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Abstract

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth
wrapped-up spatial dimension is at the root of many modern attempts to
develop new physical theories. Lacking important electromagnetic fields
however, and having other problems, the theory is incomplete and gener-
ally considered untenable. An alternative is presented that includes tor-
sion. Coulomb’s law in the form of the Lorentz force law is investigated
starting with a non-Maxwellian definition of charge, this is shown to be
related to Maxwellian charge. It is concluded that Kaluza’s 5D space and
torsion should go together in what is here called a Kaluza-Cartan theory
in order to form a unified theory of gravity and electromagnetism. A
new cylinder condition is proposed that takes torsion into account and
is fully covariant. Divergence from existing theories suggests experimen-
tal tests may be possible. Two connections are used, one with, and one
without torsion. The theory explores the concept of general covariance
with respect to global properties that can be modelled via a non-maximal
atlas.

PACS numbers 04.50.Cd ; 02.40.Ky ; 04.20.-q ; 04.40.Nr

1 Conventions

The following conventions are adopted unless otherwise specified:

Five dimensional metrics, tensors and pseudo-tensors are given the hat sym-
bol. Five dimensional indices, subscripts and superscripts are given capital
Roman letters. So for example the five dimensional Ricci flat 5-dimensional
superspace-time of Kaluza theory is given as: ĝAB , all other tensors and indices
are assumed to be 4 dimensional, if a general non-specified dimensional case is
not being considered, for which either convention can be used. Index raising
is referred to a metric ĝAB if 5-dimensional, and to gab if 4-dimensional. The
domain of partial derivatives carries to the end of a term without need for brack-
ets, so for example we have ∂agdbAc + gdbgac = (∂a(gdbAc)) + (gdbgac). Terms
that might repeat dummy variables or are otherwise in need of clarification use
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additional brackets. Square brackets can be used to make dummy variables
local in scope.

Space-time is given signature (−, +, +, +), Kaluza space (−, +, +, +, +)
in keeping with [6], except where stated and an alternative from [1] is referred
to. Under the Wheeler et al [6] nomenclature, the sign conventions used here
as a default are [+, +, +]. The first dimension (index 0) is always time and the
5th dimension (index 4) is always the topologically closed Kaluza dimension.
Universal constants defining physical units: c = 1, and G as a constant. The
scalar field component is labelled φ2 (in keeping with the literature) only as a
reminder that it is associated with a spatial dimension, and to be taken as pos-
itive. The matrix of gcd can be written as |gcd| when considered in a particular
coordinate system to emphasize a component view. The Einstein summation
convention may be used without special mention.

Some familiar defining equations consistent with [1] (using Roman lower-case
for the general case only for ease of reference):

Rab = ∂cΓ
c
ba − ∂bΓcca + ΓcbaΓddc − ΓcdaΓdbc (1.0.1)

Gab = Rab −
1

2
Rgab = 8πGTab (1.0.2)

For convenience we will define α = 1
8πG .

Fab = ∇aAb −∇bAa = ∂aAb − ∂bAa equally F = dA (1.0.3)

Any 5D exterior derivatives and differential forms could also be given a hat,
thus: d̂B̂. However, the primary interest here will be 4D forms. � represents
the 4D D’Alembertian.

Torsion introduces non-obvious conventions in otherwise established defini-
tions. The order of the indices in the Christoffel symbols comes to matter, and
this includes in the Ricci tensor definition and the definition of the Christoffel
symbols themselves:

∇awb = ∂awb − Γcabwc (1.0.4)

Christoffel symbols in general will take the usual form: Γcab or Γabc and
so on. However, often we will need to distinguish a with-torsion Christoffel
symbol from a without-torsion Christoffel symbol in some way. In the completely
antisymmetric case, when the torsion tensor is completely anti-symmetric, we
can write the without-torsion connection coefficients as: Γc(ab). But greater
generality to specify the Levi-Civita connection at all times may call for the
more explicit: {cab}. More conveniently we may also refer to the Levi-Civita
connection coefficients using: zcab, and a covariant derivative operator: 4a. In
order to distinguish general Gab and Rab etc. from the case where the torsion
has been explicitly excluded from the definition we use cursive: Gab and Rab.
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2 Introduction

Kaluza’s 1921 theory of gravity and electromagnetism [2][3][4] using a fifth
wrapped-up spatial dimension is at the heart of many modern attempts to
develop new physical theories [1][5]. From supersymmetry to string theories
topologically closed small extra dimensions are used to characterize the vari-
ous forces of nature. It is therefore at the root of many modern attempts and
developments in theoretical physics. However it has a number of foundational
problems and is often considered untenable in itself. This paper looks at these
problems from a purely classical perspective, without involving quantum theory.
This perhaps runs against the grain for modern physics due to the great suc-
cess of quantum mechanics, but is nevertheless worth doing as an independent
enterprise.

The theory assumes a (1,4)-Lorentzian Ricci flat manifold to be the under-
lying metric, split (analogously to the later ADM formalism) as follows:

ĝAB =

[
gab + φ2AaAb φ2Aa

φ2Ab φ2

]
(2.0.1)

Note that a common scaling factor has been set to k = 1 and so is not
present, this will be reintroduced. By inverting this metric as a matrix (readily
checked by multiplication) we get:

ĝAB = |ĝAB |−1 =

[
gab −Aa
−Ab 1

φ2 +AiA
i

]
(2.0.2)

Maxwell’s law are automatically satisfied: dF=0 follows from dd = 0. d*F=
4π*J can be set by construction. d*J=0, conservation of charge, follows also by
dd=0 on most parts of the manifold.

However, in order to write the metric in this form there is a subtle assump-
tion, that gab, which will be interpreted as the usual four dimensional space-time
metric, is itself non-singular. However, this will always be the case for moder-
ate or small values of Ax which will here be identified with the electromagnetic
4-vector potential. The raising and lowering of this 4-vector are defined in the
obvious way in terms of gab. The 5D metric can be represented at every point
on the Kaluza manifold in terms of this 4D metric gab (when it is non-singular),
the vector potential Ax, and the scalar field φ2. We have also assumed that
topology is such as to allow the Hodge star to be defined. This means that near
a point charge source the argument that leads to charge conservation potentially
breaks down as the potential may cease to be well-defined. Whereas the Toth
charge that will be defined in the sequel does not have this problem. So two
different definitions of charge are given: the Maxwellian, and the Toth charge.

With values of φ2 around 1 and relatively low 5-dimensional metric curva-
tures, we need not concern ourselves with this assumption beyond stating it on
the basis that physically these parameters encompass tested theory. Given this
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proviso Ax is a vector and φ2 is a scalar - with respect to the tensor system
defined on any 4-dimensional submanifold that can take the induced metric g.

Kaluza’s cylinder condition (KCC, or original KCC) is that all partial deriva-
tives in the 5th dimension i.e. ∂4 and ∂4∂4 etc... of all metric components and of
all tensors and their derivatives are zero. A perfect ‘cylinder’. Here we extend
it to torsion terms, and indeed all tensors and pseudo-tensors. This leads to
constraints on gab given in [1] by three equations, the field equations of Kaluza
theory, where the Einstein-Maxwell stress-energy tensor can be recognised em-
bedded in the first equation:

Gab =
k2φ2

2

{
1

4
gabFcdF

cd − F caFbc
}
− 1

φ
{∇a(∂bφ)− gab�φ} (2.0.3)

∇aFab = −3
∂aφ

φ
Fab (2.0.4)

�φ =
k2φ3

4
FabF

ab (2.0.5)

Note that there is both a sign difference and a possible factor difference with
respect to Wald [7] and Wheeler [6]. The sign difference appears to be due
to the mixed use of metric sign conventions in [1] and can be ignored. A k
factor is present and scaling will be investigated. These will be referred to as
the first, second and third torsionless field equations, or original field equations,
respectively. They are valid only in Kaluza vacuum, that is, outside of matter-
charge models, and when there is no torsion. This require Kaluza’s original
cylinder condition.

Definition 2.0.6: Perpendicular electromagnetic solutions.

Field for which the following equation hold will be called perpendicular elec-
tromagnetic fields, and likewise those that do not satisfy this: non-perpendicular.
Null solutions are perpendicular solutions with a further constraint. But per-
pendicular solutions will be of most interest here.

FabF
ab = 0 (2.0.6)

By looking at field equation 3 it can be seen that if the scalar field does
not vary then only a limited range of solutions result, that have perpendicular
electric and magnetic fields. Eg null solutions. The second field equation then
also imposes no charge sources. Here the scalar term could be allowed to vary
in order to allow for non-zero FabF

ab. This falls within Kaluza’s original the-
ory. This potentially allows for more electromagnetic solutions, but there are
problems to overcome: the field equations cease being necessarily electrovac-
uum. One inadequate and arbitrary fix is to set the scalar field term large, as is
sometimes done to ensure that field equation 2 is identically zero despite scalar
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fluctuations. This approach will not be taken here. The stress-energy tensor un-
der scalar field fluctuations is different from the Einstein-Maxwell tensor [6][7]
and the accepted derivation of the Lorentz force law (for electrovacuums [6])
can not be assumed. A variable scalar field also implies non-conservation of
Maxwell charge via field equation 3. Attempts to loosen constraints such as the
KCC have also not been successful so far.

Another foundational issue of Kaluza theory is that even with a scalar field
it does not have convincing sources of mass or charge built in. Field equation
2 has charge sources, but it’s unlikely that realistic sources are represented by
this equation. Matter (and charge) models in this work will be assumed to be
regions of the Kaluza space that are not Ricci flat in the otherwise Ricci flat
Kaluza space (leaving open for the moment which Ricci tensor exactly is to be
used), just as matter/energy is analogously assumed to be in general relativity.
That is, where the 5D Einstein tensor of the Kaluza space itself is non-zero.

As mentioned charge will be given a possible alternative definition, Toth
charge: as 5-dimensional momentum, following a known line of reasoning [8]
within Kaluza theory. This will enable a derivation of Coulomb’s law, via the
Lorentz force law - leading to a genuine mathematical unification of electro-
magnetism and gravity. As momentum, the Toth charge is of necessity locally
conserved, provided there are no irregularities in the topology of the Kaluza 5th
dimension. Similarly the conservation of Maxwellian charge is normally guar-
anteed by the existence of the potential, except that this may not be valid in
extreme curvatures where the values here associated with the 4-potential may
cease to be a vector.

We will also assume global hyperbolicity in the sense of the existence of a
Cauchy surface as is often done in general relativity to ensure 4 dimensional
causality. Though this will not necessarily guarantee 5D causality in the event
that either KCC is weakened or the theory presented here breaks down due to
singularities. It also requires the usual energy conditions on the resulting 4D
space-time and fields, or a 5D equivalent generalization.

One leading issue is that Kaluza theory offers limited electromagnetic so-
lutions. Non-perpendicular electrovacuums more generally are not so easily
supported as changes in the scalar field may force divergence of the field equa-
tions from those of the electrovacuum (see field equation 1). This will lead
to the potential failure of the Lorentz Force Law, in effect Coulomb’s law. The
Lorentz force law/Coulomb’s law is to be derived from this theory independently
of the electrovacuum solutions of general relativity. Note that in addition the
derivation of the Lorentz force law within general relativity (from an assumed
Einstein-Maxwell stress-energy tensor) is not without problems of principle [6].
But more importantly the stress-energy tensor that defines the electrovacuum
geometry has to be assumed in classical electrodynamics within general relativ-
ity, whereas in this Kaluza-Cartan theory it is not, the Lorentz force law follows
from different considerations. Thus, the program is to seek a link between the
Toth charge and Maxwellian charge, so that they might be sufficiently inter-
changeable - as this can then be shown to lead to an alternative explanation
for the Lorentz force law. To obtain the sought for range of electromagnetic
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solutions a particular constraint will be weakened: that the torsion tensor is
necessarily vanishing. Torsion will be allowed to vary allowing greater scope for
solutions. The Lorentz force law, rather than electrovacuum solutions, will be
sought for Toth charges.

Some useful Christoffel symbol terms are placed in the Appendix: equations
(9.1.1) onwards. And a number of other detailed workings are placed in the
Appendix too. A considerable preamble is required and presented in the next
two sections: Preliminary Notes, and The Geometry of Torsion.

3 Preliminary Notes

3.1 Kaluza Cylinder Condition And Charge

Throughout this work the limit of a new Kaluza Cylinder Condition (new KCC,
or new cylinder condition) will be taken to be that the covariant derivative of all
tensors in the Kaluza direction are to be zero, and that it depends on torsion.
The 5D metric generally decomposes into 4D metric, vector potential and scalar
field, at least when the embedded 4D metric is non-singular.

The new KCC by construction must be true for a subatlas covering the 5D
Lorentzian manifold. But charts may exist in the maximal atlas for which these
constraints are not possible. The atlas that is compliant is restricted. This
means that the new KCC can be represented by a subatlas of the maximal atlas
for the manifold. The set of local coordinate transformations that are compliant
with this atlas (call it the Kaluza atlas) is non-maximal by design.

A further reduction in the atlas is also implied by setting c=1, and constant
G. The Kaluza dimension as spatial. Rescaling a spatial axis would require also
rescaling a time axis in order not to change c, and hence the other spatial axes
would need rescaling. The existence of a single unit for space and time can be
assumed, and this must be scaled in unison for all dimensions. Consistently with
cgs units we can choose either centimetres or seconds. This would leave velocities
(and other geometrically unitless quantities) unchanged in absolute magnitude.
This doesn’t prevent reflection of an axis however, and indeed reflection of the
Kaluza dimension will be equivalent to a charge inversion. However, given an
orientation we can also remove this.

Space-time can not be an arbitrary 4D Lorentz submanifold as it must be one
that is normal to a Kaluza axis and that satisfies certain constraints. This will
generally have the interpretation best visualized as a cylinder with a longitudinal
space-time and a perpendicular Kaluza dimension.

We can further reduce the Kaluza atlas by removing boosts in the Kaluza
dimension. Why? This requires the new Kaluza cylinder condition, postulate
K7 later, which significantly reduces the possible geometries. Space-time will be
taken to be a subframe within a 5D frame within the Kaluza subatlas wherein
uncharged matter can be given a rest frame via a 4D Lorentz transformation.
Boosting uncharged matter along the Kaluza axis will give it kinetic Toth charge.
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The Kaluza atlas represents the 4D view that charge is 4D covariant. Here we
require that the Toth charge coincides with Maxwellian charge in some sense.
The justification for this assertion will be clarified later. Rotations into the
Kaluza axis can likewise be omitted. These result in additional constraints
on the Christoffel symbols associated with charts of this subatlas, and enable
certain geometrical objects to be more easily interpreted in space-time. The
use of this subatlas does not prevent the theory being generally covariant, but
simplifies the way in which we look at the Kaluza-space through a 4D physical
bias.

Preliminary Description 3.1.1: The Kaluza-Cartan space-time.

In the most general case a Kaluza-Cartan space-time will be a 5D Lorentz
manifold with metric and metric torsion connection. A new Kaluza cylinder
condition will be added (see postulate K7 later) and the topology of the Kaluza
dimension will be closed and geometrically small. A global Kaluza direction will
be defined as normal (relative to the new cylinder condition) to a 4D Lorentz
submanifold. That submanifold, and all parallel submanifolds as a set, will
constitute space-time. Charged particles will be those that are not restricted
in movement to within space-time. The new cylinder condition will ensure that
all the parallel space-times are equivalent.

A complete definition is given later in postulates K1-K7.

Definition 3.1.1: The Kaluza atlas.

(i) The Kaluza atlas is a subatlas of the maximal atlas of Kaluza-Cartan
space-time, given geometrized units.

(ii) Boosts and rotations into the Kaluza dimension (as defined by the new
cylinder condition) are explicitly omitted.

(iii) This represents the physical interpretation of charge as a covariant prop-
erty of space-time even if it is not a covariant property of the 5D Kaluza-Cartan
space.

(iv) Mathematically this is also an atlas of charts for which the partial deriva-
tives of tensors and pseudo-tensors in the Kaluza dimension vanish.

(3.1.1)

Kinetic Toth charge is defined as the 5D momentum component in terms
of the 5D Kaluza rest mass of a hypothesised particle: ie (i) its rest mass in
the 5D Lorentz manifold (mk0) and (ii) its proper Kaluza velocity (dx4/dτ

∗)
with respect to a frame in the maximal atlas that follows the particle. And
equally it can be defined in terms of (i) the relativistic rest mass (m0), relative
to a projected frame where the particle is stationary in space-time, but where
non-charged particles are stationary in the Kaluza dimension, and in terms of
(ii) coordinate Kaluza velocity (dx4/dt0):
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Definition 3.1.2: Toth charge (scalar).

Q∗ = mk0dx4/dτ
∗ = m0dx4/dt0 (3.1.2)

This makes sense because mass can be written in fundamental units (i.e. in
distance and time). And the velocities in question defined relative to particular
frames. It is not a generally covariant definition but it is nevertheless mathe-
matically meaningful. In the appendix (9.4.1) it is shown that this kinetic Toth
charge can be treated in 4D Space-Time, and the Kaluza atlas, as a scalar: the
first equation above is covariant with respect to the Kaluza atlas. It can be
generalized to a 4-vector as follows, and it is also conserved:

In general relativity at the special relativistic Minkowski limit the conser-
vation of momentum-energy/stress-energy can be given in terms of the stress-
energy tensor as follows [9]:

∂T̂ 00

∂t
+
∂T̂ i0

∂xi
= 0 (3.1.3)

Momentum in the j direction:

∂T̂ 0j

∂t
+
∂T̂ ij

∂xi
= 0 (3.1.4)

This is approximately true at a weak field limit and can be applied equally to
Kaluza theory, in the absence of torsion. We have a description of conservation
of momentum in the 5th dimension as follows:

∂T̂ 04

∂t
+
∂T̂ i4

∂xi
= 0 (3.1.5)

We also have i=4 vanishing by KCC. Thus the conservation of Toth charge
becomes (when generalized to different space-time frames) the property of a
4-vector current, which we know to be conserved:

(T̂ 04, T̂ 14, T̂ 24, T̂ 34) (3.1.6)

∂0T̂
04 + ∂1T̂

14 + ∂2T̂
24 + ∂3T̂

34 = 0 (3.1.7)

As in relativity this can be extended to a definition that is valid even when
there is curvature. Nevertheless the original Toth charge definition (3.1.2) has
meaning in all Kaluza atlas frames as a scalar.

Kinetic Toth charge current is the 4-vector, induced from 5D Kaluza-Cartan
space as follows (using the Kaluza atlas to ensure it is well-defined as a 4-vector):

J∗a = −αĜa4 (3.1.8)

Noting that,
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∇̂AĜAB = ∇̂aĜa4 = 0 (3.1.9)

Using Wheeler et al [6] p.131, and selecting the correct space-time (or Kaluza
atlas) frame, we have:

Q∗ = J∗a (1, 0, 0, 0)a (3.1.10)

So we have a scalar, then a vector representation of relativisitic invariant
charge current, and finally a 2-tensor unification with mass-energy.

In the sequel torsion will be introduced. But this will not prevent the Levi-
Civita connection having meaning and application on the same manifold contem-
poraneously. Kinetic Toth charge is defined in the same way even when torsion
is present - via the Einstein tensor without torsion, and applying conservation
of mass-energy relative to the torsionless connection. The new cylinder condi-
tion is defined, on the other hand, using the torsion connection. Distinction is
therefore necessary between connections.

The definition of kinetic charge and the conservation law of mass-energy-
charge need to be written in the appropriate form when torsion is used on the
same manifold:

Definition 3.1.11: Toth charge current.

Toth charge current is defined to be the 4-vector J∗a = −αĜa4, with respect
to the Kaluza atlas, and noting:

4̂aĜaB = 0

(3.1.11)

3.2 Geometrized Units Of Mass

The metric components used in [1] as the 5D Kaluza metric, defined in terms of
the original KCC follow. It will be equally used here in its new context, where
the geometry of this space will depend on the new KCC defined in terms of a
metric torsion tensor. It is called here the Kaluza-Cartan metric to remind us
of this context.

Definition 3.2.1: The 5D Kaluza-Cartan metric.

ĝAB =

[
gab + k2φ2AaAb kφ2Aa

kφ2Ab φ2

]
(3.2.1)

This gives inverse as follows:

ĝAB = |ĝAB |−1 =

[
gab −kAa
−kAb 1

φ2 + k2AiA
i

]
(3.2.2)
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This gives (with respect to space-time) perpendicular solutions [1] under the

original KCC, such that Gab = −k
2

2 FacF
c
b . Compare this with [7] where we

have Gab = 2FacF
c
b in geometrized units we would need to have k = 2 or k = −2

for compatibility of results and formulas. Noting the sign change introduced by
[1] - where it appears that the Einstein tensor was defined relative to (+, −, −,
−), despite the 5D metric tensor being given in a form that can only be (−, +,
+, +, +), which is confusing. Essentially the same result, but with consistent
sign conventions, is achieved here in (6.2.4).

The geometrized units, Wald [7], give a relation for mass in terms of funda-
mental units as follows:

G = 1 = 6.674× 10−8cm3g−1s−2 = 6.674× 10−8cm3g−1 × (3× 1010cm)−2

= 6.674× 10−8cmg−1 × (3× 1010)−2

1g ≈ 7.42× 10−29cm for c=1, G=1 (3.2.3)

1g ≈ G/c2cm for c=1, G=1 (3.2.4)

G and k will not be independent however. If we fix one the other is fixed
too, as a consequence of requiring the Lorentz force law written in familiar
form. The relation between G and k is given later in equation (7.4.5). Simple
compatibility with Wald [7], where k = 2 and G = 1, results. The sign of k is
also fixed by (6.6.5).

For k = 2, c=1, G=1 we have:

1statC = 1cm3/2s−1g1/2 = cm1/2 × (7.42× 10−29cm)1/2/(3.00× 1010)

= 8.61× 10−15cm/(3× 1010) ≈ 2.87× 10−25cm ≈ 3.87× 103g (3.2.5)

Using cgs (Gaussian) units and the cgs versions of G and c, ie G = 6.67 ×
10−7cm3g−1s−1 and c = 3× 1010cms−1, the charge can be written in terms of
5D proper momentum P4 as follows:

1statC = 1cm3/2s−1g1/2 = 1(cm/s)cm1/2g1/2 =
c√
G
g.cm/s

Q∗ =
c√
G
P4 (3.2.6)

Generally speaking the approach here will be to do the calculations using
k = 1 and then add in the general k term later, as and when needed, simply to
ease calculation.
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3.3 Consistency With Special Relativity

Toth charge is identified with 5D momentum in a space-time rest frame. This
is already known in the original Kaluza theory to obey a Lorentz-like force law,
but will be extended here in scope.

That this is consistent with special relativity can be investigated. What this
consistency means is that the relativistic mass created by momentum in the 5th
dimension is kinematically identical to the relativistic rest mass.

The additions of velocities in special relativity is not obvious. Assume a flat
5D Kaluza space (i.e without geometric curvature or torsion, thus analogously to
special relativity at a flat space-time limit, a 5D Minkowski limit). Space-time
can be viewed as a 4D slice (or series of parallel slices) perpendicular to the 5th
Kaluza dimension that minimizes the length of any loops that are perpendicular
to it. Taking a particle and an inertial frame, the relativistic rest frame where
the particle is stationary with respect to space-time but moving with velocity
u in the 5th dimension, and a second frame where the charge is now moving in
space-time at velocity v, but still with velocity u in the 5th dimension, then the
total speed squared of the particle in the second frame is according to relativistic
addition of orthogonal velocities:

s2 = u2 + v2 − u2v2 (3.3.1)

The particle moving in the Kaluza dimension with velocity u, but stationary
with respect to 4D space-time, will have a special relativistic 4D rest mass (m0)
normally greater than its 5D Kaluza rest mass (mk0). We can see that the
Kaluza rest mass definition (mk0) is consistent with the orthogonal addition of
velocities as follows:

m0 =
mk0√

(1− u2)
where u = Tanh[Sinh−1(Q∗/(mk0))] (3.3.2)

mrel =
m0√

(1− v2)
=

mk0√
(1− u2)

× 1√
(1− v2)

=
mk0√

(1− u2 − v2 + u2v2)
(3.3.3)

By putting u = Tanh[Sinh−1(Q∗/(mk0))] (the conversion between unidi-
rectional proper and coordinate velocities) into the definition of relativistic rest
mass in terms of Kaluza rest mass and solving, we get that charge, whether
positive or negative, is related to the relativistic rest mass according to the
following formula:

Cosh[Sinh−1(Q∗/(mk0))] = m0/mk0 =
dt0
dτ∗

(3.3.4)

Using k = 2 we also have, for a typical unit charge:
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me = 9.1094× 10−28g (3.3.5)

Q∗ = 4.8032×10−10statC = 4.8032×3.87×10−10+3g = 1.859×10−6g (3.3.6)

If we take these figures and equate me = m0 then we end up with imaginary
mk0 and imaginary proper Kaluza velocity. Obviously to detail this the Kaluza-
Cartan space-time would have to be adapted further in some way. But on the
other hand it causes no causality problems provided the net result is compliant
with any energy conditions being applied. And what is important in this respect
is that the figures we know to be physical in 4D remain so.

Further issues are pertinent.
Observed electrons have static charge, angular momentum, a magnetic mo-

ment, and a flavor. The only thing distinguishing the electron from the muon
is the flavor. The mass difference between the muon and the electron is about
105 MeV, perhaps solely due to this difference in flavor. The issue of modeling
particles within a classical theory is, not surprisingly, a difficult one! Thus at
this stage the idealized hypothetical charges used here, and real particles, can
only be tentatively correlated.

It is possible to proceed without concern for the foundational issues of such
charge models or attempting to interpret this quandary, instead simply devel-
oping the mathematics as is and seeing where it leads without judging it a
priori.

3.4 Matter And Charge Models, A Disclaimer

This theory assumes some sort of particle model of matter and charge is possible,
that it can be added to the original theory without significantly changing the
ambient space-time solution and thus its own path, which is as approximate as
in general relativity except as a limit. Secondly we might imagine that what
has been described is a particle whizzing around the fifth dimension like a roller
coaster on its spiralled tracks. The cylinder conditions can in fact be maintained
if, instead of a 5D particle, the matter-charge source were rather a ‘solid’ ring,
locked into place around the 5th dimension, rotating at some predetermined
proper Kaluza velocity (albeit imaginary). An exact solution could even involve
changes in the size of the 5th dimension. None of that is investigated here, the
aim was originally just to see whether non-perpendicular solutions can be found
in a variant Kaluza theory, and what constraints are needed.

It is a proviso that a physically realistic matter-charge model has not been
detailed, nor formally identified with a real charge source such as an electron.
The assumption then that such a hypothetical model would necessarily follow
(albeit approximately) some predetermined path such as geodesics is therefore
an assumption to be made about such matter-charge models - though not with-
out analogs in other, experimentally valid classical theories. However, with the
addition of torsion this becomes very much an assumption. Geodesics, or ex-
tremals, being followed by spinless particles in 4D Einstein-Cartan theory [11].
Other particles following different paths when interaction with torsion is present.
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An exact differential geometrical model of such a matter-charge source is
presumed too difficult to produce here, even if possible, especially given the
previous discussion about imaginary masses and velocities. In addition, the
fact that real charge sources are quantum mechanical may also be discouraging,
though a classical limit interpretation should be possible regardless. The phi-
losophy here has not been to provide a Lagrangian for a hypothesised charge
model either, but instead to simply delimit what might constitute such models,
and to weaken such constraints as much as possible.

This work assumes a limited concept of charge models and attempts to in-
vestigate whether non-perpendicular electromagnetic fields are possible in con-
junction with a Lorentz force law. The theory is an attempt to replicate all the
important features of classical physics, without predicting or imposing a partic-
ular model of charge as the correct one. To do this however some assumptions
must in any case be made about the path of any hypothesized particle.

Geodesic Assumption: That any particle-like matter-charge approxi-
mately follow auto-parallels. (Auto-parallels being one of two analogs of geodesics
used when torsion is present, but neither of which in the most general case de-
termine the paths followed by particles).

Note that spinless particles according to [11] will actually follow the other
geodesic analog: extremals. Extremals coincide with auto-parallels when torsion
is completely antisymmetric. Particles with spin may interact in other ways. So
when torsion is antisymmetric the assumption is that torsion-spin coupling does
not significantly effect the path of the particle at least to some approximation.

In this work the original field equations of Kaluza cease to apply when such
matter-charge models become part of the solution, and the new cylinder condi-
tion is applied with reference to the torsion connection. Therefore the original
Kaluza field equations are only used primarily in discussion to give an introduc-
tion and motivation to the new Kaluza-Cartan theory. It is to be noted that
in the following the Ricci flat condition of the original Kaluza theory’s Kaluza
space (ie the Ricci flat 5-space from which 4D space-time is extracted) will not
be generally valid due to the presence of matter models and torsion, and the
new Kaluza cylinder condition. It is also necessary to be careful as there will
be two connections, and thus two separate possible definitions of vacuum. A
5-vacuum for the Levi-Civita connection is not the 5-vacuum for the torsion
connection, and is not again, as with Kaluza’s original theory, the 4-vacuum of
space-time.
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4 The Geometry Of Torsion

4.1 Introducing Torsion

5D Cartan torsion will be admitted. This will provide extra and required degrees
of freedom. The new cylinder condition (see postulate K7 later) would otherwise
be too restrictive.

For both 5D and 4D manifolds (i.e. dropping the hats and indices notation
for a moment), torsion will be introduced into the Christoffel symbols as fol-
lows, using the notation of Hehl [11]. Metricity of the torsion tensor will be
assumed [19], the reasonableness of which (in the context of general relativity
with torsion) is argued for in [20] and [21]:

1

2
(Γkij − Γkji) = S k

ij (4.1.1)

This relates to the notation of Kobayashi and Nomizu [12] and Wald [7] as
follows:

T ijk = 2Sjk
i ≡ Γijk − Γikj (4.1.2)

We have the contorsion tensor K k
ij [11] as follows, and a number of relations

[11]:

Γkij =
1

2
gkd(∂igdj + ∂jgdi − ∂dgij)−K k

ij = {kij}−K k
ij (4.1.3)

K k
ij = −S k

ij + S k
j i
− Skij = −K k

i j (4.1.4)

With torsion included, the auto-parallel equation becomes [11]:

d2xk

ds2
+ Γk(ij)

dxi

ds

dxj

ds
= 0 (4.1.5)

Γk(ij) = {kij}+Sk(ij) − S
k

(j i)
= {kij}+2Sk(ij) (4.1.6)

Only when torsion is completely antisymmetric is this the same as the ex-
tremals [11] which give the path of spinless particles and photons in Einstein-
Cartan theory: extremals are none other than geodesics with respect to the
Levi-Civita connection.

d2xk

ds2
+ {kij}

dxi

ds

dxj

ds
= 0 (4.1.7)

It is noted that Einstein-Cartan theory, that adds torsion to the dynamics
of relativity theory is most probably a minimal ω-consistent extension of gen-
eral relativity [13][14] and therefore the use of torsion is not only natural, but
arguably a necessity on philosophical and physical grounds. That argument
can also be applied here. What we have defined by this addition can be called
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Kaluza-Cartan theory as it takes Kaluza’s theory and adds torsion. We assume
that the torsion connection is metric.

The torsionless field equations of Kaluza theory can not be used with torsion.
Kaluza-Cartan theory requires adjustments for torsion.

When completely antisymmetric we have the following simplification:

K k
ij = −S k

ij (4.1.8)

4.2 The Stress-Energy Tensor

The stress-energy tensor for a torsion bearing non-symmetric connection in
Einstein-Cartan theory is usually labelled κP̂AB , it need not be symmetric.
In the literature the constant κ is included analogously to the 8π in general rel-
ativity. Here we will use the Einstein tensor ĜAB , taking a purely geometrical
view.

The Belinfante-Rosenfeld [15] stress-energy tensor B̂ is a symmetric adjust-
ment of κP̂ that adjusts for spin currents as sources for Riemann-Cartan spaces.
It can be defined equally for the 5D case. It is divergence free. It is the torsion
equivalent according to Belinfante and Rosenfeld of the original Einstein tensor
Ĝ [12] in some sense: the Einstein-Hilbert action. However the usual defini-
tion in terms of stress-energies and Noether currents, rather than the Einstein
tensor, is not appropriate here. In effect repeating the Belinfante-Rosenfeld pro-
cedure, by defining the torsionless Einstein tensor in terms of torsion bearing
components, yields what can be interpreted as extra spin-spin coupling term
X̂AB :

ĜAB = ĜAB + V̂AB + X̂AB (4.2.1)

V̂AB =
1

2
∇̂C(σ̂ABC + σ̂BAC + σ̂CBA) (4.2.2)

Where σ is defined as the spin tensor in Einstein-Cartan theory. However,
here we do not start with spin (and some particle Lagrangians), but with the
torsion tensor. So instead the spin tensor is defined in terms of the torsion
tensor using the Einstein-Cartan equations. Here spin is explicitly defined in
terms of torsion:

σ̂ABC = 2ŜABC + 2ĝAC Ŝ
D

BD − 2ĝBC Ŝ
D

AD (4.2.3)

When the torsion is completely antisymmetric we have:

V̂AB = ∇̂C ŜABC (4.2.4)
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We have therefore, in terms of V̂ , a conservation law pertaining to spin by
definition:

∇̂AV̂ AB = 0 (4.2.5)

Note that the mass-energy-charge conservation law for the torsionless Ein-
stein tensor is currently in terms of the torsionless connection, but the spin
source conservation law here is in terms of the torsion-bearing connection. How-
ever, for completely antisymmetric torsion we have:

∇̂C ĜAB = 4̂C ĜAB + K̂ D
CA ĜDB + K̂ D

CB ĜAD
So,

∇̂AĜAB = 0 + 0 + K̂A D
B ĜAD = −K̂ AD

B ĜAD

= −K̂ AD
B ĜDA = +K̂ DA

B ĜDA = +K̂ AD
B ĜAD = 0 (4.2.6)

∇̂A(ĜAB + X̂AB) = 0 (4.2.7)

And so there is a stress-energy conservation law with respect to the torsion
connection also.

Further, still assuming complete antisymmetry of torsion, by definition of
the Ricci tensor:

R̂AB = R̂AB + K̂ C
DA K̂

D
BC − ∂CK̂

C
BA − K̂

C
BA ẑDDC + K̂ C

DA ẑDDC − K̂
C

DB ẑDAC

= R̂AB − K̂ C
AD K̂ D

BC − ∇̂
C ŜABC (4.2.8)

Ĝ[AB] = R̂[AB] = −∇̂C ŜABC (4.2.9)

V̂AB is the antisymmetric part of −ĜAB . And X̂AB is symmetric.

5 Kaluza-Cartan Space-Time

In this section a full outline of the theory in terms of postulates, assumptions
and possible additions is presented. K1-K7 constitute the theory proper.

5.1 Kaluza-Cartan Space-Time Definition

A definition of Kaluza-Cartan Space-Time, or Kaluza-Cartan Space, follows.
K7 is the new KCC:

Core Definitions and Postulates:

(K1) A Kaluza-Cartan manifold is a 5D smooth Lorentzian manifold.
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(K2) One spatial dimension is topologically closed and small, the Kaluza
dimension. There is a global unit vector that defines this direction and they
form closed non-intersecting loops.

(K3) The other spatial dimensions and time dimension are large.
(K4) There is a connection that is a metric torsion connection with respect

to the geometry, this is the torsion connection.
(K5) Kaluza-Cartan Space is assumed globally hyperbolic in the sense that

there exists a 3D spatial cauchy surface plus time, extended in the obvious way
via the new cylinder condition into 5D.

(K6) Kaluza-Cartan Space is oriented.
(K7) The covariant derivative (with respect to the torsion tensor) of all

tensors and pseudotensors in the Kaluza direction are zero. This is the covariant
derivative with lower index: ∇̂4.

The new KCC given here determines that local charts are possible with
vanishing partial derivatives for all tensors. That is, partial derivatives with
lower index: ∂4 are all zero. What we can do now is take a loop by following
the Kaluza direction and forming a 1-dimensional submanifold for every point
of space-time. By inspecting the bundles inherited by each loop submanifold we
can observe that at every point they are necessarily static. As a result ∂4 and
∇̂4 must be vanishing for all tensors.

5.2 The Scalar Field And Torsion Versus Observation

In the sequel a justification (somewhat empirical - equation 7.3.1) is given for
restricting the scalar field and accordingly the Kaluza atlas as follows:

(B1) φ2 = 1

The text provides the case for a constraint on the torsion tensor, that it
is completely antisymmetric, this then also ensures total antisymmetry of the
contorsion tensor via (4.1.8). The case is made implicitly by the fact that it is
frequently required as a simplification step.

(B2) The torsion tensor is completely antisymmetric.

B2 will be shown to imply a fixed gauge on the vector potential components
given by (6.1.9). That is: AdFcd = 0.

5.3 Secondary Definitions And Points

Some useful observations and definitions:

(S1) The Kaluza-Cartan vacuum is a Ricci flat region of a Kaluza-Cartan
manifold with respect to the torsion connection definition of the Ricci tensor.
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Similarly the Kaluza vacuum is a Ricci flat region with respect to the Levi-
Civita connection. They are different. Here they are both defined in terms of
the geometry implied by the new KCC. There is also the Kaluza space (and
hence Kaluza vacuum) of the original Kaluza theory. So the definition of the
vacuum, whichever may be being referenced, depends on the cylinder condition
being used.

(S2) K7 can be used to decompose the entire 5D geometry into a 4D metric,
a vector potential and a scalar field when curvatures are not so extreme as to
lead to a singularity in the 4D metric. It defines how space-time is a parallel
set of submanifolds.

(S3) Singularities resulting from an S2 break-down may indicate regions
where the theory as presented breaks down.

(S4) The Kaluza vacuum (under the new KCC) typically contains fields
when the 4D metric is inspected, and will most often not be Ricci flat in 4D
space-time. Likewise for the Kaluza vacuum under the original KCC, and for
the Kaluza-Cartan vacuum under the new KCC.

(S5) What is allowed as a physical solution needs to be delimited in some
way, at the very least to avoid acausality as in classical physics. This can be done
by using energy conditions as in relativity for the resultant 4D space-time, at
least as long as the decomposition doesn’t break-down. The cylinder condition
can then extrapolate that to the whole of the Kaluza-Cartan manifold.

(S6) Matter-charge models must also be consistent with K7. A realistic
elementary charge model would have imaginary Kaluza rest mass and Kaluza
velocity, but this does not prevent it satisfying the cylinder condition.

(S7) K7 may well be a limit rather than a fundamental postulate, that is
not dealt with further. Similiarly the lack of a scalar field.

(S8) A number of possible constraints can be experimented with and applied
to matter models, the aim here is to keep the options as broad as possible.
Assumptions pertaining to matter models are therefore defined separately below.

(S9) The new KCC is defined in terms of covariant derivatives instead of
the usual frame dependent partial derivatives, and then a restricted Kaluza
subatlas is used in which the partial derivatives are also zero. In particular it
takes account of torsion.

(S10) The antisymmetric part of the torsion-bearing Einstein tensor is as-
sociated with spin sources. There is a conservation law automatic from the
definition. The torsionless Einstein tensor is associated with matter and charge,
and a similar conservation law follows.

5.4 Matter And Charge Models

Some notes on matter andcharge models:

(M1) Matter-charge models must be consistent with the preceding.
(M2) Simple examples could include black-hole singularities.
(M3) Net positivity of mass and energy may be imposed by the usual energy

conditions or similar extensions in 5D.
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(M4) No comment is passed on the fact that the proportions of mass and
charge of a realistic elementary charge model yield imaginary Kaluza rest mass
and Kaluza proper velocity - this paper proceeds without judging this peculiar
result.

(M5) Matter-Charge models can be defined as any part of the Kaluza-Cartan
manifold that are not Kaluza vacuums (according to definition S1).

(M6) A further definition of Matter-Charge-Spin models is required. This
will be defined differently: when, according to definition S1, the Kaluza-Cartan
manifold is not a Kaluza-Cartan vacuum.

(M7) There is a need to make an assumption: the Geodesic Assumption,
that light particle-like solutions are possible and follow 5D auto-parallels. I.e.
geodesics when torsion is not present. This should in any case be the case for
spinless particles, as seen in 4D Einstein-Cartan theory. As applied to particles
with spin we are making an assumption about spin-torsion coupling that may
well be incorrect.

(M8) Quantization of charge is not dealt with - no less than quantization
of energy or momentum. The proper place for this is a quantum theory, or a
theory that encompasses the quantum.

5.5 An Apology

Admittedly (M4) through (M8) show that this theory is in an early state of
development. Many theories pass through such a state, and complete realization
from the outset can not be expected. An objective in the foregoing has been to
present the postulates that are needed for the theory to be well-defined even if
incomplete. Ultimately empirical observation determines validity.

6 The Field Equations

6.1 The Cylinder Condition And Scalar Field

Here we look at how K7 affects the Christoffel symbols of any coordinate system
within the Kaluza atlas. Given that the Kaluza atlas is reduced in the following
way: all partial derivatives of tensors in the Kaluza direction are set to zero
(using k = 1). The Appendix (9.1.1 onwards) contains a reference for Christoffel
symbol working both with and without the torsion component.

The following follow from the selection of coordinates that set the partial
derivatives in the Kaluza dimension to zero; from K7, the new covariant version
of the Kaluza cylinder condition used in this paper; and, from the relationship
between these two and the Christoffel symbols given in Wald [7] p33 eqn (3.1.14)
as applied to a number of test vectors. Note that there is no hint of symmetry
of the (with torsion) Christoffel symbols suggested here. That is, these terms
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are forced zero by the fact that both the partial derivatives and the covariant
derivatives in the Kaluza direction are zero. Cf equation (1.0.4) where the
consequences of setting both the partial derivatives and the covariant derivative
to zero can be seen on the Christoffel symbols. The new cylinder condition is
quite strong and without torsion would lead immediately to insufficiently diverse
geometry given the other postulates here.

0 = 2Γ̂A4c =
∑
d

ĝAd(∂4gcd + ∂4φ
2AcAd + ∂cφ

2Ad − ∂dφ2Ac) + ĝA4∂cφ
2 − 2K̂ A

4c

(6.1.1)

0 = 2Γ̂A44 = 2
∑
d

ĝAd∂4φ
2Ad −

∑
d

ĝAd∂dφ
2 + ĝA4∂4φ

2 − 2K̂ A
44 (6.1.2)

We have:

2K̂ A
4c = ĝAd(∂cφ

2Ad − ∂dφ2Ac) + ĝA4∂cφ
2 (6.1.3)

2K̂ A
44 = −ĝAd∂dφ2 (6.1.4)

Inspecting the first of these equations (6.1.1), and given that KA(BC) = 0
(4.1.4), and further applying A=c without summing, we have a constraint on
the scalar field in terms of the vector potential that further motivates postulate
B1. Here, however, we make a priori use of postulate B1.

The immediate result of this is as follows (using k = 1):

2K̂ A
4c = ĝAd(∂cAd − ∂dAc) (6.1.5)

2K̂ A
44 = 0 (6.1.6)

Giving the contorsion a very clear interpretation here in terms of the elec-
tromagnetic field.

K̂ a
4c =

1

2
F ac (6.1.7)

K̂ 4
4c = −1

2
AdFcd (6.1.8)

Complete antisymmetry of contorsion imposes, by (6.1.1):

AdFcd = 0 (6.1.9)

This is nothing other than a vector potential gauge for completely antisym-
metric torsion as there are four unknowns in the offset for each vector potential
component and four unknowns in the above equation, one for each c. This gauge
constraint is noted in postulate B2.
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This and similar considerations lead to a number of simplifications by looking
at the details of the Christoffel symbols:

K̂ 4
4a = K̂ 4

a4 = Γ̂4
a4 = Γ̂4

4a = 0 (6.1.10)

6.2 The First Field Equation With Torsion, k = 1

Looking at the Ricci tensor, but here with torsion (using equations 9.1.7 repeat-
edly, and the new KCC as required):

R̂ab = ∂C Γ̂Cba − ∂bΓ̂CCa + Γ̂CbaΓ̂DDC − Γ̂CDaΓ̂DbC

R̂ab = ∂cΓ̂
c
ba − ∂bΓ̂cca + Γ̂CbaΓ̂DDC − Γ̂CDaΓ̂DbC

R̂ab = ∂cΓ̂
c
ba − ∂bΓ̂cca + Γ̂CbaΓ̂ddC − Γ̂CdaΓ̂dbC

R̂ab = ∂cΓ̂
c
ba − ∂bΓ̂cca + Γ̂cbaΓ̂ddc − Γ̂CdaΓ̂dbC (6.2.1)

Doing the same for the without torsion definitions (using equations 9.1.6
repeatedly, and the new KCC as required). The extra term with respect to the
above coming from the fact that (6.1.10) can not be applied to the torsionless
Christoffel symbols, which in turn comes from the new cylinder condition:

R̂ab = ∂CẑCba − ∂bẑCCa + ẑCbaẑDDC − ẑCDaẑDbC
R̂ab = ∂cẑcba − ∂bẑcca + ẑCbaẑddC − ẑCDaẑDbC

R̂ab = ∂cẑcba − ∂bẑcca + ẑcbaẑddc − ẑCdaẑdbC − ẑc4aẑ4
bc (6.2.2)

In the original Kaluza theory the Ricci curvature of the 5D space is set to
0. The first field equation comes from looking at the Ricci curvature of the
space-time that results. Here there is a choice: whether to base the vacuum
on a Kaluza vacuum or a Kaluza-Cartan vacuum. To be consistent with the
definition of matter-charge models, ie M5 and definition (3.1.11), the Kaluza
vacuum is looked at first as the more obvious choice. Setting R̂ab = 0,

Rab = Rab − R̂ab = ∂czcba − ∂bzcca + zcbazddc −zcdazdbc
−∂cẑcba + ∂bẑcca − ẑcbaẑddc + ẑCdaẑdbC − ẑc4aẑ4

bc

= ∂czcba − ∂cẑcba − ∂bzcca + ∂bẑcca
+zcbazddc − ẑcbaẑddc −zcdazdbc + ẑCdaẑdbC + ẑc4aẑ4

bc

= −1

2
∂c(AbF

c
a +AaF

c
b ) + 0− 1

2
(AbF

c
a +AaF

c
b )zddc

+
1

2
(AdF

c
a +AaF

c
d )zdbc+

1

2
(AbF

d
c +AcF

d
b )zcda+

1

4
(AdF

c
a +AaF

c
d )(AbF

d
c +AcF

d
b )

+
1

2
F db (−Aczcda +

1

2
∂dAa +

1

2
∂aAd)
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+
1

2
F ca(−Adzdbc +

1

2
∂bAc +

1

2
∂cAb)

= −1

2
∂c(AbF

c
a +AaF

c
b )− 1

2
(AbF

c
a +AaF

c
b )zddc

+
1

2
AaF

c
dzdbc +

1

2
AbF

d
c zcda +

1

4
(AdF

c
a +AaF

c
d )(AbF

d
c +AcF

d
b )

+
1

4
F db (∂dAa + ∂aAd) +

1

4
F ca(∂bAc + ∂cAb) (6.2.3)

Taking a limit without Maxwell charge sources (see 6.3.1), and ignoring
terms with more than two components at a weak field limit we can simplify this
equation for a particular limit defined by, and restricted to, that simplification:

= −1

2
(∂cAb)F

c
a −

1

2
(∂cAa)F cb +

1

4
F db (∂dAa + ∂aAd) +

1

4
F ca(∂bAc + ∂cAb)

=
1

4
F db (−∂dAa + ∂aAd) +

1

4
F ca(∂bAc − ∂cAb)

=
1

2
F caFbc (6.2.4)

When compared with the second and third field equations below, (6.3.1) and
(6.4.1), the similarity with the original Kaluza field equations and the perpen-
dicular solutions of the Einstein-Maxwell equations is unmistakable.

Now, doing the same with respect to M6 and (4.2.1),(4.2.5), so that we are
defining vacuum as outside of matter-charge-spin models, that is, a Kaluza-
Cartan vacuum according to S1 (R̂AB = 0) - and using (6.2.1):

Rab = Rab − R̂ab = ∂czcba − ∂bzcca + zcbazddc −zcdazdbc
−∂cΓ̂cba + ∂bΓ̂

c
ca − Γ̂cbaΓ̂ddc + Γ̂CdaΓ̂dbC

= Rab − R̂ab + ∂cK̂
c

ba − ∂bK̂
c

ca + K̂ c
ba Γ̂ddc + Γ̂cbaK̂

d
dc − K̂

c
ba K̂

d
dc

−K̂ C
da Γ̂dbC − Γ̂CdaK̂

d
bC + K̂ C

da K̂
d

bC

Simplifying for complete antisymmetry of torsion and contorsion:

= Rab − R̂ab + ∂cK̂
c

ba + K̂ c
ba Γ̂ddc − K̂

C
da Γ̂dbC − Γ̂CdaK̂

d
bC + K̂ C

da K̂
d

bC

We could further substitute in equation (6.2.3), but the result is perhaps
not immediately informative, except to note that the limit leading previously to
perpendicular electrovacuums is now more complex and involves torsion terms.
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6.3 The Second Field Equation With Torsion

Rederivation of the second field equation under the new KCC, and R̂ab = 0 in
mind:

R̂a4 = ∂CẑC4a − ∂4ẑCCa + ẑC4aẑDDC − ẑCDaẑD4C
= ∂cẑc4a + ẑc4aẑddc − ẑcdaẑd4c

=
1

2
∂cF

c
a +

1

2
F cazddc − (zcda +

1

2
(AdF

c
a +AaF

c
d ))F dc

=
1

2
∂cF

c
a +

1

2
F cazddc − (zcda +

1

2
AaF

c
d )F dc

Looking at this locally so that 1st derivatives are vanishing, but second
derivatives remain (re-inserting general k):

R̂a4 =
k

2
∂cF

c
a (6.3.1)

This couldn’t be a clearer conception of Maxwell charge. Setting this to 0 in
Kaluza vaccum assures us that Maxwell charge is locally restricted to matter-
charge models, but does not do the same for matter-charge-spin models.

By definition (and the new KCC, and 9.1.7), we immediately get:

R̂a4 = 0 (6.3.2)

Whereas R̂4b simplifies to:

R̂4b = ∂cF
c
b + F cb Γ̂ddc − F cd Γ̂dbc (6.3.3)

Which is not the clean local definition of Maxwell charge presented in (6.3.1).
Although of course at a limit where first derivatives vanish it does become a
charge source.

6.4 The Third Field Equation With Torsion, k = 1

This section shows how torsion releases the constraint of the third torsionless
field equation, thus allowing non-perpendicular solutions. The constraint that
the Ricci tensor be zero leads to no non-perpendicular solutions in the original
Kaluza theory via the third field equation. This is caused by setting R̂44 = 0 in
that theory and observing the terms. The result is that (when the scalar field is
constant) 0 = FcdF

cd in the original Kaluza theory. The same issue arises here:

We have:

R̂44 = ∂CẑC44 − ∂4ẑCC4 + ẑC44ẑDDC − ẑCD4ẑD4C
= 0− 0 + 0− ẑCD4ẑD4C

= −1

4
F cdF

d
c (6.4.1)
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The result is that whilst we can have non-perpendicular solutions, we can
only have them outside of a strict Kaluza vaccum, contradicting the initial
approach here based on M5. The idea that arises is that the perpendicular
solutions are those which correlate with a Kaluza vacuum, whilst the non-
perpendicular solutions arise in Kaluza-Cartan vacuum.

By definition (and the new KCC, and 9.1.7), we immediately get:

R̂44 = 0 (6.4.2)

6.5 Matter-Charge-Spin

As a result of the preceding an investigation into basing matter models on M6
is required. By making the electrodynamical vacuum a region of the Kaluza-
Cartan manifold without matter-charge-spin, that is, a Kaluza-Cartan vacuum,
certain complications and opportunities arise. The main opportunity is that we
can resolve the problem of perpendicular electromagnetic solutions. Secondly it
is more logical in that both the cylinder condition and the vacuum are defined
in terms of the torsion connection. The main complication is that it is not
at all clear that Maxwell charge is bound to matter-charge-spin models. It
appears that Maxwell charge could leak into the ambient via non-perpendicular
fields since in general R̂AB 6= 0. Cf (6.3.1) and the presence of Maxwell charge
terms present on inspection in (6.2.3). At first glance (6.3.3) seems to offer the
possibility of charge sources outside matter-charge-spin models, even if within
matter-charge models. As such matter-charge-spin models would appear to have
no intergity unlike matter-charge models - it is important that matter, charge
and spin that are sourced in a matter-charge-spin model stay there in some
definable sense. For matter-energy this is governed by (4.2.7). For spin this is
governed by (4.2.5), (4.2.7) and (4.2.9), in that the conserved spin component
can not pass into a symmetric part of the Ricci tensor, hence certainly not a
region where it is vanishing. The same must surprisingly also follow for charge
by (6.1.7), as a corollary.

So in fact the problem presumed for R̂AB is not a problem under completely
antisymmetric torsion. In this way matter-charge-spin models and Kaluza-
Cartan vacuum can be assigned the fundamental role initially expected for
matter-charge.

Further however this is also consistent with the fact that spin is empirically
important in nature.

6.6 Toth Charge

Now to investigate the relationship between Toth charge and Maxwell charge.
For this we need a particular limit.

Definition 6.6.1: The Maxwell limit.
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(i) The limit shall be a local limit where second derivatives of metric com-
ponents are significant and first derivatives discarded.

(ii) The electromagnetic potential vector and space-time curvatures shall be
weak, such that terms of the following form will be discarded despite the second
derivatives:

Av∂w∂xgyz → 0 Av∂w∂xg
yz → 0 (6.6.1)

Using Appendix (9.3.3), and (i) and (ii) above, at the defined limit:

Ĝa4 = R̂a4 − 1

2
ĝa4R̂ = R̂a4 − 1

2
(−Aa)R̂ → R̂a4

R̂a4 = ∂CẑC4a − ∂4ẑC a
C + ẑCbaẑDDC − ẑC a

D ẑDbC

Ĝa4 → R̂a4 = ∂cẑc4a (6.6.2)

Applying the local Maxwell flat space-time limit, and putting k back in, and
by using Appendix equation (9.2.1) for the Christoffel symbol, we get:

R̂a4 → 1

2
∂ckF

ac (6.6.3)

And so by (3.1.11),

J∗a → −
αk

2
∂cF

c
a (6.6.4)

So Toth and Maxwell charges are related by a simple formula. The right
hand side being Maxwell’s charge current (see p.81 of [6]), and has the correct
sign to identify a positive Toth charge Q∗ with a positive Maxwell charge source
4πQM , whenever αk > 0. In the appropriate space-time frame, and Kaluza atlas
frame, and at the appropriate limit, using (3.1.10):

4πQM = +
2

αk
Q∗ (6.6.5)

7 The Lorentz Force Law

Toth [8] derives a Lorentz-like force law where there is a static scalar field
and Kaluza’s cylinder condition applies in the original Kaluza theory. The
resulting ‘charge’ is the momentum term in the fifth dimension and it is not
apparent how this relates to the Maxwell current, except as Toth states via
‘formal equivalence’. While this result is not new, Toth’s calculation is extended
here for the new theory. here we make use of the Geodesic Assumption.
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7.1 A Lorentz-Like Force Law

The Christoffel symbols and the geodesic equation are the symmetric ones de-
fined in the presence of totally antisymmetric torsion. We will here initially use
k = 1, a general k can be added in later.

Γ̂c(4b) = 1
2g
cd(δ4ĝbd + δbĝ4d − δdĝ4b) + 1

2 ĝ
c4(δ4ĝb4 + δbĝ44 − δ4ĝ4b) =

1
2g
cd[δb(φ

2Ad)− δd(φ2Ab)] + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbĝ44 =

1
2φ

2gcd[δbAd − δdAb] + 1
2g
cdAdδbφ

2 − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbφ

2 =
1
2φ

2F cb + 1
2g
cdAdδbφ

2 − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbφ

2 =
1
2φ

2F cb − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd = 1

2φ
2F cb − 1

2g
cdAbδdφ

2

(7.1.1)

Γ̂c44 = 1
2 ĝ

cD(δ4ĝ4D + δ4ĝ4D − δDĝ44) = - 1
2g

cdδdφ
2

(7.1.2)

We have:

Γ̂c(ab) = 1
2g
cd(δagdb + δbgda − δdgab)

+ 1
2g
cd(δa(φ2AdAb)+δb(φ

2AaAd)−δd(φ2AaAb))+ 1
2 ĝ
c4(δaĝ4b+δbĝ4a−δ4ĝab)

= Γc(ab) + 1
2g
cd(δa(φ2AdAb) + δb(φ

2AaAd)− δd(φ2AaAb))
−Ac(δaφ2Ab + δbφ

2Aa)

(7.1.3)

So, for any coordinate system within the maximal atlas:

0 = d2xa

dτ2 + Γ̂a(BC)
dxB

dτ
dxC

dτ

= d2xa

dτ2 + Γ̂a(bc)
dxb

dτ
dxc

dτ + Γ̂a(4c)
dx4

dτ
dxc

dτ + Γ̂a(b4)
dxb

dτ
dx4

dτ + Γ̂a44
dx4

dτ
dx4

dτ

= d2xa

dτ2 + Γ̂a(bc)
dxb

dτ
dxc

dτ + (φ2F ab − gadAbδdφ2)dx
b

dτ
dx4

dτ −
1
2g

adδdφ
2 dx4

dτ
dx4

dτ

(7.1.4)

Taking φ2 = 1 and the charge-to-mass ratio to be:

Q′/mk0 =
dx4

dτ
(7.1.5)

We derive a Lorentz-like force law:

d2xa

dτ2
+ Γ̂a(bc)

dxb

dτ

dxc

dτ
= −(Q′/mk0)F ab

dxb

dτ
(7.1.6)

Putting arbitrary k and variable φ back in we have:
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d2xa

dτ2
+Γ̂a(bc)

dxb

dτ

dxc

dτ
= −k(Q′/mk0)(φ2F ab −gadAbδdφ2)

dxb

dτ
− 1

2
gadδdφ

2 dx
4

dτ

dx4

dτ
(7.1.7)

7.2 Constant Toth Charge

Having derived a Lorentz-like force law we look also at the fact that the momen-
tum of the charge in the Kaluza dimension can not be changed by the action of
an electromagnetic field alone. We look at this acceleration as with the Lorentz
force law. We have, with torsion (and k = 1):

0 =
d2x4

dτ2
+ Γ̂4

(BC)

dxB

dτ

dxC

dτ

=
d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
+ Γ̂4

(4c)

dx4

dτ

dxc

dτ
+ Γ̂4

(b4)

dxb

dτ

dx4

dτ
+ Γ̂4

44

dx4

dτ

dx4

dτ

=
d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
+ 2Γ̂4

(4c)

dx4

dτ

dxc

dτ
+

1

2
Adδdφ

2 dx
4

dτ

dx4

dτ
(7.2.1)

7.3 Unitary Scalar Field And Torsion

Both equations above (7.1.7) and (7.2.1) have a term that wrecks havoc to any
similarity with the Lorentz force law proper, the terms at the end. Both terms
can however be eliminated by setting the scalar field to 1. This is postulate
B1. This leads to torsion as the only way available to us to allow for non-
perpendicular electromagnetic solutions. All the previous workings apply with
torsion admitted, except the standard field equations of Kaluza theory, here
called the torsionless field equations.

The two equations under B1 become (for all k):

d2xa

dτ2
+ Γ̂a(bc)

dxb

dτ

dxc

dτ
= −k(Q′/mk0)F ab

dxb

dτ
(7.3.1)

d2x4

dτ2
+ Γ̂4

(bc)

dxb

dτ

dxc

dτ
= −k2(Q′/mk0)AcF

c
b

dxb

dτ
= 0 (7.3.2)

This certainly looks more hopeful. The more extreme terms have disap-
peared, the general appearance is similar to the Lorentz force law proper. The
right hand side of (7.3.2) vanishes by B2 and the potenial gauge constraint. This
and equation (7.2.1) equate to no change in momentum in the Kaluza direction,
and small changes to any kinetic Toth charge in a flat space approximation.
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7.4 The Lorentz Force Law

It is necessary to confirm that equation (7.3.1) not only looks like the Lorentz
force law formally, but is indeed the Lorentz force law. Multiplying both sides
of (7.3.1) by dτ

dτ ′
dτ
dτ ′ , where τ ′ is an alternative affine coordinate frame, gives:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
= −k dτ

dτ ′
(Q′/mk0)F ab

dxb

dτ ′
(7.4.1)

Given Q∗ = Q′ dτdτ∗ and therefore mk0

m0
Q∗ = Q′ dτdt0 by definition, we can set

the frame such that τ ′ = t0 via the projected 4D space-time frame of the charge.
And the Lorentz force is derived:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
= −k(Q∗/m0)F ab

dxb

dτ ′
(7.4.2)

In order to ensure the correct Lorentz force law using the conventions of Wald
[7] p69, this can be rewritten as follows, using the antisymmetry of F ab = −F ab:

= k(Q∗/m0)F ab
dxb

dτ ′
(7.4.3)

Using (6.6.5) this can be rewritten again in terms of the Maxwell charge:

= k(
αk

2
(4πQM )/m0)F ab

dxb

dτ ′
(7.4.4)

The result is that we must relate G and k to obtain the Lorentz force law
in acceptable terms:

d2xa

dτ ′2
+ Γ̂a(bc)

dxb

dτ ′
dxc

dτ ′
= (QM/m0)F ab

dxb

dτ ′

k = 2
√

G (7.4.5)

8 Conclusion

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth wrapped-
up spatial dimension is at the root of many modern attempts to develop new
physical theories. However for a number of reasons it is sometimes considered
untenable.

A new cylinder condition was imposed as with Kaluza’s original theory,
but one based on the covariant derivative and associated with a metric torsion
connection. A generally covariant definition. A number of other constraints
and definitions were provided. The result was the appearance of the missing
non-perpendicular electromagnetic fields and a new definition of charge in terms
of the 5D momentum. The new definition of kinetic charge and the Maxwellian
charge coincide. In order to obtain non-perpendicular electromagnetic fields it
was necessary to generalize matter-charge to matter-charge-spin.
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Restrictions to the geometry and certain symmetries were handled by reduc-
ing the maximal atlas to a reduced Kaluza atlas that automatically handled the
restrictions and symmetries without further deferment to general covariance.
Physically this represents the idea that in 4D charge is a generally covariant
scalar, whereas in 5D charge is entirely dependent on the frame. That this is
meaningful stems from the global property of a small wrapped-up fifth spatial
dimension with new cylinder condition. Mathematically the Kaluza atlas is
a choice of subatlas for which the partial derivatives in the Kaluza direction
are vanishing. This led to useful constraints on the Christoffel symbols for all
coordinate systems in the Kaluza atlas.

Decomposition of the 5D metric into a 4D metric and a vector and scalar
part was also possible.

One oustanding issue is that realistic charge models are not possible without
involving imaginary numbers. However, that problem does not extend to 4D
space-time and all the imaginary numbers actually disappear as soon as they
are interpreted with respect to space-time. Thus no actual contradiction with
experiment need arise. The 4D construction can be investigated independently
of the 5D model. Barring realistic charge models which pose peculiar challenges,
the postulates actually required are straight forward. It is in this sense a simple
theory. In effect all we have is a 5D manifold with a covariant cylinder condition
on one spatial dimension defined with respect to a completely antisymmetric
metric torsion tensor.

Given certain assumptions about matter-charge-spin models, the entirety
of classical electrodynamics is rederived. Gravity and electromagnetism are
unified in a way not fully achieved by general relativity, Einstein-Cartan theory
or Kaluza’s original 5D theory.

The collocation of torsion with electromagnetism is different from other
Einstein-Cartan theories where the torsion is limited to within matter models.
Here torsion is an essential counterpart of electromagnetism. This promises ex-
perimental differences in the field equations. Similarly experimental differences
may creep in due to high curvatures.

Due to the lack of realistic charge models and certain other considerations,
this theory remains at an early stage of development, though the essential ingre-
dients are present. Other issues that remain outstanding include the exact role
of spin in the dynamics of particles, and a fuller exploration of the energy con-
ditions and causality. Much work from Einstein-Cartan theory could probably
be carried over without loss.

Why go to all this effort to unify electromagnetism and gravitation and
to make electromagnetism fully geometric? Because experimental differences
due to torsion in electromagnetic fields should be detectable given sufficient
technology. In this respect this theory differs from both general relativity and
Einstein-Cartan theory. The expected ω-consistency of Einstein-Cartan the-
ory together with the derivation of a Lorentz force law via the Kaluza part
of the theory gives a unique theoretical motivation, as does the fact that the
other approaches beyond general relativity have not fulfilled their promise com-
pletely. Further, attempting to extend and unify classical theory prior to a full
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unification with quantum mechanics may even be a necessary step in a future
unification.

9 Appendix

9.1 The Christoffel Symbols

Here we assume only the definitions of the Christoffel symbols and the new
KCC. (Without torsion terms shown, k set to 1)

2ẑABC =
∑
d ĝ

AD(∂B ĝCD + ∂C ĝDB − ∂DĝBC)

=
∑
d ĝ

Ad(∂B ĝCd + ∂C ĝdB − ∂dĝBC)
+ ĝA4(∂B ĝC4 + ∂C ĝ4B − ∂4ĝBC)

2ẑAbc =
∑
d ĝ

Ad(∂bgcd + ∂cgdb − ∂dgbc)
+
∑
d ĝ

Ad(∂bφ
2AcAd + ∂cφ

2AdAb − ∂dφ2AbAc)
+ ĝA4(∂bφ

2Ac + ∂cφ
2Ab − ∂4gbc − ∂4φ2AbAc)

2ẑA4c =
∑
d ĝ

Ad(∂4gcd + ∂4φ
2AcAd + ∂cφ

2Ad − ∂dφ2Ac) + ĝA4∂cφ
2

2ẑA44 = 2
∑
d ĝ

Ad∂4φ
2Ad −

∑
d ĝ

Ad∂dφ
2 + ĝA4∂4φ

2

(9.1.1)

The Electromagnetic Limit φ2 = 1

2ẑAbc =
∑
d ĝ

Ad(∂bgcd+∂cgdb−∂dgbc) +
∑
d ĝ

Ad(∂bAcAd+∂cAdAb−∂dAbAc)
+ ĝA4(∂bAc + ∂cAb − ∂4gbc − ∂4AbAc)

2ẑA4c =
∑
d ĝ

Ad(∂4gcd + ∂4AcAd + ∂cAd − ∂dAc)
ẑA44 =

∑
d ĝ

Ad∂4Ad

(9.1.2)

Simplifying...

2ẑabc = 2zabc +
∑
d g

ad(AbFcd +AcFbd) +Aa∂4gbc +Aa∂4AbAc
2ẑ4

bc = −
∑
dA

d(∂bgcd + ∂cgdb − ∂dgbc)−
∑
dA

d(AbFcd +AcFbd)
− (1 +

∑
iAiA

i)(∂4gbc + ∂4AbAc) + (∂bAc + ∂cAb)
2ẑa4c =

∑
d g

ad(∂4gcd + ∂4AcAd) +
∑
d g

adFcd
2ẑ4

4c = −
∑
dA

d(∂4gcd + ∂4AcAd)−
∑
dA

dFcd
ẑa44 =

∑
d g

ad∂4Ad
ẑ4

44 = −
∑
dA

d∂4Ad

(9.1.3)

The Scalar Limit Ai = 0
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2ẑAbc =
∑
d ĝ

Ad(∂bgcd + ∂cgab − ∂dgbc) −ĝA4∂4gbc
2ẑA4c =

∑
d ĝ

Ad∂4gcd + ĝA4∂cφ
2

2ẑA44 = −
∑
d ĝ

Ad∂dφ
2 + ĝA4∂4φ

2

(9.1.4)

Simplifying...

ẑabc = zabc
2ẑ4

bc = − 1
φ2 ∂4gbc

2ẑa4c =
∑
d g

ad∂4gcd
2ẑ4

4c = 1
φ2 ∂cφ

2

2ẑa44 = −
∑
d g

ad∂dφ
2

2ẑ4
44 = 1

φ2 ∂4φ
2

(9.1.5)

The Electromagnetic Limit And Cylinder Condition

By applying equations (6.1.10) and the new KCC in order to simplify terms
of the electromagnetic limit with k = 1, again omitting the torsion contribution
(noting that these Christoffel symbols are symmetric in the lower indices):

2ẑabc = 2zabc + (AbF
a
c +AcF

a
b )

2ẑ4
bc = −

∑
dA

d(∂bgcd + ∂cgdb − ∂dgbc) + (∂bAc + ∂cAb)
= −2Adzdbc + (∂bAc + ∂cAb)

2ẑa4c = F a
c

ẑ4
4c = ẑa44 = ẑ4

44 = 0

(9.1.6)

Now with torsion built into the Christoffel symbols, using equations (6.1.1)
-(6.1.10) (noting that these Christoffel symbols are not necessarily symmetric
in the lower indices):

2Γ̂abc = gad(∂bgcd + ∂cgdb − ∂dgbc) + (AbF
a
c +AcF

a
b )− 2K̂ a

bc

= 2zabc + (AbF
a
c +AcF

a
b )− 2K̂ a

bc

2Γ̂4
bc = −

∑
dA

d(∂bgcd + ∂cgdb − ∂dgbc) + (∂bAc + ∂cAb)− 2K̂ 4
bc

= −2Adzdbc + (∂bAc + ∂cAb)− 2K̂ 4
bc

Γ̂a4c = 0
Γ̂4
4c = Γ̂4

c4 = Γ̂a44 = Γ̂4
44 = 0

Γ̂ac4 = F a
c

(9.1.7)
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9.2 Raised Levi-Civita Christoffel Symbols

Following the same procedure as with Christoffel symbols of the first and second
kind a raised version of the Christoffel symbols can be derived, a third kind.
It takes the value that would be guessed at by inspecting the elements of the
Christoffel symbol (within partial derivatives and therefore not allowed as such)
of the second kind and raising each element individually.

Starting from the covariant derivative of the raised metric tensor being zero:

∇igjk = 0 = ∂igjk + Γjik + Γkij

Cycling indices we have:

0 = ∂kgij + Γikj + Γjki

0 = ∂jgki + Γkji + Γijk

Adding the first two and subtracting the third:

∂igjk + ∂kgij − ∂jgki = 2Γjik

So, exactly as would be guessed:

Γijk =
1

2
(∂jgik + ∂kgji − ∂igjk) (9.2.1)

9.3 Local Ricci Scalar Curvature, k = 1

Here we calculate the Ricci scalar curvature for k = 1 at the local limit defined
by vanishing first derivatives of metric components, with Ricci curvature defined
relative to the torsionless connection. Using (6.2.2),(6.3.1) and (6.4.1):

|R̂AB | →
[
∂cẑcba − ∂bẑcca 1

2∂cF
c
a

1
2∂cF

c
a 0

]
(9.3.1)

The Ricci scalar can now be calculated as follows, the apparent asymmetry
being caused by the limit terms:

|ĝDA||R̂AB | = |R̂DB |

→

[
∂cẑc db − ∂bẑc dc −Ad

1
2∂cF

c
b

1
2∂cF

dc

−Aa(∂cẑcba − ∂bẑcca) + 1
2∂cF

c
b ( 1

φ2 +AiA
i) −Aa 1

2∂cF
c
a

]
(9.3.2)

R̂ → ∂cẑc dd − ∂dẑ
c d
c −Ad

1

2
∂cF

c
d −A

a 1

2
∂cF

c
a = ∂cẑc dd − ∂dẑ

c d
c −Ad∂cF

c
d

The last term can be discarded by using the chain rule, the local limit and
the gauge equation (6.1.9):

R̂ → ∂cẑc dd − ∂dẑ
c d
c (9.3.3)
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9.4 Proper Kaluza Velocity As Space-Time Scalar

This section shows that the proper velocity W (written as a vector) with only
one component in the Kaluza dimension is invariant under 4D space-time boosts
orthogonal to it.

W4 = dx4/dτ proper velocity in a stationary space-time frame, but following the particle

U4 =
W4√

1 +W4
2

coordinate velocity using proper velocity formula

Using orthogonal addition of coordinate velocities formula to boost space-
time frame by orthogonal coordinate velocity V:

V = (V, 0, 0, 0)

U = (0, 0, 0, U4)

Coordinate velocity vector in new frame, using the orthogonal velocity ad-
dition formula:

U = V +
√

1− V 2 U

So,

U4 =
√

1− V 2
W4√

1 +W 2
4

Define proper velocity in new frame: W, using proper velocity definition:

W 4 =
U4√

1− V 2 − U4
2

=

√
1− V 2 W4√

1+W 2
4√

1− V 2 − (
√

1− V 2 W4√
1+W 2

4

)2

=
W4√

1 +W 2
4

√
1− ( W4√

1+W 2
4

)2

=
W4√

1 +W 2
4 −W 2

4

= W4

(9.4.1)

W4 = W4 being the result required

The proper Kaluza velocity therefore being a scalar with respect to the
Kaluza atlas.
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