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Abstract

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth
wrapped-up spatial dimension is at the root of many modern attempts
to develop new physical theories. Lacking non-null electromagnetic fields
however the theory is incomplete. Variants of the theory are explored
to find ways to introduce non-null solutions by making the fifth dimen-
sion more physical, using alternative, weaker cylinder conditions. The
Lorentz force law is investigated starting with a non-Maxwellian defini-
tion of charge, this is assumed to be related to Maxwellian charge by
ansatz. Order of magnitude methods are used. Kaluza theory remains
inadequate to support electromagnetism in full, non-null solutions are not
readily shown to be admitted. An argument is made in favour of tor-
sion resolving this issue. Postulates are derived from the argument for a
variant theory. The charge ansatz is shown to follow from the postulates.
It is concluded that Kaluza’s 5D space and torsion need to go together
in a Kaluza-Cartan theory. Tentatively, generalized Bel super-energy is
hypothesized to be a conserved quantity.

1 Conventions

The following conventions are adopted unless otherwise specified:

Five dimensional metrics, tensors and pseudo-tensors are given the hat sym-
bol. Five dimensional indices, subscripts and superscripts are given capital
Roman letters. So for example the five dimensional Ricci flat 5-dimensional
superspace-time of Kaluza theory is given as: ĝAB , all other tensors and indices
are assumed to be 4 dimensional. Index raising is referred to a metric ĝAB if
5-dimensional, and to gab if 4-dimensional. The domain of partial derivatives
carries to the end of a term without need for brackets, so for example we have
∂agdbAc + gdbgac = (∂a(gdbAc)) + (gdbgac). Terms that might repeat dummy
variables or are otherwise in need of clarification use additional brackets. Square
brackets can be used to make dummy variables local in scope.

Space-time is given signature (+, −, −, −), Kaluza space (+, −, −, −, −) in
keeping with [1]. Under the Wheeler et al [6] nomenclature, the sign conventions
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used here to correspond with [1] are [−, ?, −]. The first dimension (index 0) is
always time and the 5th dimension (index 4) is always the topologically closed
Kaluza dimension. Universal constants defining physical units: c = 1, and G
as a constant. The scalar field component is labelled φ2 (in keeping with the
literature) only as a reminder that it is associated with a spatial dimension,
and to be taken as positive. The matrix of gcd can be written as |gcd| when
considered in a particular coordinate system to emphasize a component view.
The Einstein summation convention may be used without special mention.

Some familiar defining equations consistent with [1] (using Roman lower-case
for the general case only for ease of reference):

Γcab =
1

2
gcd(∂agdb + ∂bgda − ∂dgab) (1.0.1)

Rab = ∂cΓ
c
ab − ∂bΓcac + ΓcabΓ

d
cd − ΓcadΓ

d
bc (1.0.2)

Gab = Rab −
1

2
Rgab = −8πG

c4
Tab (1.0.3)

Fab = ∇aAb −∇bAa = ∂aAb − ∂bAa equally F = dA (1.0.4)

Any 5D exterior derivatives and differential forms could also be given a hat,
thus: d̂B̂. However, the primary interest here will be 4D forms. 4 represents
the 4D D’Alembertian.

2 Introduction

Kaluza’s 1921 theory of gravity and electromagnetism [2][3][4] using a fifth
wrapped-up spatial dimension is at the heart of many modern attempts to
develop new physical theories [1][5]. From supersymmetry to string theories
topologically closed small extra dimensions are used to characterize the vari-
ous forces of nature. It is therefore at the root of many modern attempts and
developments in theoretical physics. However it has a number of foundational
problems. It seems sensible to look at these from a classical perspective be-
fore looking at more complicated situations such as quantum gravity theories
as envisaged by Klein.

The theory assumes a (1,4)-Lorentzian Ricci flat manifold to be the under-
lying metric, split (analogously to the much later ADM formalism) as follows:

ĝAB =

[
gab + φ2AaAb φ2Aa

φ2Ab φ2

]
(2.0.1)

By inverting this metric as a matrix (readily checked by multiplication) we
get:
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ĝAB = |ĝAB |−1 =

[
gab −Aa
−Ab 1

φ2 +AiA
i

]
(2.0.2)

Maxwell’s law are automatically satisfied: dF=0 follows from dd = 0. d*F=
4π*J can be set by construction. d*J=0, conservation of charge follows also by
dd=0 in most parts of the manifold. However:

In order to write the metric in this form there is a subtle assumption, that
gab, which will be interpreted as the usual four dimensional space-time metric,
is itself non-singular. However, this will always be the case for moderate or
small values of Ax which will here be identified with the electromagnetic 4-
vector potential. The raising and lowering of this 4-vector are defined in the
obvious way in terms of gab. We have also assumed that topology is such as to
allow the Hodge star to be defined. This means that near a point charge source
the argument that leads to charge conservation potentially breaks down as the
potential may cease to be well-defined. Whereas the Toth charge that will be
defined in the sequel does not have this problem.

Assume values of φ2 around 1 and relatively low 5-dimensional metric cur-
vatures. We need not therefore concern ourselves with this assumption beyond
stating it on the basis that physically these parameters encompass tested theory.
Given this proviso Ax is a vector and φ2 is a scalar - with respect to the tensor
system defined on any 4-dimensional submanifold that can take the induced
metric g.

Kaluza’s cylinder condition (KCC) is that all partial derivatives in the 5th
dimension i.e. ∂4 and ∂4∂4 etc... of all metric components are 0. A perfect
‘cylinder’. This leads to constraints on gab given in [1] by three equations,
the field equations of Kaluza theory, where the Einstein-Maxwell stress-energy
tensor can be recognised embedded in the first equation:

Gab =
k2φ2

2

{
1

4
gabFcdF

cd − F caFbc
}
− 1

φ
{∇a(∂bφ)− gab4φ} (2.1.1)

∇aFab = −3
∂aφ

φ
Fab (2.1.2)

4φ =
k2φ3

4
FabF

ab (2.1.3)

These will be referred to as the first, second and third field equations respec-
tively. Here there is also a k term, since the formulation in [1] is more general
than that used here. In this work k=1 is used unless specified otherwise. Sign
conventions should also be checked before using such equations out of context.
It is important to note that in the variants of Kaluza theory defined here, these
field equations may not apply. They apply fully only to Kaluza’s original theory.

By looking at field equation 3 it can be seen that if the scalar field does not
vary then only null electromagnetic solutions result. The second field equation
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then also imposes no charge sources. Here the scalar term could be allowed to
vary in order to allow for non-zero FabF

ab. This falls within Kaluza’s original
theory. This potentially allows for non-null electromagnetic solutions, but there
are problems to overcome: the field equations cease being necessarily electrovac-
uum. This remains a problem even when the scalar field terms are set large,
as is sometimes done to ensure that field equation 2 is identically zero despite
scalar fluctuations.

Another foundational issue of Kaluza theory is that even with a scalar field
it does not have convincing sources of mass or charge. Field equation 2 then has
some charge sources, but it is far from clear that realistic sources are represented
by this equation. Matter (and charge) models in this work will be assumed to
be regions of the Kaluza space that are not Ricci flat in the otherwise Ricci flat
Kaluza space, just as matter/energy is analogously assumed to be in general
relativity. That is, where the 5D Einstein tensor of the Kaluza space itself is
non-zero.

Charge will be given a possible alternative definition as 5-dimensional mo-
mentum, following a known line of reasoning [8] within Kaluza theory. This
version of charge will be called Toth charge to make it distinct from Maxwellian
charge, their identity is initially assumed by ansatz in this work, otherwise the
Lorentz force law has no obvious explanation in the event that the electrovac-
uum is no longer valid due to other fields. As momentum the Toth charge is of
necessity conserved, provided there are no irregularities in the topology of the
Kaluza 5th dimension, similarly the conservation of Maxwellian charge is nor-
mally guaranteed by the potential, except that this may not be valid in extreme
curvatures where the 4-vector associated with the 4-potential may cease to be
a vector.

We will also assume of necessity a closed 4D spatial hypersurface as is of-
ten done in general relativity to ensure 4 dimensional causality. Although 5D
causality issues will not be explored.

The leading issue is that Kaluza theory appears to offer only null electro-
magnetic solutions, non-null electrovacuums more generally are not so easily
supported as changes in the scalar field may force divergence of the field equa-
tions from those of the electrovacuum (see field equation 1). Null electrovacuums
occur under KCC when the scalar is constant as can be seen in the field equa-
tions above. That is, non-null solutions, non-radiative electromagnetic fields,
seem to have no reserved place within the theory unless one allows the scalar
field to oscillate. A standard fix is to set the scalar field to be very large so that
its oscillations make little difference to the resulting field equations. However
this is limiting, arbitrary, and requires its own explanation. It also does not
guarantee that the field equations are electrovacuums unless further arbitrary
conditions are added. Without taking such arbitrary measures that cease to be
in the spirit of Kaluza’s original theory, the stress-energy tensor under scalar
field fluctuations is different from the Einstein-Maxwell tensor [6][7] and the
accepted derivation of the Lorentz force law (for electrovacuums [6]) can not be
assumed. The Lorentz force law is central to the argument.

Note that in addition the derivation of the Lorentz force law within gen-
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eral relativity (from an assumed Einstein-Maxwell stress-energy tensor) is not
without problems of principle [6]. Thus, attempting to build a theory around
the ansatz that the Toth charge and Maxwellian charge are equivalent under the
variant cylinder conditions is persuasive - as this leads independently of the
electrovacuum to an approximate and provisional Lorentz force law.

The scalar field will be allowed to vary. But order of magnitude limits will
be placed on it so as to allow for a variant Lorentz force law. A Lorentz force
law, rather than the electrovacuum solutions per se will thus be sought for Toth
charges, and an ansatz linking the two definitions of charge assumed here.

3 Preliminary Notes

3.1 Geometrized Units Of Mass

The full metric definition used in [1] was:

ĝAB =

[
gab + k2φ2AaAb kφ2Aa

kφ2Ab φ2

]
(3.1.1)

This gives null solutions [1] such that Gab = −k
2

2 FacF
c
b . Comparing this

with [7] (where we have Gab = 2FacF
c
b in geometrized units where G=1) the

sign difference is due to the historic use of [−, ?, −] notation here, rather than
the more modern [+,+,+] notation as defined by Wheeler et al. [6] (and as also
used by Wald [7]).

Although k is set to 1 elsewhere in this work, yielding the metric in the
introduction, we need k = 2 to get the field equations in the geometrized units
of [7] - if the electromagnetic field tensor is to be the same.

G/c4 = 1 for k=2
= 6.674× 10−8cm3g−1s−2/c4 = 6.674× 10−8cm3g−1 × (3× 1010cm)−2/c4

= 6.674× 10−8cmg−1 × (3× 1010)−2 for c = 1

1g = 7.42× 10−29cm for k=2, c=1 (3.1.2)

Secondly, if we do use k = 1, we can adjust G’s dimensionless value to
accomodate:

Gab = −2FacF
c
b = − 8πG

c4 Tab for k=2, c=1

Gab = −F ′acF ′cb = − 8πG′

c4 T ′ab for k=1, c=1

So if Gab is the same in both cases, then F ′ab =
√

2Fab

If we define T ′ab to be formally the same as Tab, but with a substitution of F ′

terms for F terms, it will be twice as big. Then we must adjust G′ = 1
2G = 1

2 .
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With this adjustment to G, we have:

1g = 1.48× 10−28cm for k=1, c=1 (3.1.3)

So in effect we can change the scale relationship of mass to distance in order
to change the electromagnetic tensors. The tensors can represent the same
underlying reality but in different units. We can refer to these two schemes of
units as k=2 and k=1 respectively.

3.2 Kaluza Theory Is Consistent With Special Relativity
Even When 5D Momentum Is Present

In the sequel, one definition of charge (Toth charge) will be identified with
5D momentum. This is already known in the original Kaluza theory to obey
a Lorentz force-like law, but will be extended here in scope, noting that the
coincidence of Toth charge and Maxwellian charge is not guaranteed prior to
the ansatz.

That this is consistent with Special Relativity will be something that any-
body seeking confidence in Kaluza theories will want to check. The additions
of velocities in Special Relativity, for example, is not obvious. Taking two per-
pendicular velocities, u and v, and adding them yields:

s2 = u2 + v2 − u2v2

The particle moving in the Kaluza dimension, but stationary with respect
to space-time, will have a special relativistic rest mass greater than its Kaluza
rest mass. A later result needed here is:

Qtoth/M0 = −dx4/dτ relating charge, rest mass and proper Kaluza-velocity

This makes sense only because mass can be written in fundamental units
(i.e. in distance or time) and Toth charge will be defined as 5th dimensional
momentum.

Using natural conversions between units we get the Kaluza rest mass of any
presumed particle with the mass and charge comparable in magnitude to an
electron or positron to be about 1.5 × 10−54g, which is a lot smaller than the
relativistic rest mass used when considering only space-time physics. And its
proper Kaluza velocity in natural units is then about K = 6× 1026, making it
highly Kaluza-relativistic.

Much as we may be unfamilar with a Kaluza rest mass (Mk0) we can see
that it is consistent with the addition of velocities as follows:

M0 =
Mk0√

(1− u2)
where u = Qtoth/M0 (3.2.1)
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Mrel =
M0√

(1− v2)
=

Mk0√
(1− u2)

× 1√
(1− v2)

=
Mk0√

(1− u2 − v2 + u2v2)
(3.2.2)

where v is the relativistic velocity in space-time

By putting u = Qtoth/M0 into the definition of rest mass and solving, we
get that charge, whether positive or negative, is a contributor to the relativistic
rest mass according to the following formula:

M0
2 = Mk0

2 +Qtoth
2 (3.2.3)

Here the majority of mass-enery in the rest mass of such an elementary
charge is seen as being tied up in its charge. In this work elementary Toth
charges will take on these properties. Whether or not these are able to model
Maxwellian charges depends on the correspondence between Maxwellian and
Toth charge. Whether this further corresponds to real electrons and positrons
or whether similar models can describe other fundamental charge sources is
left as unascertained experimentally and analytically, but merely a tempting
suggestion of this model not to be investigated further here.

Observed electrons have static charge, angular momentum, a magnetic mo-
ment, and a flavor. The only thing distinguishing the electron from the muon is
apparently the flavor. The mass difference between the muon and the electron
is about 105 MeV, perhaps solely due to this difference in flavor. Yet here we
have a model where the unit Toth charge’s relativistic rest mass is dominated
by its Kaluza velocity. Thus at this stage the idealized charge models used here
and real particles must be considered not yet correlated.

3.3 Matter And Charge Models, A Disclaimer

The model unit Toth charge presented here, therefore remains a separate entity
from any real Maxwellian charges, merely a mathematical device to investigate
whether such models are possible. Having said that for the purposes here the
ansatz is made that in principle Maxwellian and Toth charges can be identified.

The above analysis has assumed that some sort of particle model of matter
and charge is possible, that it can be added to the original theory perhaps
without changing the space-time solution, which is impossible no less than in
general relativity. Secondly we might imagine that what has been described is a
particle whizzing around the fifth dimension like a roller coaster on its spiralled
tracks. The cylinder conditions could in fact also be maintained if, instead of
a particle, the matter-charge source was rather a ‘solid’ ring, locked into place
around the 5th dimension, rotating at some predetermined Kaluza velocity. An
exact solution could even involve changes in the size of the 5th dimension. None
of that is investigated here, the aim is to see whether non-null solutions can be
found in a Kaluza variant theory without extreme alteration.
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It is an essential proviso that a physically realistic matter-charge model has
not been detailed, much less formally identified with a real charge source such
as an electron. The assumption then that such a hypothetical model would
necessarily follow (albeit approximately) geodesics is also therefore just that:
an assumption - though not without analogs in other, experimentally valid,
classical theories.

The original Kaluza theory almost certainly does not have sufficient degrees
of freedom to allow for such a matter model to be embedded within it. More
general matter models could be assumed however to have significant enough
degrees of freedom to allow for such a model or approximation of such a model in
principle. But an actual differential geometrical model of such a matter-charge
source is presumed too difficult to produce here, even if possible. In addition,
the fact that real charge sources are quantum mechanical may also discourage
us, though a classical limit interpretation should be possible regardless.

This work assumes a limited concept of such a charge model and attempts to
investigate whether non-null solutions are possible in conjunction with a Lorentz
force law. That is, it attempts to replicate all the important features of classical
physics, without predicting or imposing its particular model of charge as the
correct one.

Geodesic Assumption: That any particle-like matter-charge models derived
from the geometry are approximately geodesic. This would also need to follow
from any applicable matter-charge model that was ultimately found to describe
unit charges. Later when torsion is introduced this assumption should be gener-
alized to auto-parallels, though as it turns out this detail makes little difference.

Charge Ansatz: That the Maxwellian and Toth definitions of charge coincide
for the purposes here.

One of the confusing aspects of this work is that the field equations of Kaluza
cease to apply when such matter-charge models become part of the solution.
Therefore the Kaluza field equations are only used when they can be justified,
and going back to the Ricci tensor from scratch is undertaken here as necessary.
It is also important to note that in the following the Ricci flat condition of the
original Kaluza theory’s Kaluza space will not be generally valid due to the
presence of matter models, but as with vacuum solutions in general relativity
will be usable outside of matter models.

3.4 Duality Invariance Of Kaluza’s Original Theory

The dual metrics of ĝAB and gab will be discussed in this section.
ĝAB will be identified with an alternative dual metric ĥAB for some coordi-

nate system in such a way that their representations as matrices are equal. That
is, such that: |ĝAB | = |ĥAB |, such an identification will be written ĝAB ↔ ĥAB .

It follows that ĝAB ↔ ĥAB where the two alternative systems ĝAB and ĥAB
define their own notions of raising and lowering indices.
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ĥAB and ĥAB can be written analogously to the original metrics as follows:

ĥAB =

[
hab + φ2BaBb φ2Ba

φ2Bb φ2

]
(3.4.1)

ĥAB = |ĥAB |−1 =

[
hab −Ba
−Bb 1

φ2 +BiBi

]
(3.4.2)

Where analogously to the original system the raising and lowering of indices
of 4-vectors is implemented by hab.

We have the following relations by construction: gab ↔ hab and Aa ↔ Ba.
In other words they are the same system with index conventions swapped

around. Or equivalently they are dual systems.
Kaluza’s original theory is dual invariant in that if ĝAB is Ricci flat then this

is equivalent to ĥAB being Ricci flat. This follows as raising RAB = 0 within
ĝAB remains 0.

That is the laws defining the system itself are dual invariant, even if the
contents of the theory, such as matter models and the various fields themselves
are not.

Most matter models and fields have in effect an alternative formulation that
would suffice as a physical description by taking the dual system. There is
something arbitrary about matter models and fields (also in general relativity)
in this respect, from the outset. This duality invariance, or failure thereof,
will be explored with respect to the variant theory developed here. Intuitively
speaking the idea is that that which is invariant is more likely to form the laws,
whilst that which is not invariant we might take to define, in some sense, the
contents.

4 The Order of Magnitude of Potentials

4.1 The Electromagnetic Potentials

The contribution to the metric of a typical cgs unit of electromagnetic potential
can be calculated: It is actually dimensionless in genuinely natural units, as
must be the case for it to be related to metric components in Kaluza theory.
Note that human scale units invariably leave the Christoffel symbols small under
normal tested conditions.

In cgs units the Coulomb’s force law is given by: F = Q1Q2/r
2

Similarly the potential is given by Q/r, that is charge/distance, or esu/cm.
Using [7]:

([L]3/2[M ]1/2/[T ])/[L] = ([L]1/2[M ]1/2)/[T ]) (4.1.1)

Using 1g = 7.42 × 10−29cm (eq. 3.1.2) gives 1cgs unit of potential (esu or
Statvolt) as:
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1cm1/28.61× 10−15 cm1/2/s

= 2.86× 10−25(3× 1010cm/s)

1esu = 2.86× 10−25c (4.1.2)

≈ 10−25 in natural units where c = 1 (k = 2)

This is clearly a very small figure and is a comparable order of magnitude
for k = 1 for the purposes here.

Take a single unit charge (ie of an electron) Q ≈ 5×10−10esu and the (Bohr)
radius of the hydrogen atom: r ≈ 5× 10−9cm.

The potential Ra = Q/r = 10−1esu/cm = 10−26 in natural units. Now this
potential corresponds to the strong electrical forces within the atom, but due
to the short distances may not represent strong potentials. We might need a
more realistic reference for classical potentials (Rc), in order to provide a sort
of experimental upper limit for potentials that are also experimentally sure to
have well-behaved classical properties such as validating the Lorentz force law.
This figure could be given as a ratio Rc = h.Ra to give a sense of proportion,
where a typical bound for h will now be estimated.

In any hypothetical experiment we will have an ‘earth’ that represents (ap-
proximately) a zero potential. This can be seen as either the surface experimen-
tally or approximately also the centre of the Earth.

As a case in point imagine we are testing the effects of the Lorentz force law
due to forces emanating from the ionosphere. If we set the Earth’s surface to
be zero potential, i.e. the ‘earth’, we will end up with high potentials in the
ionosphere. However the ionosphere commences about 100km from the Earth,
its ‘earth’, we can take these high potentials as a reasonable description of the
bounds of normal conditions for the purposes here.

In order to estimate our h in Rc = h.Ra we need to define the experiment
we are looking at. For these purposes we can look at two extremes that have
comparable energies: Firstly 150V/m over a vacuum of 100km (comparable to
the potential differences created between the ionosphere and the Earth over long
distances), secondly 15MV over, say, a vacuum of 1m (a high voltage experiment
if it is to be sustained for any duration of time). It is the potential difference
relative to the ‘earth’ that sets the potential. They are both high in terms of
the potentials involved and will act as a guide to the estimate of h. The second
is perhaps easier to deal with experimentally. A clean experiment over larger
scales may be unfeasible except perhaps in space.

We can then look at the maximum 4-potential that the second experiment
defines and define this to be Rc, from which we can estimate h relative to this
level of experimental testing. As it pertains to the orders of magnitude that
will be used here an approximate idea of this figure is useful to make the scales
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meaningful. If the accepted tested level of classical electromagnetism is higher
or lower than the 15MV used here it is a simple matter to scale h accordingly. If
we are dealing with specific situations where the order of magnitudes are much
lower, same again.

Both the above set-ups have a 15MV potential difference, which is about
50000 Statvolts. This gives an h of about 500000, and,

O(f) ≈ Rc ≈ 10−20, k = 2 (4.1.3)

We can do a similar calculation with a very low voltage for comparative
purposes, say 1.5KV, over which the Lorentz force is guaranteed. This leads to
a different reference figure:

O(f) ≈ Rw ≈ 10−24, k = 2 (4.1.4)

These different figures correspond to different ensembles of experiments. In
the first case we have a level where we would expect the Lorentz force law
to generally be experimentally valid, but above which we may not be quite as
sure, as it is outside normal experimental experience. In the second case we have
guaranteed compliance with the Lorentz force law (barring perhaps contrived
scenarios), and the strong liklihood in any case of compliance above that level.
Crudely, the first is the level above which deviation may well occur for all we
know since it represents exceptional experimental scenarios, the second a level
below which deviation does not occur to the extent that it represents normal
experimental experience.

4.2 The Metric Components of O(v)

Using k=2 we can estimate one possible O(v) by looking at the the Schwarzchild
Solution for the Earth. The differences from unity (or negative unity) of the
terms depends on 2GM/r, in this case 2M/r in natural units.

2× [6× 1024kg × 1000g/kg]/[6000km× 105cm/km] = 2× 1019g/cm

Using 1g = 7.42 × 10−29cm, and when k=2, with a comparable order of
magnitude for k=1:

O(v) ≈ 10−9 (4.2.1)

O(v) is considerably larger in significance than O(f). Notice that also in this
calculation, in effect, the gravitational ‘earth’ has been taken to be the centre
of the earth.
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5 The Cylinder Conditions And Electromagnetic
Limits

5.1 Introducing Orders of Magnitude

We will start with a weak field limit that can be assumed at the usual classical
scale. Terms such as AaAb will be bounded O(v2) as opposed to terms not thus
multiplied such as ĝab or simply Aa. Metric terms either being bounded O(v)
or the difference from 1 being bounded O(v). Our Kaluza space-time solutions,
at the usual classical limit, are to be approximately 5-Lorentzian. O(v) will be
taken to be a small term at the usual classical limit. In addition, the units will
be assumed to be such that derivatives of O(v) i.e. O(v+) and O(v++) will
also all be small, where O(v+) and O(v++) are the order of magnitude of first
and second derivatives (with corresponding units) respectively.

An electromagnetic limit will be assumed as required, where the scalar field
is set to being approximately the identity: φ2 ≈ 1

Now, this simple declaration turns out to be quite complicated. For one
thing at the usual classical scale it will be automatically approximately 1 by the
weak field limit as a minimum constraint, at least to O(v). But this in itself
won’t make it any closer to unity than the electric potentials are to 0 relative
to other weak fields. For the electromagnetic limit we want more than that.

We will define it in terms of three orders of magnitude:

φ2 = 1 to O(s), and,

∂Aφ
2 is O(s+). We can also have:

∂A∂Bφ
2 is O(s+ +)

(5.1.1)

This distinction will be of fundamental importance later. O(s) will be no
more significant than O(v), with the possibility of turning out to be a lot smaller
in significance. O(s+) and O(s++) can be assigned units s−1 and s−2 respec-
tively and will thus not be comparable to O(s) in a simple way. Similarly we
can have the additional levels of bounding for the derivatives of electromagnetic
tensors defined as follows:

Aa is O(f), and,

∂AA
a as O(f+). We can also have:

∂A∂BA
a as O(f + +)

(5.1.2)

Noting that in any situation the tightest of any two applied bounds domi-
nates. Noting also the same unit considerations as previously.
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5.2 Duality And Orders Of magnitude

In order to investigate where these orders of magnitude are duality invariant,
the following approximate conditions will be used as a comparative case. That
is, duality invariance would require:

O(f2) ≤ O(s)
(5.2.1)

O(f2) ≤ O(v)
(5.2.2)

The latter follows from previous considerations in any case. The first will in
general not be true in this work. Where this is the case we will make a note of
it.

5.3 The Cylinder Conditions

The other fields, the 4D metric and the electromagnetic potential vector will
be given a similar order of magnitude constraint so that their derivatives in the
direction of the Kaluza dimension are bounded as follows:

∂4ĝAB is O(δ+)
(5.3.1)

KCC is the limiting case where it is identically 0. This implies also that
∂4ĝ

AB is O(δ+) via a consideration of divergence of the metric being 0. Now of
course this bound as defined above is not yet a constraint until O(δ+) is defined.
So this device allows us to weaken the cylinder condition as required.

A basic reasonable constraint might be to ensure that at least such oscilla-
tions are not greater than the general order of magnitude of the electromagnetic
fields. This will in any case be justified later. Thus:

O(δ+) ≤ O(f+) (5.3.2)

The use of the symbol + to identify when a derivative has been taken is easy
to misuse. A symbol such as O(X+) will be related to O(X ) via proportion to a
constant that will depend not only on the terms and functions in question, such
as frequencies, but also on the units being used. Later such orders of magnitude
with the same units will be multiplied by each other. This can be made more
concrete by giving O(f) a numerical value to set the scale. By default we can set
this value to some classical reference potential, a figure that gives a reasonable
bound to the level for which the well-behaved properties of a classical system
have actually been tested. We might similarly have another classical reference
to define O(v). Such quantities were investigated previously, but depend on the
ensemble of solutions being investigated or experimented with.

Similarly, relative to this (by some constant and some unit) O(f+) will be
taken to be defined, though any constants of proportionality and any units will
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not be specified. Typical estimates for such an order of magnitude could also
be taken from an ensemble of solutions.

Two other complementary limits can be defined: the strong electromagnetic
and the strong scalar limit respectively. These will both be when oscillations in
the other are absolute zero.

A weak cylinder condition will later be defined where KCC does not hold,
but it will remain within the electromagnetic limit.

5.4 Some Rules For Orders Of Magnitude

The use of the ≤ and << symbols in comparing orders of magnitudes will be
used to express the idea that one order of magnitude can be or is smaller than
the other when compared numerically, units allowing.

We also need a few rules for dealing with more complex situations. One
could be that if O(X) = O(Y ) and O(W ) ≤ O(Z) then generally O(X+) =
O(Y+) and O(W+) ≤ O(Z+) respectively, and so on. This will be called
proportionality. It should of course be invoked with care and may not in the
most general case be valid, for example if frequencies vary to a sufficiently
extreme extent. It will be used to the extent that it can be reasonably justified
on grounds of physicality.

Similarly, distributivity: terms such as O(f+)O(f+) and O(f)O(f + +),
where the terms are all based on the same underlying order O(f) and where it
seems as if all that has happened is a displacement of some + terms, will be con-
sidered the same order of magnitude without further consideration. We might
observe the reasonableness of this by considering the chain rule. Heuristically it
corresponds to the idea that O(f + +) should be as far from O(f+) as O(f+)
is from O(f) in order of magnitude. Consideration of a sine wave oscillating
about zero shows the good sense of this in terms of physicality.

Similarly we could also extend distributivity over different underlying terms.
This however will be used more cautiously in the same way as proportionality,
and indeed it would follow from proportionality. Here’s the proof:

Let’s consider whether O(P+)O(F ) = O(F+)O(P ). First, invent a dummy
order of magnitude such that:

O(P ) = O(X)O(F ) and O(F ) = O(P )/O(X)

We have by the chain rule,

O(P+)O(F ) = O(X+)O(F )O(F )+O(X)O(F+)O(F ) = O(X+)O(F )O(F )+
O(F+)O(P )
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Similarly by the quotient rule (with sign made plus as we are dealing with
orders of magnitude):

O(F+)O(P ) = O(P )x[O(P+)O(X) +O(P )O(X+)]/[O(X)O(X)]
= O(P )O(P+)/O(X) + O(P )O(P )O(X+)/O(X)O(X) = O(F )O(P+) +

O(F )O(F )O(X+)

So, these two equations can only be true if the O(F )O(F )O(X+) term is
bounded by the same order of magnitude as the largest of O(P+)O(F ) and
O(F+)O(P ) and thus O(P+)O(F ) = O(P )O(F+) as required. �

5.5 A Resonant Cylinder Condition

Further a Resonant Cylinder Condition is defined. This needs some discussion.
The objective of the Resonant Cylinder Condition is to weaken KCC but

not in the same way as having simply an order of magnitude limit for derivative
terms in the direction of the Kaluza dimension. The Resonant Cylinder Condi-
tion (RCC) takes a loop around the Kaluza 5th dimension (one that is locally
normal to the supposed space-time embeddings). The idea is then that various
components, derivatives and tensors oscillate around this loop, in a way reminis-
cent of resonance, whilst maintaining an average value that can be represented
(approximately) as a tensor in a representative space-time. This will be applied
to any tensors, pseudo-tensors or related terms that might be meaningful on
a sample 4D manifold chosen to represent space-time. In particular any terms
which consist of (possibly multiple) differentiation of another term, and where
one or more of those derivatives is a derivative in the direction of the Kaluza
dimension, must average 0. This is because the tensor thus differentiated must
start at a certain value, and in passing round the loop return to it. Terms
constructing by compounding such zeroed terms need not however necessarily
average to 0.

So we need to:
(i) Impose that the average of the oscillations of such a simply resonant term

to be 0.
(ii) Consider the oscillations of simply resonant terms non-zero at any par-

ticular point round the loop, and thus with respect to compound terms.

In this work only point (i) will be used.

The original Kaluza theory assumed KCC. So weakening KCC (whether by
RCC or otherwise) requires particular care in that the original field equations
and conclusions derived from them can nolonger be assumed, in particular the
Kaluza field equations cease to be valid.
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6 Charge, 5D Momentum And The Lorentz Force

Toth [8] derives a Lorentz-like force law where there is a static scalar field and
Kaluza’s cylinder condition applies. The resulting ‘charge’ is the momentum
term in the fifth dimension and it is not apparent how this relates to the Maxwell
current, except as Toth states via ‘formal equivalence’. While this result is not
new, Toth’s calculation is used here as the starting point for a more detailed
calculation.

A derivation is given of the Lorentz force law applicable to the Toth cur-
rent. Toth makes several assumptions in his calculation. First that the scalar
field is constant near the charge, and secondly the Kaluza cylinder condition
(KCC). Toth also assumes a single point particle, not necessarily the case here,
and constant mass-charge. These issues relate in this context to finding such a
matter model as a solution. Here the KCC is relaxed, and both the Resonant
Cylinder Condition is applied and an alternative Weak Cylinder Condition de-
fined. Results are compared. The Geodesic Assumption must also be made
for matter-charge models in this context. Oscillations of the scalar field are
included (indices have been omitted from order of magnitude terms for clarity
of presentation). Details of Chrisfoffel symbol terms can be found in a later
section for reference.

Γ̂c4b = 1
2g
cd(δ4ĝbd + δbĝ4d − δdĝ4b) + 1

2 ĝ
c4(δ4ĝb4 + δbĝ44 − δ4ĝ4b) =

1
2g
cd[δb(φ

2Ad)− δd(φ2Ab)] + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbĝ44 =

1
2φ

2gcd[δbAd − δdAb] + 1
2g
cdAdδbφ

2 − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbφ

2 =
1
2φ

2F cb + 1
2g
cdAdδbφ

2 − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd + 1

2 ĝ
c4δbφ

2 =
1
2φ

2F cb − 1
2g
cdAbδdφ

2 + 1
2g
cdδ4ĝbd =

1
2φ

2F cb +O(s+)O(f) +O(δ+)
(6.0.1)

Γ̂c44 = 1
2 ĝ

cD(δ4ĝ4D + δ4ĝ4D − δDĝ44) = O(δ+) - 1
2g

cdδdφ
2 = O(δ+) +O(s+)

(6.0.2)

We have:

Γ̂cab = 1
2g
cd(δagdb + δbgda − δdgab)

+ 1
2g
cd(δa(φ2AaAb)+δb(φ

2AaAb)−δd(φ2AaAb))+ 1
2 ĝ
c4(δaĝ4b+δbĝ4a−δ4ĝab)

= Γcab +O(f2)O(δ+) + (O(f+) +O(δ+))O(f)

(6.0.3)

So:

0 = d2xa

dτ2 + Γ̂aBC
dxB

dτ
dxC

dτ

= d2xa

dτ2 + Γ̂abc
dxb

dτ
dxc

dτ + Γ̂a4c
dx4

dτ
dxc

dτ + Γ̂ab4
dxb

dτ
dx4

dτ + Γ̂a44
dx4

dτ
dx4

dτ
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= d2xa

dτ2 +Γ̂abc
dxb

dτ
dxc

dτ +φ2F ab
dxb

dτ
dx4

dτ +(O(δ+)+O(s+)O(f))dx
b

dτ
dx4

dτ +(O(δ+)+

O(s+))dx
4

dτ
dx4

dτ
(6.0.4)

Setting the Toth charge-to-mass ratio to:

Qt/m = −φ2 dx
4

dτ
(6.0.5)

Or equally setting the Toth charge to −φ2mdx4

dτ where m is the rest mass of
the charge carrier, we derive a Lorentz-like law:

d2xa

dτ2 +(Γabc+((O(f+)+O(δ+))O(f)+O(f2)O(δ+)))dx
b

dτ
dxc

dτ = (Qt/m)F ab
dxb

dτ +

(O(δ+) +O(f)O(s+))dx
b

dτ
dx4

dτ + (O(δ+) +O(s+))dx
4

dτ
dx4

dτ

(6.0.6)

We would need to zero most of the orders of magnitude terms here to get
the Lorentz force law itself. This however would be the same constraints as the
null solutions of Kaluza’s original theory. That is, Kaluza’s original theory is
suggestive of a link between Toth and Maxwellian charge by making the Lorentz
force law for Toth charge apparent. This is assumed as required via the Charge
Ansatz. The order of magnitude terms on the left can all be removed as less
significant than the O(v+) Christoffel symbol elements in general.

d2xa

dτ2 +Γabc
dxb

dτ
dxc

dτ = (Qt/m)F ab
dxb

dτ +(O(δ+)+O(f)O(s+))dx
b

dτ
dx4

dτ +(O(δ+)+

O(s+))dx
4

dτ
dx4

dτ
(6.0.7)

One other immediate observation is that throwing away the first O(δ+) term
would simplify (6.0.7). This could be done by KCC automatically, or RCC with
provisos.

We might also simplify it without RCC, guessing explicitly rather than im-
plicitly the applicability of the same constraint to get rid of the first O(δ+)
term, calling the result the Weak Cylinder Condition (WCC):

O(δ+) << O(f+) [WCC] (6.0.8)

The result in any case is:

d2xa

dτ2 + Γabc
dxb

dτ
dxc

dτ = (Qt/m)F ab
dxb

dτ +O(f)O(s+)dx
b

dτ
dx4

dτ

+(O(δ+) +O(s+))dx
4

dτ
dx4

dτ
(6.0.9)

We can then apply the following reasonable constraint for both RCC and
WCC, in fact we have to apply it. It is reasonable and necessary in that without
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it we can not obtain the Lorentz force law, and in any case it is useful to have
an equation that defines better the required electromagnetic limit:

O(f)O(s+) << O(f+) (6.0.10)

To get:

d2xa

dτ2 + Γabc
dxb

dτ
dxc

dτ = (Qt/m)F ab
dxb

dτ + (O(δ+) +O(s+))dx
4

dτ
dx4

dτ

(6.0.11)

So for the two variant cylinder conditions investigated here, there is only one
term which strays from a formal equivalence to the experimentally valid Lorentz
force law. We must however remember that actual equivalence depends on the
important difference between Toth and Maxwell charges, so we make use of the
Charge Ansatz and set Bv appropriately.

This is the (O(δ+) +O(s+)) term:

−Γ̂c44 = − 1
2 ĝ

cD(δ4ĝ4D + δ4ĝ4D − δDĝ44) = O(δ+) + 1
2g

cdδdφ
2 = O(δ+) +

O(s+)
= −gcDδ4g4D+ 1

2g
cDδDφ

2

= −gcdδ4g4d − 1
2g

c4δ4φ
2+ 1

2g
cdδdφ

2

(6.0.12)

Whether using RCC or WCC:

d2xa

dτ2 + Γabc
dxb

dτ
dxc

dτ = (Qt/m)F ab
dxb

dτ − (gcDδ4g4D− 1
2g

cDδDφ
2)dx

4

dτ
dx4

dτ

[LFL1] (6.0.13)

Note that however we constrain the size of the Kaluza dimension with RCC
we can not eliminate the O(s+) term 1

2g
cdδdφ

2 unless we discard the scalar field
fluctuations also. We therefore keep all the relevant terms in hope that we may
later somehow cancel them out. In this way an exhaustive a search as possible
is undertaken. It follows however from the preceding that we most likely have:

O(δ+) <<<< O(f+) (6.0.14)

O(s+) <<<< O(f+) (6.0.15)

Where the <<<< symbol expresses the extra extreme constraint imposed by

the uncancellable and inescapably large dx4

dτ term. Or an equivalent formulation
with averages using the RCC. It might be noted that this extra strong condition
starts to make the RCC condition look moot, as we have here a condition that
seems to suggest WCC is needed in anycase. However there is an alternative.
The alternative, whether RCC is used or not, is a more specialized contraint:
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O(Γ̂c44) <<<< O(f+) (6.0.16)

To be precise about the <<<< symbol: O(X) <<<< O(Y ) is such that

O(X) << O(Y )dx
a

dτ /
dx4

dτ for some smallest electron velocity dxa

dτ at which the

Lorentz force law works, ie has been tested to be accurate. For dxa

dτ /
dx4

dτ to be

equal to O(f), where O(f) = Rc as estimated previously, requires dxa

dτ = 106.
But the Lorentz force law certainly works for lower proper velocities than this!
Using the very low O(f) = Rw we are not much better off with dxa

dτ = 102.
We have O(X) <<<< O(f+) as stronger than O(X) << O(f+)O(f) by some
margin. It can’t quite be made to fit into << O(f+)O(f), it remains a tighter
constraint even than that.

Under such constraints however we have the Lorentz force law proper:

d2xa

dτ2
+ Γabc

dxb

dτ

dxc

dτ
≈ (Qt/m)F ab [LFL2] (6.0.17)

We may note that 6.0.15 appears to be highly non-duality invariant, as for
example the original Kaluza theory is when the scalar field is set constant.

7 Introducing Torsion

7.1 The Basic Equations

Later Cartan torsion will be admitted leading to a Kaluza-Cartan space-time.
But only after showing the failure of the other routes considered. In this way any
introduction of the additional complexity of torsion will be empirically necessary.
Empirically necessary, that is, provided that its addition solves the problems not
otherwise solved. This is done in a later section.

For both 5D and 4D manifolds (i.e. dropping the hats and indices notation
for a moment), torsion will be introduced into the Christoffel symbols as fol-
lows, using the notation of Hehl [11]. Metricity of the torsion tensor will be
assumed [19], the reasonableness of which (in the context of general relativity
with torsion) is argued for in [20] and [21]:

1

2
(Γkij − Γkji) = S k

ij (7.1.1)

This relates to the notation of Kobayashi and Nomizu [12] and Wald [7] as
follows:

T ijk = 2Sjk
i ≡ Γijk − Γikj (7.1.2)

We have the contorsion tensor K k
ij [11] as follows, and a number of relations

[11]:
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Γkij =
1

2
gkd(∂igdj + ∂jgdi − ∂dgij)−K k

ij = {kij}−K k
ij (7.1.3)

K k
ij = −S k

ij + S k
j i
− Skij = −K k

i j (7.1.4)

With torsion included, the geodesic/auto-parallel equation becomes [11]:

d2xk

ds2
+ Γk(ij)

dxi

ds

dxj

ds
= 0 (7.1.5)

Γk(ij) = {kij}+Sk(ij) − S
k

(j i)
(7.1.6)

This leaves the Lorentz force law unchanged when torsion is completely an-
tisymmetric, because the geodesics equation is unchanged. Also auto-parallels
and extremals remain identifiable [11].

Antisymmetry of Torsion Ansatz: total antisymmetry of the torsion tensor
is to be assumed in the sense that S k

(ij) = S k
(i j) = Sk(ij) = 0

It is noted that Einstein-Cartan theory, that adds torsion to the dynamics of
relativity theory is most probably a minimal ω-consistent extension of general
relativity [13][14] and therefore the use of (completely antisymmetric [19]) tor-
sion is not only natural, but arguably a necessity on philosophical and physical
grounds. What we have here is better termed Kaluza-Cartan theory as it takes
Kaluza’s theory and adds torsion. Further justification for using completely
antisymmetric torsion is given in [19] where complete anti-symmetry is shown
to be a corollary of metricity. This argument can also be inverted so that we
also have an argument, albeit a loose suggestive one, for metricity in terms of
the need for complete anti-symmetry.

Torsion will be bounded in order of magnitude by the Christoffel symbols,
that is, torsion will be given a O(v+) bound on magnitude. We might consider
the further constraint that ensures the non-dominance of torsion in the Christof-
fel symbols (and similarly extended derivatives, with the same justification):

O(Ŝ C
AB ) ≤ O(Γ̂CAB + K̂ C

AB ) ∀A,B and C ∈ {a,b,c,4} (7.1.7)

7.2 A Brief Consistency Check

Having secured the Lorentz force law it is worth looking also at the assumption
that the velocity of the charge does not change. Whilst under the charge ansatz
momentum is indeed conserved, it is still necessary to show that lack of proper
acceleration of the charged particle in the Kaluza dimension is feasible: that such
a model has a chance of being consistent. We therefore look at this acceleration
as with the Lorentz force law:
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0 = d2x4

dτ2 + Γ̂4
(BC)

dxB

dτ
dxC

dτ

(7.2.1)

Once again by complete antisymmetry we have no change in the geodesic
equation due to torsion. Ignoring torsion, we have:

0 = d2x4

dτ2 + Γ̂4
BC

dxB

dτ
dxC

dτ

= d2x4

dτ2 + Γ̂4
bc
dxb

dτ
dxc

dτ + Γ̂4
4c
dx4

dτ
dxc

dτ + Γ̂4
b4
dxb

dτ
dx4

dτ + Γ̂4
44
dx4

dτ
dx4

dτ

(7.2.2)

The last term, as with the Lorentz force law, vanishes only for sufficiently
small O(s+) and O(δ+) or if we make it a special constraint.

2Γ̂4
4c
dx4

dτ
dxc

dτ - the two middle terms added together, give:

−(AdFcd +O(f)O(δ+) +O(f)O(s+) + ĝ44∂cφ
2) dx4

dτ
dxc

dτ

That is significantly smaller than the comparable term in the Lorentz force
law. That is, given small enough O(s+) << O(f+) for the last term and

sufficiently small O(δ+). Thus, if dx
c

dτ is small relative to dx4

dτ (so that we can also
discount the first Christoffel symbol terms) we have that the 5th dimensional
acceleration of the charge is small relative to any Lorentz forces.

Here we have additional reason for asserting complete anti-symmetry of tor-
sion.

7.3 Belinfante-Rosenfeld Stress-Energy Tensor

The Einstein tensor defined using a torsion bearing connection will be labelled
κP̂ , it need not be symmetric. The constant is included here only because
of the Gravitational constant, to be consistent with the literature. P̂ is the
Einstein-Cartan stress-energy or canonical energy-momentum tensor.

The Belinfante-Rosenfeld [12] stress-energy tensor B̂ is a symmetric adjust-
ment of P̂ that adjusts for spin currents as sources. It can be defined equally for
the 5D case. It is the torsion equivalent according to Belinfante and Rosenfeld
of the original Einstein tensor Ĝ [12] but is formed explicitly from the torsion
bearing connection using P̂ and adjustments.

7.4 The Generalized Bel Super-Energy Tensor

Taking torsion as part of the model, that is, given a Kaluza-Cartan space-time,
we can here investigate tentatively a way to look at the energy conditions of
general relativity. Noting that the use of torsion has not yet been justified, but
some dependent arguments can in any case be made prior.

The Generalized Bel tensor for a Lorentz manifold is the super-energy tensor
associated with the Riemannian curvature [17]. The definition of super-energy
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tensor does not require that torsion be null in either the connection or any of
the defining tensors [17], and the important dominant super-energy property
[17] follows in all cases. This leads to the causality of the Rieman tensor [16]
under specific conditions. The torsion is involved as an input in defining the
Riemannian curvature, but the properties of the connection with torsion are
not invoked to obtain these results. However, the super-energy tensor definition
does depend on the anti-symmetries of the Riemannian tensor definition, that is,
[17], that it is a double symmetric (2,2)-form. The double symmetric property
playing a secondary role is not involved in this section. Whereas the definition of
the super-energy tensor in terms of very elementary properties such as it being
a 4-tensor are dependent on admissibility of the interpretation of the Riemann
tensor as a (2,2)-form.

In [16] the derivation of the causality of the fields underlying any particular
super-energy tensor is given in terms of the divergence of the field’s super-
energy tensor. A divergence condition is given that ensures causality of the
underlying field associated with any such super-energy tensor. The divergence of
the generalized Bel tensor would therefore need to be bounded by this condition
if the Riemannian curvature were to remain causal. This condition is theorem
4.2 in [17].

A sufficient case would be if the divergence of the superenergy tensor were
0 (and assuming global hyperbolicity). The important details are on page 4 of
[16]. The argument does not require that the connection be torsion free. Thus
the null divergence of the generalized Bel tensor would yield causal Riemannian
curvature, assuming the Riemann tensor remained a (2,2)-form. On p24 of [17]
we have a calculation of this divergence in the torsion-free case, and it can be
seen that when the Ricci curvature is 0 that the divergence of super-energy
is also always 0. This however references symmetry properties (in addition to
antisymmetry properties) and thus further consideration of the case with torsion
would be required to extend or generalize this theorem. Theorem 6.1 on p25
of [17] may well not apply in the presence of torsion. Nevertheless it nicely
characterizes an important property of the Kaluza vacuum (or let us say the
Kaluza-Cartan vacuum in the absence of torsion), that it can not be a source
of Bel super-energy (allowing ‘generalized’ to be dropped from here on).

This shows the reasonableness of Bel super-energy as a controlling and lim-
iting function of any possible separation of negative and positive energies within
matter models: thus hypothetically bounding negative energy within a causal
construction, and limiting its presence, leading to the approximate validity of
the energy conditions. The constraint could therefore be generalized to mat-
ter/charge models and also to any areas where torsion is present to provide
exactly the limiting constraints characteristic of energy conditions:

The Conserved Bel Hypothesis will be that the divergence of the Generalized
Bel superenergy tensor be null (when defined with respect to the torsion connec-
tion and torsion containing tensors) over all of the Kaluza-Cartan space-time.
Thus including matter/charge models and torsion.
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We might also have the nearly Conserved Bel Hypothesis such that the di-
vergence of the Generalized Bel superenergy tensor be bounded (when defined
with respect to the torsion connection and torsion containing tensors) over all of
the Kaluza-Cartan space-time. Thus including matter/charge models and tor-
sion. The bound here being defined by theorem 4.2 of [17]. A nearly conserved
Bel tensor, if shown to be necessary theoretically or empirically, could then be
indicative of further refinements or extensions of the space-time model.

These 2 tentative suggestions would have explanatory power if shown to be
correct as a way of rationalizing the various energy conditions used in general
relativity, and in explaining some aspects of classical scale causality. This will
now be left to one side until the concluding sections. Considerable work would
need to be done on these hypotheses to bring them actively into play.

It can be noted that in 4D and 5D in particular p29 of [17] the generalized
Bel tensor (torsion not mentioned, so presumably it may not be true in the
general case) has the nice property of being completely symmetric. It is curious
that it should be completely symmetric precisely in the 4D and 5D cases.

Finally, as stated, the above tentative ideas require that the Riemann tensor
be a (2,2)-form in the sense of Senovilla [17] also with torsion. Now the Riemann
tensor can be written as [12]:

Rijkl = ∂kΓilj − ∂lΓikj + ΓmljΓikm − ΓmkjΓ
i
lm (7.4.1)

It is a (2,2)-form if its antisymmetries are as follows: R[ij][kl]. This is clearly
the case for [k,l]. For [i,j] it is a known result when the connection is metric,
even with torsion.

This section is dependent on a presumed Riemannian-Cartan geometry, a
Kaluza-Cartan space-time in particular, admitting (completely antisymmetric)
torsion. Why this is preferable to varying the cylinder conditions will now be
investigated in detail.

8 Analysing Alternative Field Equations

Alternative field equations, or constraints on them at least, under varying cylin-
der conditions will now be investigated in order to identify where we might find
non-null electromagnetic fields within Kaluza theory. Noting that we are not
considering matter models here, but the electrovacuum, or electroscalar ‘Kaluza’
vacuum.

The field equations in the introduction are related to the results here, but
here we do not assume KCC and investigate the effect of the other possible
cylinder conditions, thus the Kaluza field equations can not be assumed. This
investigation is done by setting the Ricci tensor to zero and looking at its com-
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ponents via the Christoffel symbols. Initially torsion is not invoked, as it is the
effect of varying the cylinder conditions alone that we are initially interested in.

8.1 The Christoffel Symbols

(Without torsion terms)

2Γ̂ABC =
∑
d ĝ

AD(∂B ĝCD + ∂C ĝDB − ∂DĝBC)

=
∑
d ĝ

Ad(∂B ĝCd + ∂C ĝdB − ∂dĝBC)
+ ĝA4(∂B ĝC4 + ∂C ĝ4B − ∂4ĝBC)

2Γ̂Abc =
∑
d ĝ

Ad(∂bgcd + ∂cgdb − ∂dgbc)
+
∑
d ĝ

Ad(∂bφ
2AcAd + ∂cφ

2AdAb − ∂dφ2AbAc)
+ ĝA4(∂bφ

2Ac + ∂cφ
2Ab − ∂4gbc − ∂4φ2AbAc)

2Γ̂A4c =
∑
d ĝ

Ad(∂4gcd + ∂4φ
2AcAd + ∂cφ

2Ad − ∂dφ2Ac) + ĝA4∂cφ
2

2Γ̂A44 = 2
∑
d ĝ

Ad∂4φ
2Ad −

∑
d ĝ

Ad∂dφ
2 + ĝA4∂4φ

2

The Strong Electromagnetic Limit φ2 = 1

2Γ̂Abc =
∑
d ĝ

Ad(∂bgcd+∂cgdb−∂dgbc) +
∑
d ĝ

Ad(∂bAcAd+∂cAdAb−∂dAbAc)
+ ĝA4(∂bAc + ∂cAb − ∂4gbc − ∂4AbAc)

2Γ̂A4c =
∑
d ĝ

Ad(∂4gcd + ∂4AcAd + ∂cAd − ∂dAc)
Γ̂A44 =

∑
d ĝ

Ad∂4Ad

Simplifying...

2Γ̂abc = 2Γabc +
∑
d g

ad(AbFcd +AcFbd) +Aa∂4gbc +Aa∂4AbAc
2Γ̂4

bc = −
∑
dA

d(∂bgcd + ∂cgdb − ∂dgbc)−
∑
dA

d(AbFcd +AcFbd)
− (1 +

∑
iAiA

i)(∂4gbc + ∂4AbAc) + (∂bAc + ∂cAb)

2Γ̂a4c =
∑
d g

ad(∂4gcd + ∂4AcAd) +
∑
d g

adFcd
2Γ̂4

4c = −
∑
dA

d(∂4gcd + ∂4AcAd)−
∑
dA

dFcd
Γ̂a44 =

∑
d g

ad∂4Ad
Γ̂4
44 = −

∑
dA

d∂4Ad

The Strong Scalar Limit Ai = 0

2Γ̂Abc =
∑
d ĝ

Ad(∂bgcd + ∂cgab − ∂dgbc) −ĝA4∂4gbc
2Γ̂A4c =

∑
d ĝ

Ad∂4gcd + ĝA4∂cφ
2

2Γ̂A44 = −
∑
d ĝ

Ad∂dφ
2 + ĝA4∂4φ

2

Simplifying...
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Γ̂abc = Γabc
2Γ̂4

bc = − 1
φ2 ∂4gbc

2Γ̂a4c =
∑
d g

ad∂4gcd
2Γ̂4

4c = 1
φ2 ∂cφ

2

2Γ̂a44 = −
∑
d g

ad∂dφ
2

2Γ̂4
44 = 1

φ2 ∂4φ
2

8.2 Constraints On The Ricci tensor

(Including torsion as necessary)

5D Ricci curvature R̂AB = 0 (outside of matter models) produces the fol-
lowing:

R̂ab = ∂C Γ̂Cab − ∂bΓ̂CaC + Γ̂CabΓ̂
D
CD − Γ̂CaDΓ̂DbC = 0 (8.2.1)

Rab = ∂cΓ
c
ab − ∂bΓcac + ΓcabΓ

d
cd − ΓcadΓ

d
bc (8.2.2)

Rab = Rab − R̂ab= (∂cΓ
c
ab − ∂cΓ̂cab)− ∂4Γ̂4

ab +(−∂bΓcac + ∂bΓ̂
c
ac) + ∂bΓ̂

4
a4

+ (ΓcabΓ
d
cd − Γ̂cabΓ̂

d
cd) −Γ̂cabΓ̂

4
c4 − Γ̂4

abΓ̂
4
44 −Γ̂4

abΓ̂
d
4d

+ (−ΓcadΓ
d
bc + Γ̂cadΓ̂

d
bc) +[Γ̂ca4Γ̂4

bc + Γ̂4
adΓ̂

d
b4] +Γ̂4

a4Γ̂4
b4

= −∂4Γ̂4
ab +∂bΓ̂

4
a4 −Γ̂cabΓ̂

4
c4 − Γ̂4

abΓ̂
4
44 −Γ̂4

abΓ̂
c
4c +[Γ̂ca4Γ̂4

bc + Γ̂cb4Γ̂4
ac] +Γ̂4

a4Γ̂4
b4

([SEM1] 8.2.3)

By inspection of the above (without torsion), we have that ∂bΓ̂
4
a4 is sym-

metric. This symmetry however follows from the Christoffel symbol definition:
the symmetry presents no constraint. We have simply 10 constraints on 10 un-
knowns, which corresponds to the 4D field equations, field equation 1 in the
original Kaluza theory.

[SEM1] will not be used here to draw conclusions about the validity of WCC
or RCC. We simply note that it defines the 4D stress energy tensor.

Further possible constraints on the field equations may be obtained by in-
specting the other components of R̂AB :

R̂44 = ∂C Γ̂C44 − ∂4Γ̂C4C + Γ̂C44Γ̂DCD − Γ̂C4DΓ̂D4C = 0 ([SEM2] 8.2.4)

R̂a4 = ∂C Γ̂Ca4 − ∂4Γ̂CaC + Γ̂Ca4Γ̂DCD − Γ̂CaDΓ̂D4C = 0 ([SEM3] 8.2.5)
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The first equation [SEM2]8.2.4 means that all electromagnetic fields must
be null when there is no torsion, no scalar field, nor a physical Kaluza dimension,
ie at the Kaluza limit, as will become clear in the following (Related to Kaluza’s
third field equation). The second relates toand Kaluza’s second field equation.
Initially we include the torsion dependent terms, but take advantage of complete
antisymmetry, so that the working can be re-used later.

R̂44 = 0 = ∂cΓ̂
c
44 + ∂4Γ̂4

44 − ∂4Γ̂c4c − ∂4Γ̂4
44 + Γ̂C44Γ̂DCD − Γ̂C4DΓ̂D4C

= ∂cΓ̂
c
44 − ∂4Γ̂c4c + Γ̂c44Γ̂DcD + Γ̂4

44Γ̂D4D − Γ̂c4DΓ̂D4c − Γ̂4
4DΓ̂D44

= ∂cΓ̂
c
44 − ∂4Γ̂c4c + Γ̂c44Γ̂dcd + Γ̂4

44Γ̂d4d − Γ̂c4dΓ̂
d
4c − Γ̂4

4dΓ̂
d
44 −Γ̂c44K

4
c4+Γ̂c44K

4
4c

= ∂cΓ̂
c
44 − ∂4Γ̂c4c + Γ̂c44Γ̂dcd + Γ̂4

44Γ̂d4d − Γ̂c4dΓ̂
d
4c − Γ̂4

4dΓ̂
d
44 +2Γ̂c44Ŝ

4
c4

(8.2.6)

By complete antisymmetry of the torsion tensor:

0 = ∂cΓ̂
c
44 − ∂4Γ̂c4c + Γ̂c44Γ̂dcd + Γ̂4

44Γ̂d4d − Γ̂c4dΓ̂
d
4c − Γ̂4

4dΓ̂
d
44

(8.2.7)

At the Kaluza limit we have nullity as follows, from the fifth term on the
right-hand side:

0 = −FcdF dc

Now we look at the other terms not at the Kaluza limit (but either without
torsion, or torsion present but bound by 7.1.7), and using (6.0.14) and (6.0.15),
or imposing the additional (somewhat arbitrary) constraint of (6.0.16). (6.0.16)
is in any case a corollary of (6.0.14) and (6.0.15) and so can be used liberally
here. Whether using WCC, or RCC, we can discount all but the second and the
fifth term as follows:

0 = ∂cΓ̂
c
44 is of order << O(f+)O(f+) by a reasonable use of distributivity

−∂4Γ̂c4c
+[<< O(f+)O(f)O(v+)] by (6.0.16)
+[O(δ+) +O(s+)O(f) +O(f+)O(δ+)][O(δ+) +O(f+) +O(f+)O(s+)]
+[FcdF

cd +O(f)O(s+)O(f)O(s+)]
+[<< O(f+)O(f)O(v+)] by (6.0.16)

Now, it is necessary to assume a degree of proportionality to make: O(f)
O(v+)≤ O(f+), but not a lot, as full proportionality would allow: O(f)O(v+)=
O(f+)O(v). This is reasonable as O(v+)/O(v) ≤ O(f+)/O(f) means that per-
centage gains of the electromagnetic potential are generally greater than or
equal to those of the gravitational potential. Similarly we need O(f) O(s+)
<< O(f+) for part of the fourth and fifth terms, but this very order of magni-
tude bound (6.0.10) was necessary to derive the Lorentz force law, and so can
be used also here to give:
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∂4Γ̂c4c = FcdF
cd

(8.2.8)

A possible weak link in this derivation is perhaps the reasonable use of dis-
tributivity in the first derivative term. So to clarify we should consider what
would happen if the term oscillated such that distributivity/proportionality
did not hold. The underlying Christoffel symbol term is << O(f+)O(f) =
O(f+)O(f)/C where C >> 1 is a measure of how well the Lorentz force law has
been tested or is assumed valid. In order for its derivative to be O(f+)O(f+)
we must have a gain at least C times longer than a typical O(f+)O(f) term.
Such a typical term, for comparison, being an electromagnetic field times a po-
tential. To the extent that this gain is continued for such a time-distance that
it is significant in the above equation, we must have a proportionately higher
frequency (or shorter wavelength) of oscillation so as to maintain the Christoffel
symbol term within its prescribed bounds. As such the net gain in one direction
of the higher frequency term will be limited. Thus we have a crude heuristic ar-
gument that leads to a contradiction. In this sense proportionality is reasonable
here.

We can now look at the equation above and claim that using WCC we can
only have 0, or else we have RCC. If we do not have 0 we would need the
Christoffel symbol term to average 0 around the loop in some way: but if we
are doing such an averaging process we are really invoking RCC. Thus WCC
leads to RCC. And under RCC point (i) can be taken as 0.

We have therefore shown the insufficiency of trying to weaken the Kaluza
cylinder condition.

8.3 Non-Null Solutions And Degrees of Freedom

At this point we can put the torsion tensor back in (with respect to the sig-
nificant orders of magnitude) as follows, assuming the additional constraint of
(7.1.7) for simplification:

0 = ∂4Γ̂c4c = ∂4{̂c4c} − ∂4K̂
c

4c = −[gce(Fde)− K̂ c
4d ][gdf (Fcf )− K̂ d

4c ]

= −[(F cd )− K̂ c
4d ][(F dc )− K̂ d

4c ]

= −FcdF cd + 2K̂ c
4d F

d
c − K̂

c
4d K̂

d
4c where all terms are O(f+)O(f+)

([SEM2b] 8.3.1)
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In order to check that we do indeed have enough degrees of freedom to
allow for non-null fields, [SEM3]8.2.5 will now be investigated using the same
assumptions.

R̂a4 = ∂C Γ̂Ca4 − ∂4Γ̂CaC + Γ̂Ca4Γ̂DCD − Γ̂CaDΓ̂D4C = 0 ([SEM3] 8.3.2)

Torsion terms will be assumed present in the Christoffel symbols of both 4
and 5 dimensions. Terms strictly less than O(f + +) will be discarded.

R̂a4 = ∂cΓ̂
c
a4 +∂4Γ̂4

a4−∂4Γ̂cac−∂4Γ̂4
a4 +Γ̂ca4Γ̂DcD+Γ̂4

a4Γ̂D4D− Γ̂caDΓ̂D4c− Γ̂4
aDΓ̂D44

= ∂cΓ̂
c
a4−∂4Γ̂cac+Γ̂ca4Γ̂dcd+Γ̂ca4Γ̂4

c4+Γ̂4
a4Γ̂d4d−Γ̂cadΓ̂

d
4c−Γ̂ca4Γ̂4

4c−Γ̂4
adΓ̂

d
44

= ∂cΓ̂
c
a4−∂4Γ̂cac+Γ̂ca4Γ̂dcd+Γ̂4

a4Γ̂d4d−Γ̂cadΓ̂
d
4c−Γ̂4

adΓ̂
d
44+Γ̂ca4(K̂ 4

4c −K̂ 4
c4 )

Removing small terms due to Postulates, and assuming 7.1.7:

R̂a4 = 0 = ∂cΓ̂
c
a4 + Γ̂ca4Γ̂dcd − Γ̂cadΓ̂

d
4c

Γ̂ca4 = 1
2 [ĝcd(∂4gad + ∂4φ

2AaAd + ∂aφ
2Ad − ∂dφ2Aa) + ĝc4∂aφ

2]−K̂ c
a4

Γ̂d4c = 1
2 [ĝde(∂4gce + ∂4φ

2AcAe + ∂cφ
2Ae − ∂eφ2Ac) + ĝd4∂cφ

2]−K̂ d
4c

∂cΓ̂
c
a4 = 1

2∂cF
c
a − ∂cK̂

c
a4

Γ̂ca4Γ̂dcd = [ 12F
c
a − K̂

c
a4 ][Γdcd]

−Γ̂cadΓ̂
d
4c = −[Γcad][

1
2F

d
c − K̂

d
c4 ]

0 =
1

2
∂cF

c
a − ∂cK̂

c
a4 + [

1

2
F ca − K̂

c
a4 ][Γdcd]− [Γcad][

1

2
F dc − K̂

d
c4 ] ([SEM3b] 8.3.3)

Setting K̂ c
a4 to 0 or to 1

2F
c
a does nothing but rederive null solutions via

[SEM2b]8.3.1 and antisymmetry. These are not the solutions we are looking for.
Releasing the additional constraint 7.1.7 also makes no difference as complete
antisymmetry dispatches most of the torsion terms in any case. What we have
here is 4 constraints on the 6 unknowns of the contorsion tensor where one index
is 4. We have of course also [SEM2b]8.3.1. Thus there are in fact 5 constraints
in total on the 6 unknowns. [SEM1] consists of 10 constraints, but at most these
are used in constraining the 10 unknowns of the antisymmetric K̂ c

ab .

Thus we have the degrees of freedom required.

9 Postulates

We have arrived at a 5D Kaluza theory with torsion, that is, where the Ricci flat
part of Kaluza space includes the torsion tensor in the defining connection, and
total antisymmetry of torsion is assumed. The Charge Ansatz has been made
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throughout so far, but will be shown in a later section to actually be a corollary
of this Kaluza-Cartan theory. The following order of magnitude constraints are
imposed on various terms to provide an electromagnetic/classical limit:

O(δ+) <<<< O(f+)
O(s+) <<<< O(f+)
O(Ŝ C

AB ) ≤ O(v+)

That is: (6.0.14),(6.0.15) and a reasonable constraint on torsion so that it
does not dominate curvature.

Other broad assumptions were made and are still needed: the Geodesic
Assumption, causality (and the existence of a hypersurface), suitable topology
and so on. But these, although needed for the limit of general relativity, are not
part of the theory per se. It turns out that this theory is not duality invariant,
not only because of matter/charge sources as with general relativity but also
due to the scalar field.

Despite the length and complexity of the argument we have in fact arrived
at straight forward postulates, and require none of the messiness previously
entertained. The froth has boiled down to a few simple ideas. Nor indeed, it has
been argued, are there other clearly satisfactory ways forward. An exhaustive
a search as possible has been attempted. The above, or substantially similar
postulates, appear to be the most natural selection of postulates and resolve the
foundational problems of Kaluza theory investigated here (notwithstanding the
Charge Ansatz to be dealt with in the sequel). The first two postulates can be
weakened by (6.0.16), the second can be tightened by (7.1.7). Further the first
one could be a corollary of proportionality, and the third one could result from
more general considerations also. Finally, the second one could simply be the
electromagnetic limit of a more general case. We might consider the non-duality
invariance of the constraint to be a sign of the reality of the scalar field, though
this would need further investigation.

The important end result is that the core postulates are simply the addition
of torsion to Kaluza theory and a vanishing scalar field at the electromagnetic
limit. But a number of peripheral postulates that have a more general nature
are also needed.

The outstanding issue is the Charge Ansatz. Until this point no attempt to
justify this ansatz has been made, apart from the fact that its assumption has
been necessary. This will now be investigated.
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10 The Nature Of Charge

In general relativity at a weak field limit the conservation of momentum-energy
can be given in terms of the stress-energy tensor as follows [9]. Energy:

∂T̂ 00

∂t
+
∂T̂ i0

∂xi
= 0 (10.0.1)

Momentum in the j direction:

∂T̂ 0j

∂t
+
∂T̂ ij

∂xi
= 0 (10.0.2)

This can be applied equally to Kaluza theory (with matter models that are
not Ricci flat in the Kaluza space). It needs to be applied to the underlying
(not here Ricci flat) Kaluza space. We have a description of conservation of
momentum in the 5th dimension as follows:

∂T̂ 04

∂t
+
∂T̂ i4

∂xi
= 0 (10.0.3)

This is accurate at the weak field limit, and so is valid at the usual classical
scale. We also have by the postulates the situation where i=4 can be treated
as small. Thus the conservation of ‘charge’ becomes the property of a 4-vector
current at the usual classical scale, which we know to be conserved:

V = (T̂ 04, T̂ 14, T̂ 24, T̂ 34) (10.0.4)

∂0T̂
04 + ∂1T̂

14 + ∂2T̂
24 + ∂3T̂

34 = 0 (10.0.5)

(V is a vector for the same reasons as the vector potential is a vector.)

At this point we can calculate this ‘current’ in terms of the metric and
Ricci tensor, noting that even with torsion present the original Einstein tensor
constructed from the torsion free connection and metric can still be used. We
have two connections on one manifold. And two possible Einstein tensors. The
Einstein-Cartan stress-energy tensor P̂ with torsion may be antisymmetric.

For the moment we shall ignore torsion, and revert to the Einstein tensor Ĝ
and torsion free connection.

We can identify the current with the following components of the 5D (torsion
free) Einstein tensor by discounting small terms, and thus consistently with
(6.0.5) and the previous derivations of the Lorentz force law:

V ≈ (R̂04 − 1/2ĝ04R̂, R̂14 − 1/2ĝ14R̂, R̂24 − 1/2ĝ24R̂, R̂34 − 1/2ĝ34R̂) (10.0.6)

V ≈ (R̂04, R̂14, R̂24, R̂34) due to O(f) terms in the metric. (10.0.7)
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The following parts of the Ricci tensor will be looked at due to its significance
O(f + +):

X̂a4 = ∂C Γ̂Ca4 − ∂4Γ̂CaC (10.0.8)

The other part of the Ricci tensor will have a significance << O(f++) since,
being always compounded of two Christoffel symbols, it starts off bounded by
O(v+)O(v+). We need only one of the Christoffel symbols to be O(f+) and we
have already an order of significance less than O(f + +) via distributivity (as
defined in section 5). That there is always such a term follows from the fact that
at least one of each pair of Christoffel symbols in the remaining part of the Ricci
tensor will have an index that is 4, providing there is no torsion. This then also
makes insignificant any contribution from the corresponding torsion tensors.
The terms are simplified and discarded using the Postulates and distributivity,
and by comparing relative significances.

2V ≈ 2X̂a4 = ∂C [ĝCD(∂aĝD4 +∂4ĝDa−∂Dĝa4)]−∂4[ĝCD(∂aĝDC +∂C ĝDa−
∂DĝaC)]
≈ ∂C [ĝCD(∂aĝD4 + ∂4ĝDa − ∂Dĝa4)]
≈ ∂C [ĝCD(∂aĝD4 − ∂Dĝa4)]
≈ ∂c[ĝcd(∂aĝd4 − ∂dĝa4)]
≈ ∂c(∂aĝc4 − ∂cĝa4)
≈ −∂c(∂aAc − ∂cAa)
≈ −∂cF ac

(10.0.9)

This, as the explicit equation of Maxwellian charge sources (albeit approx-
imate), provides justification for the approximate, but consistent, association
of Toth charge with Maxwell charge. It is no longer an ansatz as such at all,
but now follows from the Postulates, at least given the additional proviso of
distributivity.

However we have here ignored the torsion tensor. This doesn’t necessar-
ily matter as the sought for property of zero divergence in the (torsion free)
Einstein tensor will still present a conservation law, just one relative to the
torsion free connection rather than the torsion bearing connection. By using
the Belinfante-Rosenfeld procedure [12] however we can derive a tensor, the
Belinfante-Rosenfeld tensor, that is indeed conserved under the new torsion con-
nection. The Belinfante-Rosenfeld tensor being equivalent to the Einstein ten-
sor according to [12] as it is precisely the symmetric Hilbert energy-momentum
tensor in adjusted form. With the Belinfante-Rosenfeld stress-energy tensor we
have indeed a symmetric stress-energy tensor which is explicitly conserved rela-
tive to the torsion connection, and that has a momentum portion approximately
equal to the charge under the reasonable assumptions used here. Whether an
analogous link exists when the torsion terms are directly considered has not
been investigated. Nevertheless a convincing link between Maxwellian and Toth
charge has been established even without this.
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The assumption of distributivity/proportionality was assumed in this sec-
tion, that is, that the orders of magnitude are well-behaved as discussed in
section 5.

11 Conclusion

Kaluza’s 1921 theory of gravity and electromagnetism using a fifth wrapped-
up spatial dimension is at the root of many modern attempts to develop new
physical theories. Lacking non-null electromagnetic fields however the theory is
incomplete.

This work sought to investigate the issue of non-null electromagnetic solu-
tions in Kaluza variant theories by the method of an order of magnitude analysis
under various assumptions, such as variant cylinder conditions, and making the
ansatz that charge can be identified with 5D momentum - the initial justifica-
tion for which was the ease of derivation of the Lorentz force law under limited
circumstances.

The non-null solutions were not found by relaxing the cylinder condition or
allowing for scalar fields, and further the Lorentz force law was maintained best
with respect to Toth charges by maintaining a tight cylinder condition and very
limited scalar field oscillations. This was despite a search that tried to be as
exhaustive as possible. Attempts at using both the scalar field and various 5th
dimensional oscillations proved ultimately ineffective. And the program to find
non-null solutions as a result of these two factors failed.

The derivation of the Lorentz force law was not, however, impaired by the
admission of completely antisymmetric torsion. Further, enough degrees of free-
dom for the sought for non-null solutions were found. And this was achieved
without the help of weakening the cylinder conditions or a significant fluctu-
ating scalar field. Explicit examples of non-null solutions, however, were not
provided.

We can therefore conclude that when 5D momentum is to be identified with
Maxwellian charge, and when there is no (or very weak) scalar field, that the
cylinder condition must be more or less as given by Kaluza, and that torsion is
necessary to get non-null electromagnetic fields, such as static electric fields. It
was also noted that in any case Einstein-Cartan theory is a natural and necessary
extension of general relativity via ω-consistency, thus the use of torsion is really
very natural, and all the more so with the resulting resolution to the foundational
issues of Kaluza theory.

The identification of 5D momentum and charge is shown to be a conse-
quence of the new Postulates developed through the paper, and in particular
the presence of torsion that allows the Postulates to offer the full range of elec-
tromagnetic solutions. Additional well-behaved properties were required for this
identification.

Some theorists investigate relativity theory with torsion, and some theorists
investigate Kaluza or Kaluza Klein theories. Here it is shown why it makes sense
to investigate both together: why Kaluza theory should have torsion added.
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This work has resolved foundational issues associated with classical Kaluza the-
ory and provides motivation for further investigation. Further, the coupling
such as it is between the torsion tensor and other tensors (primarily the electro-
magnetic field) means that there are, in principle, testable phenomena, though
the effects may be small.

The overall purpose of the theory is the same as that of Kaluza, to provide
an explanation for as much classical electromagnetic phenomena in terms of ge-
ometry as possible. The variant theory merges two serious attempts at unifying
electromagnetism and gravity. The argument justifies this. It is reasonable to
refer to this type of theory as a Kaluza-Cartan theory.

Finally, and tentatively, it was suggested that the generalized Bel superen-
ergy tensor or similar, via the Conserved Bel Hypothesis (or a weaker alter-
native), could be applied as an alternative to the energy conditions of general
relativity in the 5D context. This is because a conservation law (or an ap-
proximate conservation law) on the Bel tensor results in the causality of the
Riemannian curvature, and this is so even in the presence of negative energies.
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