to a weak limit
Maxwellian electromagnetic field by construction, cf definition (3.3.1). That
is, at this limit, there are neither gravitational nor electromagnetic fields, but
charge and mass sources remain. It is therefore a stronger notion of locality than
is normally used in classical physics, because electromagnetism is formed here
from the metric. Terms that would otherwise be significant in this respect, but
that are multiplied by a vector potential, will be treated as tending to be ‘small’
relative to other significant terms via K8. Thus, in particular, in comparison to
other more significant charge and ‘mass’ terms (i.e second derivatives of metric
components). S10(b):

Avawaacgyz — O Avawargyz — 0

Similar considerations are used to obtain B2.

(S11) Note that in the general case with torsion, whilst every tensor and
pseudo-tensor in sight has covariant derivative in the Kaluza direction of zero
with respect to the torsion connection, and similarly partial derivatives of zero
likewise, the covariant derivative with respect to the non-torsion derivative is
not so constrained.

4.4 Matter And Charge Models
Some notes on matter and charge models:
(M1) Matter and charge models must be consistent with the preceding.

(M2) Simple examples could include black-hole singularities, though these
are also not good examples in the general case.
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(M3) Net positivity of mass and energy may be imposed by the usual energy
conditions or similar extensions in 5D.

(M4) No comment is passed on the fact that the proportions of mass and
charge of a realistic elementary charge model yield imaginary Kaluza rest mass
and Kaluza proper velocity - this paper proceeds without judging this peculiar
result.

(M5) There is a need to make an assumption about the paths of particles (ie
small matter and charge models): the Geodesic Assumption, that light particle-
like solutions are possible and follow 5D auto-parallels. I.e. geodesics when
torsion is not present. This should in any case be the case for spinless particles,
as seen in 4D Einstein-Cartan theory. As applied to particles with spin we are
making an assumption about spin-torsion coupling that may well be incorrect,
though likely correct at a limit.

(M6) Quantization of charge is not dealt with - no less than quantization
of energy or momentum. The proper place for this is a quantum theory, or a
theory that encompasses the quantum.

(M7) The exact definition of matter and charge in 5D, matter charge models,
will be somewhat different from the related concept in general relativity, and,
as with 5D vacuum, will depend on the matter model regime selected.

4.5 Matter Model Regimes

This sections defines the different matter model regimes used in this work. They
are mutually exclusive in that with respect to any particular Kaluza-Cartan
theory only one may be permissible at a time. It is a choice as to which one is
being used for any particular theory. It should be noted that generally vacuum
is here complementary to matter, unlike in general relativity where energy fields
are meaningful which are neither matter fields nor the vacuum. This is possible
as these energy fields represent Weyl curvature in the 5D vacuum in Kaluza’s
original theory, even if in 4D they also inherit Ricci curvature. However, there
is some complexity here.

(RO) The basic matter model regime defines matter-charge models as any
part of the Kaluza-Cartan manifold that are not Kaluza vacuums (according to
definition S1) - analogously to Kaluza’s original theory, but in the presence of
torsion with respect to the new cylinder condition. R0(a): vacuum is defined
as 7@,43 = 0. This implies QAB = 0. This has the advantage of a ready-made
conservation law for the Einstein tensor (without torsion). This is by definition
free of Toth charge (3.2.1) and is shown to be free of local Maxwellian charge
in (5.3.1).

(R1) The next most obvious definition of matter-charge models would be to
define them as any regions that are not Kaluza-Cartan vacuums (according to
definition S1). R1(a): vacuum is defined as Rap = 0. This implies in vacuum
that Gap = 0. Matter models are then the complement of this. However, a
conservation law is added in by hand. R1(b): VRac = VCRep = 0. Not
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only must the vacuum have integrity, but matter models must conserve their
mass in some sense. Equation (5.1.9) suggests that non-complete antisymmetry
is required of torsion, meaning that a symmetrical component is to be allowed
for torsion. This affects R1 and leads to R1(b). R1 will also apply the somewhat
heavy-handed constraint R1(c): K, = 0 on the entire manifold, to ensure the
Kaluza-Cartan vacuum stays free of local Maxwell charge via (5.3.3).

(R2) This matter model regime proposes the paradoxical idea that we are
mistaken in looking for matter or charge models, but that what is really re-
quired is a spin current model. The vacuum is defined as R2(a): Vag = 0, see
(9.3.2). Matter-charge models, or now spin current models, are defined as the
complement of this new concept of vacuum. Empirically expected behaviour is
sought approaching the S10 plus B2 limit.

(R3) This matter model regime is simply R1 without R1(c). So we have
R3(a): vacuum is defined as Rap = 0, and R3(b): VCRac = VCRep = 0,
analogously. Matter is defined as the complement of this. Instead of R1(c) the
S10 plus B2 limit is used to approach empirical behaviour, as with R2 above.

(R4) No constraints are applied. The Kaluza-Cartan vacuum is defined as
R4(b): Rap = 0. Matter-charge models are defined as the complement of],
contrarily, the Kaluza vacuum (S1). The S10 plus B2 limit is again used to
approach empirical behaviour as a limit. The problems this entails, as matter
models and certain fields overlap, will be analysed.

(R5) The following constraint will be imposed over the entire Kaluza-Cartan
space for this matter model regime R4(a): ALRup = AuRis. Conceptually
the conserved Bel hypothesis (see Appendix on Bel super-energy for motivation)
has been used here. The Kaluza-Cartan vacuum is defined as R4(b): Rap =0.
Matter-charge models are defined as the complement of, contrarily, the Kaluza
vacuum (S1). The S10 plus B2 limit is again used to approach empirical be-
haviour as a limit. This is R4 plus an extra constraint.

Clearly other alternatives are possible with varying degrees of potential va-
lidity. R1, R3, R4 and R5 are potentially viable matter model regimes for
Kaluza-Cartan theory, RO and R2 will be shown to be deficient in some way.

4.6 An Apology

Admittedly (M4) through (M7) and the consideration of different matter model
regimes show that this theory is (or these theories are) in an early state of
development. Many theories pass through such a state, and complete realization
from the outset can not be expected. An objective in the foregoing has been to
present the postulates that are needed for the theory to be well-defined, or have
well-defined parameters, even if incomplete.
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Further and better matter model regimes than those given here may well be
possible and should be searched for.
Ultimately empirical observation determines validity.

5 The Field Equations

5.1 The Cylinder Condition And Scalar Field

Here we look at how K7 affects the Christoffel symbols of any coordinate system
within the Kaluza atlas (using k¥ = 1). Given that the Kaluza atlas is reduced in
the following way: all partial derivatives of tensors in the Kaluza direction are
set to zero. The Appendix (see section containing 9.4.1 and related) contains
a reference for Christoffel symbol working both with and without the torsion
component.

The following follow from the selection of coordinates that set the partial
derivatives in the Kaluza dimension to zero; from K7, the new covariant version
of the Kaluza cylinder condition used in this paper; and, from the relationship
between these two and the Christoffel symbols given in Wald [7] p33 eqn (3.1.14)
as applied to a number of test vectors. Note that there is no hint of symmetry
of the (with torsion) Christoffel symbols suggested here. That is, these terms
are forced zero by the fact that both the partial derivatives and the covariant
derivatives in the Kaluza direction are zero. Cf equation (1.0.4) where the
consequences of setting both the partial derivatives and the covariant derivative
to zero can be seen on the Christoffel symbols. The new cylinder condition is
quite strong and without torsion would lead immediately to insufficiently diverse
geometry given the other postulates here.

0=20% =" 42 0ugea + 0a6*AcAa + 0:0*Ag — 0ap?Ac) + §240:0% — 2K, 2
d
(5.1.1)

0=207 =2 §4040°Ag = > 504" + 94 04¢” — 2K .3} (5.1.2)
d d

We have:
2K, 2 = (007 Ag — Dad® Ac) + 1007 (5.1.3)
K = — 498,09 (5.1.4)

Inspecting the first of these equations (5.1.1), and given that K pcy = 0
(9.2.4), and further applying A=c without summing, we have a constraint on
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the scalar field in terms of the vector potential that further motivates postulate
B1. Here, however, we make a priori use of postulate B1.
The immediate result of this is as follows (using k = 1):

2K, = §44(0. A4 — DaA.) (5.1.5)

2K, =0 (5.1.6)

Giving the contorsion a very clear interpretation here in terms of the elec-
tromagnetic field.

. 1
K, =F¢ (5.1.7)

- 4 1 d

Kye = —5A e (5.1.8)

In the case of complete antisymmetry of torsion/contorsion, again using
(5.1.1), this specialises to:

K4c4 = [A(c44 = f:14 = f‘ic = Achd =0 (519)

This presents too tight a constraint on electromagnetism. For this reason
non-completely antisymmetric torsion is allowed. In the general case:

X . . 1
K[4C]4 +K,1=K,"'= —§Achd

(40)
K,'=0=-K, '+ K, (5.1.10)
v o4 o4 1oy 1 a4
K[4C] - K(4p) — §K4C — _ZA F(-d
chll - f‘i(' =
. . 1
KA=11 = —§Achd (5.1.11)

5.2 The First Field Equation With Torsion, k£ =1

The first field equation in this theory is somewhat complicated (5.2.4), but
an analysis here will show that Kaluza-Cartan theory and the original Kaluza
theory share a limit for certain perpendicular solutions. This analysis also in-
vestigates whether we need to use an alternative matter model regime to RO,
such as that of R1, in order to obtain a wider range of electromagnetic fields.

Looking at the Ricci tensor, but here with torsion (using equations 9.4.7
repeatedly, and the new KCC as required):

Ray = 0cT, — 008, + T5. I8 —TF, I8
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Rab = Bcf‘ia - 8bfga + f‘l%f‘gc - f‘gaf‘bDC
Rab - 6cfga - 8bfza + f‘nggC - IAjdoaf‘l;dc (521)

Doing the same for the without torsion definitions (using equations 9.4.6
repeatedly, and the new KCC as required):

ﬁab:aCﬁbC:l—abﬁga‘f'ﬁg/;ﬁgc_ﬁgaﬁch
- . . 1 A . .
Rap = 0cl §q — Onf 4 + 5ab(,zxﬂul«“ad) SO R O (5.2.2)

In the original Kaluza theory the Ricci curvature of the 5D space is set to 0.
The first field equation (2.0.3) comes from looking at the Ricci curvature of the
space-time that results. Here there is a choice: whether to base the vacuum on
a Kaluza vacuum or a Kaluza-Cartan vacuum. Taking as a lead the concept of
matter-charge models according to R0 and conservation law (3.2.10), the Kaluza
vacuum is investigated first. Setting Ry = 0 (ie matter model regime R0) and
using the local limit (S10):

. N . 1
Rab = Rap — Rap = Ocl o — OvF ¢q — Ocl o + Ol ¢f — §3b(AdFad)

1 1 1
= _iac(A,,F; + A F,°) + iab(AcF; + A F.6) — 5a;,(AdFad)
1 . .
— —gac(AbFa + A F,°)

- 7%AbacFaC o %Aaachc - (acAb)Fac - (acAa)FbC (523)

1 1
2 2

The local limit S10 reduces (5.2.3) further. Putting non-S10 local limit terms
back in gives:

1 C P i [ [
= =5 0(AF + AcF) + F b e = Flal b = F b Do+ F Bl 10
1 c C C d C d
= —iac(AbFa + Aan ) + Fbach - FdanC
~Fial Do+ Fbaf 5+ Fbaf 13
1 )
= S0l AV ES + AuF) - Fiah le = F ol i
c 1 c c d 1 d d C 1 c ¢ 1 d
—(Fba+§(AbFa +Au L, ))(ch+5(Ach +AF, ))—(Fba+§(AbFa +AF, ))(—§A Feq)
1 c 1 L. 1
+(F a5 (AaF A+ AF ) (F ot 5 (A AcE, )+ (G FO) (= AaF ot 5 (0 Act0:Ap)
1

1 1 1
+(_ACF§a + E(adAa + 8aAd))(§de) + (_§AdFad>(_§Achc)
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1 c c
= fiac(AbFa + AJE°)
LA pe A0
—5( b+ AuFy)F ge
1 c d d 1 c cy -d 1 c c 1 d d
+§Fda(Ach +A5Fb )+§(AdFa +Aan )Fbc+§(AdFa +A0«Fd )i(Ach +A0Fb )
1 1
+§Fac(—AdFZc + 5(81,146 + 8. 4))
c 1 1 .4 1 4 c
+(_A6Fda + 5(8(114@ + 8aAd))§Fb + ZA FoqA .
]‘ c ]' c 1 c 1 [ ]- c c d
= —EAbacFa — iAaach — 5(86Ab)Fa — 5(8CAQ)F,) — i(AbFa + A F g,
1 1 c 1 . c
+§F§aAchd +5AdF, Fé o+ Z(AdFa + AJFO)(AGES + AF
1 1 1
+ 7 Fa (O Ac + 0cy) + 1(0aAa + 0aAa) B, + A FagAF
1 .1 .
— 7§AbaCFa - §Aa5'ch
1 . 1 PR 1 d
_5(80A5)Fa - 5(80Aa)Fb + ZFa (OpAc + 0. Ap) + Z(adAa + 0, A4)F,
1 c c d 1 c d 1 cr-d
—5 (A FT + Al )G+ SF G A E + S AT F i
LA F e+ A PO (A FE + AFY) + S AdE, A
+Z( dFa+ aFd)( ch + ch)‘i’Z Fad Fbc
1 1 1
= — A FC — A0 F, 4+ =F, . F,f
2baca 2aacb+2acb
1 c c d 1 c d 1 cr-d
_§(AbFa +Aan )ch + §FdaAch + §Aan Fbc

1 1
7 (AaF,S + AJFE)(AES + AR + ZAdFadACFbC (5.2.4)

The electrovacuum terms for a perpendicular electromagnetic field can be
seen embedded in this equation as the third term, this shows that we are not pro-
ducing a completely new theory from Kaluza’s original theory. Kaluza-Cartan
theory has a limit in common with Kaluza theory. However, if the charge terms
are ignored then there is a lack in the above equation of likely significant terms
to provide any other type of solution, non-perpendicular electromagnetic fields
in particular.

For this reason we can try an alternative matter model regime such as R1
and the Kaluza-Cartan vacuum in order to obtain a fuller range of geometries.
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Now, doing the same with respect to R1, and conservation law R1(b), so
that we are defining vacuum as a Kaluza-Cartan vacuum (and matter models
as strictly complement to vacuum) according to S1 (Rap = 0) - and using
(5.2.1) - gives a still more complicated picture:

Rab = Rab - Rab = acha - 817F2a + FgaFgc - FgaF;)ic
~8.0¢, +9p1¢, — T5. T4 + TG, (5.2.5)
Detailing each term here without a specific point to make is not profitable,
is lengthy, and shall not be undertaken.
There is a limit in common between R0 and R1, towards the S10 local limit,
when there is no appreciable K, BC (noting that perpendicular solutions under

RO need no such torsion). More generally allowing torsion terms of the form
K, allows for non-perpendicular electromagnetic fields under R1.

With the exception of RO all the matter model regimes are weaker than the
constraint imposed by R0, so that as a constraint on non-perpendiclar solutions,
this first field equation can be ignored. It’s only RO that creates a problem here,
that restricts solutions to perpendicular solutions.

5.3 The Second Field Equation With Torsion

Rederivation of the second field equation under the new KCC:
7%&4 - acﬁfa - a4ﬁga +ﬁg{zﬁg(] - ﬁ%aﬁélDC
:acﬁécla—’_ﬁéclaﬁgc_ﬁ%aﬁﬁ:acﬁécla—’_ﬁéclaﬁgc_ﬁgaﬁgc
1
2
Looking at this locally (note S10) so that 1st derivatives are vanishing, but
second derivatives remain (re-inserting general k):

1 1 1 1
= 0F + S FG e+ FiAFey — S (F o + 5 (AaFy + AuF§))FY

7%/114 = gacF(; (531)

This couldn’t be a clearer conception of Maxwell charge locally. Setting this
to 0 in Kaluza vacuum would assure us that Maxwell charge is locally restricted
to matter-charge models, however, matter model regime RO has already been
discounted as not providing sufficient solutions.

By definition (and the new KCC, and 9.4.7), we immediately get:

Rus =0 (5.3.2)
Whereas R4b simplifies at the S10 local limit to:

=~ 1 - - o C T - C 1o
Ry, = iachc — 0K, 4 0K + K, K, = Ky K (5.3.3)
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This is also locally conserved Maxwell charge given no K s » that is if R1(c)
is satisfied under matter model regime R1. This limit is also approached when
B2 is approached.

These calculations can equally be used for the other matter model regimes.

5.4 The Third Field Equation With Torsion, k£ =1

This section shows how torsion releases the constraint of the third torsionless
field equation (2.0.5), thus allowing non-perpendicular solutions. The constraint
that the Ricci tensor be zero leads to no non-perpendicular solutions in the
original Kaluza theory. This is caused by setting Rus = 0 in that theory and
observing the terms. The result is that (when the scalar field is constant)
0 = F,4F°? in the original Kaluza theory. The same issue arises here:

We have:
Rus = 0cF§) — uF &y + FS4F B — FOLF it
—0-0+0—FG,Fb = —f5,Fd
1
=~ FiF! (5.4.1)

The result is that whilst we can have non-perpendicular solutions, we can
only have them outside of a strict Kaluza vacuum, contradicting R0O. This sug-
gests that the perpendicular solutions are those which correlate with a Kaluza
vacuum, whilst the non-perpendicular solutions arise in Kaluza-Cartan vacuum.

By definition (and the new KCC, and 9.4.7), we immediately get:

Ry =0 (5.4.2)

Thus no such limit is placed on matter model regime R1.
R1, therefore, is an example valid theory satisfying broadly the requirements
demanded of it, provided a Lorentz force law is derived and the relationship

between Toth charge and Maxwell charge clarified, as will be done in a later
section.

The other mater models similarly leaves open the possibility for non-perpendicular

electromagnetic fields here. There is no reason for (5.4.1) to be 0 in these cases,
and so non-perpendicular solutions become possible.

6 The Lorentz Force Law

Toth [8] derives a Lorentz-like force law where there is a static scalar field and
Kaluza’s cylinder condition applies in the original Kaluza theory. The resulting
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‘charge’ is the momentum term in the fifth dimension and it was not appar-
ent how this related to the Maxwell current, except as Toth states via ‘formal
equivalence’. While this result was not new, Toth’s calculation is extended here
for the new theory and clarification of the issue is obtained. Here we make use
of the Geodesic Assumption M5. First the identification of Toth charge and
Maxwell charge is investigated.

6.1 Toth Charge

Now to investigate the relationship between Toth charge and Maxwell charge.
For this we need the limit defined by both S10 and KS8.

Using Appendix (9.7.3), at the defined limit S10 and K8:
5a4 5 a4 1 ~ad s 5 a4 1 a\P 5 a4
72(14 — aCﬁC4a _ a4ﬁ%a + ﬁCbaﬁBC _ ﬁCDaﬁDbC
Gt = R = 9 [ e (6.1.1)

Applying the local Maxwell flat space-time limit, and putting &k back in, and
by using Appendix equation (9.6.1) for the Christoffel symbol, we get:

. 1
R — 5 OckF (6.1.2)

And so by (3.2.10),

ﬁ%—%&ﬁ’ (6.1.3)

So Toth and Maxwell charges are related by a simple formula. The right
hand side being Maxwell’s charge current (see p.81 of [6]), and has the correct
sign to identify a positive Toth charge Q* with a positive Maxwell charge source
47Qps, whenever ak > 0. In the appropriate space-time frame, and Kaluza atlas
frame, and at the appropriate limit, using (3.2.9):

2
4 =4+—0Q" 1.4
TQMm +akQ (6.1.4)

6.2 A Lorentz-Like Force Law

The Christoffel symbols and the geodesic equation are the symmetric ones de-
fined in the presence of totally antisymmetric torsion. We will here initially use
k =1, a general k£ can be added in later.

ff4b) = 39°U049bd + ObGad — Sadas) + 59°*(04gba + OvJaa — O4gap) =

$9°U060(0% Aa) — 0a(9*Ap)] + 59°%04dbd + 3974 600aa =

26



30%9°0p Ad — 0aAs] + 39°M Aadyd® — 597 Apdad® + 59°%0agba + 337 00* =

%(bQFC %ngA 5 ¢2 *QCdAb(Sd(ﬁz 290d649bd + 29c46b¢2
¢2Fc _ QngAb5d¢2 2gcd54gbd =3 ¢2FC CdAbéd(bQ
(6.2.1)
[, = 29°P(649ap + 6494D — 6pGas) = - 29°649°
(6.2.2)

‘We have:

ffab) = 19°U(S8agab + Ov9da — Vagas)
+59°(0a (9 Aady) +0(¢° Aa Aa) — 6a($% Ao Ab))+55 (9agab +0bJ4a — 04Jab)
=T¢,y  +39°0a(d*AdAs) + 0(2 AaAa) — 6a(¢° Auds))
—A°(0,9% Ay + 6p9% Ay)

(6.2.3)

So, for any coordinate system within the maximal atlas:

B 4zC
0= +F(BC) dr dajr
dz* d dz” d dz* d
Jrr(bc) dr me +F(4c) dwT me +F(b4) me dwT FZ4 me dwT
2 a
_ dz JrF da® dx° (QSQFZ;Z*gadAbngSQ)dI dz* 7% ad § ¢2Ciigi— dd:i

d7'2 (be) dr dr dr dt
(6.2.4)
Taking ¢? = 1 and the charge-to-mass ratio to be:
dax?
! = — 6.2.5
Q'/fmyo = —— (6.2.5)
We derive a Lorentz-like force law:
d?z* . dzbdz° dx?
4T = —(Q F— 6.2.6
dr? * o) dr dr (Q/muo) Fy dr ( )
Putting arbitrary k£ and variable ¢ back in we have:
d?z® . dxbdzx° dzb 1 dz* dz*
—— _4Te " — k(O 2Fa7 adA(; 2\ 4~ ad(; 2L S
PR (5 R (Q'/mo) (¢~ Fy' — g** Apbad”) 4 59 a0 d(% 2d77-)
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6.3 Constant Toth Charge

Having derived a Lorentz-like force law we look also at the momentum of the
charge in the Kaluza dimension. We look at this acceleration as with the Lorentz
force law. We have, with torsion (and k = 1):

0= d*zt .,  dxB @
 dr? (BEY dqr dr
_ d?zt ., dabdxt ., drxtdz ., dabdxt ., dx? dfaj4

b b e @O0 pae O AL -
dr? o) dr dr 1) dr dr 1 dr dr thaa dr dr

d?zt ., dxbdx g dxtdz 1 dzt dzt
= = O N i 6.3.1
dr? * o) dr dr (1) dr dr + 2 a¢ dr dr ( )

6.4 Unitary Scalar Field And Torsion

Both equations above (6.2.7) and (6.3.1) have a term that wrecks havoc to any
similarity with the Lorentz force law proper, the terms at the end. Both terms
can however be eliminated by setting the scalar field to 1. This is postulate B1.
This leads to torsion as a way to allow for non-perpendicular electromagnetic
solutions.

The two equations under B1 become (for all k):

d?z® ., dxbdz¢ , dx?

2z T g g = k(@ /mro) B — (6.4.1)
d?zt ., dxbdx® Jdab
=7 o = ~F(Q /mw) Ay —— (6.4.2)

This certainly looks more hopeful. The more extreme terms have disap-
peared, the general appearance is similar to the Lorentz force law proper. The
right hand side of (6.4.2) is small, but in any case the well-behaved nature of
charge follows from local momentum conservation and the required integrity of
charge models - that they do not lose charge to the vacuum.

6.5 The Lorentz Force Law

It is necessary to confirm that equation (6.4.1) not only looks like the Lorentz
force law formally, but is indeed the Lorentz force law. Multiplying both sides
of (6.4.1) by jTT, j:,, where 7’ is an alternative affine coordinate frame, gives:

Lx”
dr’

2z . dab dz° dr
7 T LG = —k==(Q'/mxo) FY'

28



dr*
the frame such that 7’ = ¢y via the projected 4D space-time frame of the charge.

And the Lorentz force is derived:

Given Q* = Q'-4Z and therefore TEQ = Q';TTO by definition, we can set

>z ., dxbdxt N da®
Tz F?bc)ﬁﬁ = —k(Q /mo)Fz?T (6.5.2)

In order to ensure the correct Lorentz force law using the conventions of Wald

[7] p69, this can be rewritten as follows, using the antisymmetry of F;* = —F%:
dxb
=k(Q* Y — 6.5.3
(@ fmo)Fy (653)
Using (6.1.4) this can be rewritten again in terms of the Maxwell charge:
ak dx®
= k(?(‘lWQM)/mO)FabW (6.5.4)

The result is that we must relate G and k to obtain the Lorentz force law
in acceptable terms:

d?z® ., dxbdx¢ da®
gz e g g = (Qui/mo)Fi g

k=2VG (6.5.5)

This shows that the Lorentz force law proper can be derived, but provides
a constraint in so doing.

7 Analysis Of Matter Model Regimes

7.1 RO and Integrity

RO has the advantage of a ready-made conservation law for the Einstein tensor
(without torsion) and the Kaluza vacuum has integrity in that it is a region
without a matter or Toth charge source by definition, and this can also be in-
spected locally (5.3.3). However it does not provide sufficient variety of solutions
as shown in relation to the first field equation (5.2.4).

What is meant by integrity here is that the definition is consistent and
applicable in certain ways. It is necessary that a vacuum can not gain mass or
charge without becoming itself a matter-charge model, othewise it is no vacuum.
Similarly matter-charge models can have integrity by the same reasoning, if they
do not lose their matter or charge to the vacuum - only to other matter charge
model regions. Further, conservation laws need to apply if the words ‘matter’
and ‘charge’ are to mean anything. Integrity is a sufficient level of well-behaved
properties so that the vacuum or matter model in question behaves as intended.
This is necessarily defined and analysed on a case-by-case basis.
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7.2 R1 - A First Solution

Maxwell charge is (locally, i.e with respect to S10) restricted to matter-charge
models by (5.3.3) under R1, provided Rl(c) is satisfied. The Kaluza-Cartan
vacuum can not have local (under S10) Maxwell charge. R1(b) gives both the
Kaluza-Cartan vacuum (S1) and associated matter models well-behaved proper-
ties in relation to matter. Under both RO and R1 the charge terms 7%4 and R4a
are locally the same, the same local Maxwell charge. Both vacuums are well-
behaved locally in that their respective vacuums exclude local Maxwell charge
and matter by definition. And both have integrity for their respective matter
models, as matter and charge is conserved, and both are restricted to presence
within matter models. However, a problem with R1 is that the medicine seems
worse than the disease. The complexity of the artificially added constraints,
R1(b) and R1(c), seem even more convoluted than the original problem of sim-
ply having a stress energy tensor for electromagnetism added to general relativ-
ity. Nevertheless R1 is a demonstration of concept, that is, of the objective of
this work in finding an alternative viable theory. Whereas RO fails immediately.
Search for a more elegant matter model regime is undertaken with the other
matter model regimes.

7.3 R2 - Looking At Charge And Spin

The concept behind R2 is that it is a mistaken plan to give a definition of vacuum
that has integrity in terms of the Ricci tensor, with or without torsion, since it
may not be conserved if we no longer have R1(b). By defining the vacuum (and
the spin current models - which replace the idea of matter charge models) in
terms of the conserved spin current tensor VA5 the vacuum (and spin current
models) can be given a different sort of integrity. The alternative conservation
law is given in equation (9.3.5) and ensures that vacuum remains vacuum, and a
matter charge model (or at least a ‘spin’ model) also has integrity in this sense.

Spin current can be identified with charge. This is done via B2 a weak anti-
symmetric limit (see Appendix for notes on how complete antisymmetry affects
torsion equations). Not that any claim is made that complete antisymmetry
holds in general - on the contrary problems would arise with respect to equa-
tion (5.1.9). The claim is that equation (5.1.1) et al place no constraint on the
contorsion tensor that would prevent any symmetric parts being small relative
to the electromagnetic field tensor. Two approximative conservation laws result:
(9.3.7), (9.3.9). The S10 local limit will also be invoked, and K8 that defines
weak fields. The result is the appearance of Maxwell charge as the significant
term in (9.3.9) via (5.3.3) and (5.3.2) - approximately conserved (relative to the
torsion connection) and with approximate integrity of both vacuum and charge
models. The spin current being fully conserved and having full integrity with
respect to both matter models and vacuum, by virtue of the unusual definition
of matter models and vacuum assumed here. Maxwell charge will always tend
to find equilibrium upon returning to the above limit (S10 and K8, plus B2)
even in the event that the approximate limit is significantly violated as there
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is an equality binding an exact amount of Maxwell charge to an exact amount
of spin current components via (9.3.9), (5.3.3) and (5.3.2), at that limit, and
near that limit, and howsoever the limit arises. The history of the spin-charge
does not change the end result back at the limit. It has in that sense a form
of invariance. This makes physical sense as charge is not found without spin
in reality, yet there is nothing here preventing spin occuring without charge -
as also is the case in nature. This argument can be used with respect to other
matter model regimes and need not be repeated.

Equation (5.3.3) can be written at this S10 plus B2 limit, using (5.1.7), as:

A T 1.,
R4b = éach *ac(*in)

So by (5.3.2) and (5.3.1), and still at this limit,

A 1 o
R[4b] = EacF,f = Rps (7.3.1)

As with charge we can try to do the same under R2 with matter. This
might use (9.3.7), or rather (9.3.6), where at the weak antisymmetric limit a
conservation law in terms of the torsion connection exists for the Einstein tensor
(defined without torsion). Certainly by (9.3.9) spin current at the S10 and K8,
plus B2 limit, requires Ricci curvature.

Note that at the relevant limit, S10 and K8, using (9.7.3):

Gin=Gas — Ras = Raa (7.3.2)

And this can be compared with (7.3.1).

This does not apply when derivatives of these terms are taken, as in con-
servation laws, where extra terms will be present (due to S10). However we
may assume these extra terms to be small due to approximate consistency with
respect to the Einstein tensor conservation law.

The torsionless Einstein tensor is conserved with respect to the Levi-Civita
connection, and so mass-energy in this sense is conserved. The true, under-
lying matter-energy conservation law under R2 would be: (3.2.10), whilst the
true, underlying charge and spin conservation law under R2 together would be:
(9.3.5). R2 is still not quite right, however, as the 5D vacuum is defined such
that chargeless/spinless matter (torsionless Ricci curvature terms) are generally
present. Thus, while charge has integrity with respect to the vacuum, and while
both charge and matter-energy are conserved when given the right interpreta-
tion, the matter models themselves do not have integrity.

This problem is sourced in the recurring consideration that the 5D vacuum
needs to have non-Ricci flat curvature with respect to the torsionless definition
in order to have the sought for non-perpendicular solutions (5.2.4) and this is
most easily investigated by defining the Kaluza-Cartan vacuum as in R1, yet
R2 does not resolve the problem either, yet at the same time we need that 5D
matter can not leak into the Kaluza-Cartan vacuum, even if the Kaluza vacuum
has energy in 4D, otherwise the matter models will lack internal consistency.
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7.4 R3 - Making The Best Of R1 And R2

R3 is then simply R1 but with the above treatment of charge and spin replacing
R1(c). The B2 limit is once again essential, but need not be true in general.
And the integrity of the vacuum and matter models once again dealt with by
the application of a somewhat artificial conservation law: R3(b). Resolving the
recurring problem of integrity of matter models once again (as with R1) by
force.

7.5 R4 - The Simplest Option

R4 attempts to remove this somewhat artificial constraint, R1(b) and R3(b) - by
living with the consequences of its removal. The two fundamental conservation
laws remain in force: (3.2.10) and (9.3.5). The B2 and S10 limits can be applied
as above.

Spin current and charge are conserved as for R2, both being aligned ap-
proaching the relevant limit, and converging at that limit. Kaluza-Cartan vac-
uum can not contain spin current by definition. This is sufficient integrity for
the Kaluza-Cartan vacuum and its complement with respect to charge and spin
current.

Matter models do not here automatically have integrity with respect to spin
and charge on account of the vacuum, as they are not here strictly the comple-
ment of the Kaluza-Cartan vacuum that has the integrity. Only at the relevant
limit is there charge integrity via the equality of (5.3.1) and (5.3.3), and again
using (9.3.9). The two fundamental conservation laws, however, ensure that
upon returning to, or approaching, the relevant limit, that nothing has in fact
been lost or gained.

The integrity of these matter models with respect to 5D (torsionless) mass-
energy remains the problem. What is preventing a charged particle emitting its
(torsionless) mass-energy to the Kaluza-Cartan vacuum and simply never get-
ting it back? The Kaluza-Cartan vacuum has zero torsion-bearing Ricci tensor
Rap, but does not generally have zero Ricci tensor Ras (without torsion), or
5D mass-energy (without torsion) G4p. Recall (7.3.2). This is the core problem,
as this is the relevant conserved quantity given the lack of R1(b) or R3(b).

In the case that the Kaluza vacuum and Kaluza-Cartan vacuum coincide,
which is limited to certain perpendicular electromagnetic fields and pure gravi-
tational fields, no problem arises. Perhaps the problem for when Kaluza-Cartan
vacuums and Kaluza vacuums do not coincide actually represents some under-
lying physical reality? There is after all an actual and real energy transfer (and
hence mass transfer) mediated via fields. It is only the relativistic rest mass
that must not be leaked away, only the 4D rest mass that needs ‘integrity’. For
charged particles this follows from Toth charge being defined as 5D (without
torsion) momentum and the corresponding components of the (torsionless) Ein-
stein tensor, and that by (6.1.4), at the S10 limit, Toth charge and Maxwell
charge can be identified. The Kaluza momentum then must constitute the 4D
rest mass. Therefore at the relevant limit (including B2) charge can further be
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identified with components of the conserved spin current. By M6 we are not
concerned with quantization issues, and so for charged particles this is sufficient
integrity. We could assume quantization if required however.

For a neutral particle the rest mass would be at least the net Kaluza kinetic
energy of two (or more) opposing orientation charged particles, whose Kaluza
momentums cancel out. In the R4 matter model regime whether the rest of
the energy can dissipate across space is then an open question requiring further
investigation or further definition by a specific matter model. The stability of
neutral particles such as the neutron, or the stability of the mass difference
between a proton and a positron would fall into this category. The possibility
of dissipation would be exemplified in particle/anti-particle anihilations. In this
way R4 treats any a priori integrity of matter as resulting from the properties
of charge and spin, the rest to be dealt with by the matter models in question.
The matter models also deal with any concerns (such as quantum mechanical
issues) outside the scope of Kaluza-Cartan theory.

In summary, matter which is directly correlated with charge and/or spin
has the sought for integrity under R4, and other ‘energy’ does not (and can
be transmitted via fields). This is perhaps quite an unexpected result of the
analysis. It limits the integrity of matter to matter directly associated with
such charge and/or spin. This is not without analogs in quantum mechanics,
but nevertheless delegates rather more responsibility for the matter model to
the matter model in question than might be hoped for in a classical theory.

7.6 Alternatives

Further, we might consider adding to R4 constraints that ensure a degree of
causality or other have other desirable/required characteristics, such as energy
conditions. Rb5 adds a conservation of super-energy constraint that ensures a
form of causality (see Appendix).

Other matter model regimes might be constructed to deal with the cosmo-
logical constant and other important empirical issues. Further analysis and or
empirical testing may further differentiate the different matter model regimes.

8 Conclusion

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth wrapped-
up spatial dimension is at the root of many modern attempts to develop new
physical theories. However for a number of reasons it is sometimes considered
untenable.

A new cylinder condition was imposed as with Kaluza’s original theory,
but one based on the covariant derivative and associated with a metric torsion
connection. A generally covariant definition. A number of other constraints
and definitions were provided. The result was the appearance of the missing
non-perpendicular electromagnetic fields and a new definition of charge in terms
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of the 5D momentum. The new definition of kinetic charge and the Maxwellian
charge coincide at an appropriate limit. In order to obtain non-perpendicular
electromagnetic fields it was necessary to generalize matter-charge models. No
single method for doing so was necessarily correct, so a number of matter model
regimes were constructed.

Restrictions to the geometry and certain symmetries were handled by reduc-
ing the maximal atlas to a reduced Kaluza atlas that automatically handled the
restrictions and symmetries without further deferment to general covariance.
Physically this represents the idea that in 4D, charge is a generally covariant
scalar, whereas in 5D, charge is entirely dependent on the frame. That this
is meaningful stems from the global property of a small wrapped-up fifth spa-
tial dimension with new cylinder condition. Mathematically the Kaluza atlas
is a choice of subatlas for which the partial derivatives in the Kaluza direction
are vanishing. This led to useful constraints on the Christoffel symbols for all
coordinate systems in the Kaluza atlas.

Decomposition of the 5D metric into a 4D metric and a vector and scalar
part is also possible.

One outstanding issue is that realistic charge models are not possible with-
out involving imaginary numbers. However, that problem does not extend to
4D space-time and all the imaginary numbers actually disappear as soon as
they are interpreted with respect to space-time. Thus no actual contradiction
with experiment (or internal theoretical contradiction) need arise. The 4D con-
struction can be investigated independently of the 5D model. Barring realistic
charge models which pose peculiar challenges, the postulates actually required
are straight forward. It is in this sense a simple theory. In effect all we have is
a 5D manifold with a covariant cylinder condition on one spatial dimension de-
fined with respect to an approximately completely antisymmetric metric torsion
tensor limit, with weak fields and curvature.

Given certain assumptions about matter-charge models, the various matter
model regimes, the entirety of classical electrodynamics is rederived. Gravity
and electromagnetism are unified in a way not fully achieved by general relativ-
ity, Einstein-Cartan theory or Kaluza’s original 5D theory.

The collocation of torsion with electromagnetism is different from other
Einstein-Cartan theories where the torsion is limited to within matter mod-
els. Here certain specific components of torsion are an essential counterpart of
electromagnetism, and other components of torsion can exist outside of matter
models, depending on the matter model regime.

Due to the lack of realistic charge models, the open question regarding mat-
ter model regimes, and certain other considerations, this theory remains at an
early stage of development, though the essential ingredients are present. Other
issues that remain outstanding include the exact role of spin in the dynamics of
particles, and a fuller exploration of the energy conditions and causality. Much
work from Einstein-Cartan theory could probably be carried over or extended -
similarly for Kaluza-Klein theories. An attempt to provide a new approach to
causality was presented by using Bel super-energy.

The choice of a correct matter model regime has here been left an open

34



question, though obviously the fourth or a variant of the fourth (such as the
fifth) is preferred on the grounds of simplicity. It is hoped however that by such
over-exemplification that feasibility of a solution to the problem posed with
respect to Kaluza’s original theory has been amply demonstrated. At the very
least the possibility of further alternative approaches to variant gravitational or
classical theories has been proven. The implied connection between spin current,
the two different definitions of charge, and the Einstein (torsionless) tensor, and
matter, that came out of the analysis of the last few matter model regimes, was
particularly interesting.

The choice of matter model regime does not really change the postulates of
the theory per se. The full theory is given by K1-8 (core postulates), plus Bl
and B2 (empirically justified postulates), and then the matter model regime (for
example R4) delimits the nature of empirical matter within the Kaluza theory
framework, with further details coming from the particular matter model itself,
not having been specified.

Why go to all this effort to unify electromagnetism and gravitation and
to make electromagnetism fully geometric? Because experimental differences
should be detectable given sufficient technology on the one hand, or, on the
other, and equally, simply because such an attempt at unification might be
right. This theory differs from both general relativity and Einstein-Cartan the-
ory, and this may be empirically fruitful. Also the expected w-consistency of
Einstein-Cartan theory together with the derivation of a Lorentz force law via
the Kaluza part of the theory gives a unique theoretical motivation, as does the
fact that the other approaches beyond general relativity have not fulfilled their
promise. Further, attempting to extend and unify classical theory prior to a full
unification with quantum mechanics may even be a necessary step in a future
unification, whether this turns out to be the right way or not. It may be that
current attempts are more difficult than necessary as the question may not yet
have been framed correctly.

It is often asserted that the true explanation for gravitational theory and
space-time curvatures will most likely, by reductionist logic, emerge out of its
constituent quantum phenomena. Such an approach has merit, but is overly op-
timistic. Before constituent quantum parts can be properly defined, the larger
scale whole must have been present at first to then be so divided. On the con-
trary, a Euclidean cake may need to be sliced differently from a Riemannian
cake if each slice is to be equal, and lumpiness has been induced by a gravi-
tational field. The dividing and putting together of parts assumes a context,
and a context assumes a whole, though in daily life we take our conception of
space-time for granted, we take the whole as given. When comparing quantum
mechanics and general relativity we should not. Something of the context is evi-
dently missing from quantum mechanics on account of the difficulty in squaring
the two worldviews, and therefore possibly from both. Thus reductionism as-
sumes the whole, or contextual knowledge about that whole, before it is even
applied. There is paradoxically an inherently non-reductionist assumption, or
presumption, within that worldview. This is why the contrary approach of a
purely classical context-seeking theory has been attempted.
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Quantum mechanics has been hugely successful, so it is perhaps natural to
try to find gravity by some extension of the quantum picture, a quantum gravity
theory, that presumably would not need to unify gravity and electromagnetism,
or would seek to do so within a quantum context. However success of a theory
alone is not a fair test of the entire methodological outlook that led to that
theory. Success in one domain may be the result of our bias and talents and
opportunities, rather than nature’s bias. But it is nature’s bias that science
seeks to uncover. In so doing, in the long run, our own bias may also be laid
bare, and this can be doubly useful.

The bias of this work has perhaps been non-reductionist, classical, and non-
quantum. In attempting to seek a geometrical unification of two forces that
are considered well-understood by modern physics an old, and by now fairly
unpopular program, has in effect been re-attempted.

9 Appendix

9.1 Geometrized Charge

The geometrized units, Wald [7], give a relation for mass in terms of fundamental
units. This leads to an expression for Toth charge in terms of Kaluza momentum

when k =2 and G = 1.

G=1=6.674 x 107 8em3g7 1572 = 6.674 x 107 8em3g~! x (3 x 10*%m)~2
=6.674 x 107 8emg~! x (3 x 1019)~2

1g ~ 7.42 x 107*%cm for c=1, G=1 (9.1.1)
lg =~ G/c*em for c=1, G=1 (9.1.2)
For k = 2, c=1, G=1 we have:

LstatC = 1em®/2s71g1/2 = em/? x (7.42 x 1072 em) /2 /(3.00 x 10'9)

=8.61 x 107 em/(3 x 1019) =~ 2.87 x 107%°em ~ 3.87 x 103g (9.1.3)

Using cgs (Gaussian) units and the cgs versions of G and c, ie G = 6.67 X
1077em3g~'s™! and ¢ = 3 x 10'%cms !, the charge can be written in terms of
5D proper momentum P, as follows:

1statC = 1lem®2s71g" 2 = 1(em/s)em/2g /2 = < .cm/s
g (em/s) g 7G! /

Q' =——P, (9.1.4)

al
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9.2 Introducing The Geometry Of Torsion

5D Cartan torsion will be admitted. This will provide extra and required de-
grees of freedom since the new cylinder condition (K7) would be too tight to
yield interesting geometry otherwise. It is noted that Einstein-Cartan theory,
that adds torsion to the dynamics of relativity theory is most probably a mini-
mal w-consistent extension of general relativity [13][14] and therefore the use of
torsion is not only natural, but arguably a necessity on philosophical and phys-
ical grounds. That argument can also be applied here. What we have defined
by this addition can be called Kaluza-Cartan theory as it takes Kaluza’s theory
and adds torsion. We assume that the torsion connection is metric.

For both 5D and 4D manifolds (i.e. dropping the hats and indices notation
for a moment), torsion will be introduced into the Christoffel symbols as fol-
lows, using the notation of Hehl [11]. Metricity of the torsion tensor will be
assumed [19], the reasonableness of which (in the context of general relativity
with torsion) is argued for in [20] and [21]:

1
5(1—‘% - 1—‘?7,) = 5,;" (9.2.1)

)

This relates to the notation of Kobayashi and Nomizu [12] and Wald [7] as
follows:

Tk = 255" =T%, — T}, (9.2.2)

We have the contorsion tensor K, ijk [11] as follows, and a number of relations
[11]:

.1 .
Ffj = §9kd(ai9dj + 094i — 6d9ij)_Kif = {?j}_Kijk (9:2.3)

K} =-8,)+8" -5 =-K*, (9.2.4)

Notice how the contorsion is antisymmetric in the last two indices.

With torsion included, the auto-parallel equation becomes [11]:

d?z* p  dztdad
k __ Jk k k _ sk k
Ly = {3 +5%) =S¢,y = 13 +25% (9.2.6)

Only when torsion is completely antisymmetric is this the same as the ex-
tremals [11] which give the path of spinless particles and photons in Einstein-
Cartan theory: extremals are none other than geodesics with respect to the
Levi-Civita connection.

A2k dzt dxd
+ 7?.}7 -
ds? 70 ds ds

=0 (9.2.7)
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When completely antisymmetric we have many simplifications such as:

Kijk = _G.k (9.2.8)

ij
9.3 Stress-Energy Tensors And Conservation Laws

The stress-energy tensor for a torsion bearing non-symmetric connection in
Einstein-Cartan theory is usually labelled ,%PAB, it need not be symmetric.
In the literature the constant x is included analogously to the 87 in general rel-
ativity. Here we will use the Einstein tensor G4, taking a purely geometrical
view.

The Belinfante-Rosenfeld [15] stress-energy tensor Bisa symmetric adjust-
ment of xP that adjusts for spin currents as sources for Riemann-Cartan spaces.
It can be defined equally for the 5D case. It is divergence free. It is the torsion
equivalent according to Belinfante and Rosenfeld of the original Einstein tensor
G [12] in some sense: the Einstein-Hilbert action. However the usual defini-
tion in terms of stress-energies and Noether currents, rather than the Einstein
tensor, is not appropriate here. In effect repeating the Belinfante-Rosenfeld pro-
cedure, by defining the torsionless Einstein tensor in terms of torsion bearing
components, yields what can be interpreted as extra spin-spin coupling term
XAB5

Gap=Gap +Vap + Xap (9.3.1)

~ 1 - R . .
Vap = §VC(O'ABC + 6pac +FcBa) (9.3.2)

Where o is defined as the spin tensor in Einstein-Cartan theory. However,
here we do not start with spin (and some particle Lagrangians), but with the
torsion tensor. So instead the spin tensor is defined in terms of the torsion
tensor using the Einstein-Cartan equations. Here spin is explicitly defined in
terms of torsion:

Gapc = 25apc +2§acSph — 2080S4P (9.3.3)
This simplifies definition (9.3.2):
. Tor . fa . .
Vap = §VC(UCBA) =V (Scpa+dcaSpp — aSch) (9.3.4)

By considering symmetries and antisymmetries we get a conservation law:

VeVAB =0 (9.3.5)
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The Case Of Complete Anytisymmetry

Note that the mass-energy-charge conservation law for the torsionless Ein-
stein tensor is in terms of the torsionless connection, but the spin source con-
servation law here is in terms of the torsion-bearing connection. However, for
completely antisymmetric torsion we have:

@CQAAB = ACC;AB + KcADGDB + KCBDQAD
So,
VAGap =040+ K%DGAD = *IA(BADQAAD
=-K3"P0pa=+K5"Gpa=+K;"Gap =0 (9.3.6)

@A(GAB-FXAB) =0 (9.3.7)

And so there is a stress-energy conservation law with respect to the torsion
connection also, at least in the completely antisymmetric case.

Further, still assuming complete antisymmetry of torsion, by definition of
the Ricci tensor:

RAB = 7A2AB + KDACKBCD - aCKBAC - KBACﬁBC + KDfﬁBC - KDBle ,[4)0
=Rap - K,SKyL —V8upc (9.3.8)

Giap) = Riap = ~VSapc = Vas (9.3.9)

VA B is the antisymmetric part of -G aB. And X AB 1S a symmetric spin-
torsion coupling adjustment - again only in the case of completely antisymmetric
torsion.

In the general case such identities and conservation laws are less easily found.

9.4 The Christoffel Symbols

Here we assume only the definitions of the Christoffel symbols and the new
KCC. (Without torsion terms shown, k set to 1)

2f 40 =>,9*P(0Bgcp + Ocips — OpinC)

=, 08dca + Ocdan — OadBC)
+ §2*(0pgca + Ocdap — O19B0C)

2F1 =316 Obgea + Ocgap — Oagye)
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+ 3, 54O p? AcAa + 0c? AaAp — Dad® ApA.)
+ G (0p9* Ac + 0.9* Ap — Ougve — 01> ApA.)

2 4 =3, G%(04gea + 020 AcAg + 0c¢? Aq — 0a9* Ac) + §740.¢*

2F 4 =23, 94000 Ag — >, 514049 + G4 0497
(9.4.1)

The Electromagnetic Limit ¢% =1

2ﬁ;)4c = Zd gAd(abgcd +acgdb - adgbc> + Zd gAd(abAcAd +8cAdAb — adAbAc)
+ 2 (OpAc + 0. Ap — Oagpe — 01 ApA,)

2f 1 =33 7 (0agca + 0sAcAq + 0 Ag — 04A,)

ﬁf4 = Zd QAdazLAd

(9.4.2)
Simplifying...
2[5, = 2F §. + 204 9" (ApFea + AcFya) + A°Oagye + A" 04 ApA,
QF;JLC = Zd Ad(abgcd + acgdb - adgbc) - Zd Ad(Achd + Achd)
. — (14>, AiA")(0agbe + 01 ApAc) + (OpAc + O Ap)
2€Zc = Ed gad(a4gcd + 84A6Ad) + Zd gachd
%Fic = - Zd Ad(84gcd + 84A0Ad) - Zd Achd
Fy=2349""01Aa
Fly=—>4A%4A4
(9.4.3)
The Scalar Limit A; =0
20 4 = 204 0" (Ogcd + Oegab — Dagne) —9™*Ougne
ZEfc = Zd gAdaélgcd + §A4ac¢2
2F 4y =~ 2249"0a0 + §A10,07
(9.4.4)
Simplifying...
ﬁg(l = FZC

Qﬁéc = _#849170
2€Xc = Zd gada4gcd
2F G = 320:0°
24 =~ 9°40¢*
2f 1y = 32010
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(9.4.5)
The Electromagnetic Limit And Cylinder Condition

By applying equations (5.1.11) and the new KCC in order to simplify terms
of the electromagnetic limit with k£ = 1, at first omitting the torsion contribution
(noting that these Christoffel symbols are symmetric in the lower indices):

20 4. =2F g + (AyF, " + AFS)

2F 1. = =3 4 AYObgea + Ocgar — Oagve) + (OpAc + 0cAp)
= —2A4F §, + (OpAc + 0:As)

2ﬁ?ic = Fca

Fie=—3A"qand [§ =73 =0
(9.4.6)

Now with torsion built into the Christoffel symbols, using equations (5.1.11)
and others from that section, and noting that these Christoffel symbols are not
necessarily symmetric in the lower indices:

2F§c = gad(abgcd + 6cgdb - 8dgbc) + gAcha + Acha) - QKbg
=2F ¢, + (A F. "+ AF") — 2K, 2
=>4 AN ged + Ocgan — Qagvc) + (OpAc + 0:Ap)
— AU A Fog + AcFpa) — 2K,2
= —2A4F {, + (O Ac + 0. A) — AN ApFeq + AcFra) — 2K,
M. =0and I, =09, =14, =0
It =-149F,
%Fca - Kc4a

2l

0’1
]
Il

(9.4.7)

9.5 The Generalized Bel Super-Energy Tensor

The Generalized Bel tensor for a Lorentz manifold (or simply Bel tensor) is the
super-energy tensor associated with the Riemannian curvature [17]. The defini-
tion of super-energy tensor does not require that torsion be vanishing in either
the connection or any of the defining tensors [17], and the important dominant
super-energy property [17] follows in all cases. This leads to the causality of
the Rieman tensor [16] under specific conditions without deference to energy
conditions. The super-energy tensor definition depends on the antisymmetries
of the Riemannian tensor definition, that is [17], that it is a double symmet-
ric (2,2)-form. The definition of the super-energy tensor with respect to basic
properties such as it being a 4-tensor are dependent on the admissibility of the
interpretation of the Riemann tensor as a (2,2)-form.

Now the Riemann tensor can be written as [12]:
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Ry = 0kl — 0L} + )Tk, — TR T, (9.5.1)

It is a (2,2)-form if its antisymmetries are as follows: R[;;jx;. This is clearly
the case for [k,]]. For [i,j] it is a known result provided that the torsion-bearing
connection is metric. The argument requires the torsion analog of Wald’s equa-
tion (3.2.12) [7] and then follows for the same reasons as given there for the

torsionless case.

In [16] the derivation of the causality of the fields underlying any particular
super-energy tensor is given in terms of the divergence of the field’s super-
energy tensor. A divergence condition is given that ensures causality of the
underlying field associated with any such super-energy tensor. The divergence of
the generalized Bel tensor would therefore need to be bounded by this condition
if the Riemannian curvature were to remain causal. This condition is theorem
4.2 in [17].

A sufficient case would be if the divergence of the superenergy tensor were
zero (and assuming global hyperbolicity). The important details are on page
4 of [16]. The argument does not require that the connection be torsion free.
Thus the vanishing divergence of the generalized Bel tensor would yield causal
Riemannian curvature, assuming the Riemann tensor remained a (2,2)-form (as
indicated above), with no deferment to energy conditions in both the case when
torsion is used to define the Bel tensor and when it isn’t

On p24 of [17] we have a calculation of this divergence in the torsion-free
case, and it can be seen that when the Ricci curvature is zero that the divergence
of super-energy is also zero. This however references symmetry properties (in
addition to antisymmetry properties) and thus further consideration of the case
with torsion would be required to extend or generalize this theorem. Theorem
6.1 on p25 of [17] may well not apply in the case that the tensors and connection
are defined in terms of torsion. Nevertheless it nicely characterizes an important
property of the Kaluza vacuum, that it can not be a source of Bel super-energy
with respect to 5D definitions.

The Conserved Bel Hypothesis will be that the divergence of the General-
ized Bel superenergy tensor be vanishing (when defined with respect to the
torsionless connection and torsion free tensors) over all of the Kaluza-Cartan
space-time.

We might also have the nearly Conserved Bel Hypothesis such that the di-
vergence of the Generalized Bel superenergy tensor be bounded (when defined
with respect to the torsionless connection and torsion free tensors) over all of the
Kaluza-Cartan space-time. Thus including matter/charge models and torsion.
The bound here being defined by theorem 4.2 of [17].

These 2 tentative suggestions would have explanatory power if shown to be
correct as a way of rationalizing the various energy conditions used in general
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relativity, and in explaining some aspects of classical scale causality. It could
also be carried forward to genuinely 5D extended theories, that is theories that
require the weakening of the new cylinder condition. Work would need to be
done on these hypotheses to clarify them, and that is not the program here.

It can be noted that in 4D and 5D in particular p29 of [17] the generalized
Bel tensor (torsion not considered) has the nice property of being completely
symmetric. It is curious that it should be completely symmetric precisely in the
4D and 5D cases.

Theorem 6.1 of [17] though not proven for its torsion analog would link
divergence of super-energy with what Senovilla et al [17] call the matter current.

The divergence of the Bel super-energy is given as follows [17] (not using the
hat or index notation to indicate dimensionality, and not considering torsion):

1
vaBablm _ RbrlstST + RbrnZJlST _ 5ngn‘Rb Jsur (952)

rsy

Jimb = —Jmiv = ViRyp — Vi Rip (9.5.3)

Given Jy,p = 0, which implies conservation of Bel super-energy, we then
have (remembering that this has not been proven when torsion is used in the
definitions):

ViR = Vi Rap (9.5.4)

So, using the full hat notation again as used throughout this text (ie terms
without torsion), we have, when the so-called matter current is zero:

ALRup = AuRes (9.5.5)

Further, by applying the new cylinder condition, when the torsion is explic-
itly vanishing:

VaRap = AaRap =0 (9.5.6)

However we are really interested in the case where torsion defines the new
cylinder condition in which case in general (see note S11):

ViRap # AsRap = AyRap #0 (9.5.7)

This is quite counter-intuitive, but as such potentially leads to unexpected
considerations.
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9.6 Raised Levi-Civita Christoffel Symbols

Following the same procedure as with Christoffel symbols of the first and second
kind a raised version of the Christoffel symbols can be derived, a third kind.
It takes the value that would be guessed at (a guess because you can not raise
across partial derivatives without caution) by inspecting the elements of the
Christoffel symbol of the second kind and raising each element individually.
Starting from the covariant derivative of the raised metric tensor being zero:

Cycling indices we have:
0= &gl 4 ki 4 ki
0 = gkt 4 Thit 4 ik
Adding the first two and subtracting the third:
8 gik & 9 gii — i gkt — otk

So, exactly as would be guessed:
rik = 5(839”9 + 9% gl — 9 gik) (9.6.1)

9.7 Local Ricci Scalar Curvature, k =1

Here we calculate the Ricci scalar curvature for k£ = 1 at the local limit defined by
vanishing first derivatives of metric components (see S10), with Ricci curvature
defined relative to the torsionless connection. Using (5.2.2), (5.3.1) and (5.4.1):

8Cﬁ£a - abﬁga %aCFaC

. (9.7.1)
30.F, 0

|7A€AB| —

The Ricci scalar can now be calculated as follows, the apparent asymmetry
being caused by the limit terms:

1§74 [Rag] = IR

(el §, — Ol ¢o) — A50Ff 30 Fe

g
— —AY(OcF Gy — OF <.,) + %8chc(# + A AY) _AG%OCFGC (9.7.2)

. . 1 1 . .
R = g% (Ol §u=0bF £0) = A" GOF [~ A SOF, = g (0uf {00 %)~ A0 F,
R = g% (0cF §y — OuF Sy) — AOF (9.7.3)
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9.8 Proper Kaluza Velocity As Space-Time Scalar

This section shows that the proper velocity W (written as a vector) with only
one component in the Kaluza dimension is invariant under 4D space-time boosts
orthogonal to it.

W, = dzy4/dr proper velocity in a stationary space-time frame, but following the particle

W,
U, = — % coordinate velocity using proper velocity formula

V1 —|—VV42

Using orthogonal addition of coordinate velocities formula to boost space-
time frame by orthogonal coordinate velocity V:
V =(V,0,0,0)
U =(0,0,0,U,)

Coordinate velocity vector in new frame, using the orthogonal velocity ad-
dition formula:

U=V++y/1-V2U
So,

— Wy
Uy=V1-V2—i_
! V1+ Wi

Define proper velocity in new frame: W, using proper velocity definition:

7 U,

Wy=——t
J1-v2 -7,

VI —v2_Wa
1-v 1+4VV42
V2 _ —_2_Wa 2
\/1 Vv (V1-V T-Alwf)

J— W4
V1+ Wi 1—(7314%2)2
W,y

V1I+WE—W?
(9.8.1)
W, = Wy is the result required

The proper Kaluza velocity therefore is a scalar with respect to the Kaluza
atlas.
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