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Abstract

The binary Goldbach conjecture asserts that every even integer greater than 4 is the sum of two primes. In
order to prove this statement, we start by defining a kind of double sieve of Eratosthenes as follows. Given a
positive even integer x, we sift out from [1, x] all those elements that are congruents to 0 modulo p, or congruents
to x modulo p, where p is a prime less than

√
x. So, any integer in the interval [

√
x, x] that remains unsifted is a

prime p for which either x− p = 1 or x− p is also a prime. Then, we introduce a new way to formulate this sieve,
which we call the sequence of k-tuples of remainders. Using this tool, we obtain a lower bound for the number of
elements in [1, x] that survives the sifting process. We prove, for every even number x > p235, that there exist at
least 3 integers in the interval [1, x] that remains unsifted. This proves the binary Goldbach conjecture for every
even number x > p235, which is our main result.

1 Introduction

1.1 The sieve method and the Goldbach’s problem

In the year 1742 Goldbach wrote a letter to his friend Euler telling him about a conjecture involving prime numbers.
Goldbach’s conjecture: Every even number greater than 4 is the sum of two primes. The Goldbach Conjecture is one of
the oldest unsolved problems in number theory [7]. This conjecture was verified many times with powerful computers,
but could not be proven. In March 30, 2012, T. Oliveira e Silva verified the conjecture for n ≤ 36 × 1017 [11].
Mathematicians had achieved some partial results in their efforts to prove this conjecture. Vinogradov proved, in
1937, that every sufficiently large odd number is the sum of three primes [13]. Later, in 1973, J.R. Chen showed that
every sufficiently large even number can be written as the sum of either two primes or a prime and the product of two
primes [6]. In 1975, H. Montgomery and R.C. Vaughan showed that ‘most’ even numbers were expressible as the sum
of two primes [10]. Recently, a proof of the related ternary Goldbach conjecture, that every odd integer greater than
5 is the sum of 3 primes, has been given by Harald Helfgott [14].

In this paper we prove (Main Theorem, Section 8) the following:

(a) Every even integer greater than 1492 = 22, 201 is the sum of two odd primes.

(b) As n runs through the positive even integers, the number of Goldbach partitions of n tends to infinity.

It is well known that one of the principal ways of attacking the problem of the Goldbach’s conjecture has been
through the use of sieve methods. Viggo Brun [5] was the first to obtain a result, as an approximation to Goldbach’s
conjecture: Every sufficiently large even integer is a sum of two integers, each having at most nine prime factors.
Later, other mathematicians in the area of sieve theory have improved this initial result.

In the context of sieve theory, the sieve method consist in removing elements of a list of integers, according to a set
of rules; for instance, given a finite sequence A of integers, we could remove from A those members which lie in a given
collection of arithmetic progressions. In the original sieve of Eratosthenes, we start with the integers in the interval
[1, x], where x is a positive real number, and sift out all those which are divisible by the primes p <

√
x. Therefore,

any integer that remains unsifted is a prime in the interval [
√
x, x].

We begin by describing formally the sieve method; we use, as far as possible, the concepts and notation of the
book by Cojocaru and Ram Murty [3], chapters 2 and 5. Let A be a finite set of integers and let P be the sequence
of all primes; let z ≥ 2 be a positive real number. Furthermore, to each p ∈P, p < z we have associated a subset Ap

of A . The sieve problem is to estimate, from above and below, the size of the set

A \
⋃
p∈P
p<z

Ap,

which consists of the elements of the set A after removing the elements of all the subsets Ap. We call the procedure
of removing the elements of the subsets Ap from the set A the sifting process. The sifting function S(A ,P, z) is
defined by the equation
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S(A ,P, z) =

∣∣∣∣∣∣∣∣A \
⋃
p∈P
p<z

Ap

∣∣∣∣∣∣∣∣ ,
and counts the elements of A that have survived the sifting process. Now, let Pz be the set of primes p ∈P, p < z;

and for each subset I of Pz, denote by

AI =
⋂
p∈I

Ap.

Then, the inclusion–exclusion principle gives us

S(A ,P, z) =
∑
I⊆Pz

(−1)
|I| |AI | ,

where for the empty set ∅ we have A∅ = A . We often take A to be a finite set of positive integers, and Ap to be
the subset of A consisting of elements lying in some congruence classes modulo p.

Using this notation, we can now define formally the sieve of Eratosthenes. Let A = {n ∈ Z+ : n ≤ x}, where
x ∈ R, x > 0, and let P be the sequence of all primes; let z =

√
x. Now, to each p ∈P, p < z, we associate the subset

Ap of A , defined as follows: Ap = {n ∈ A : n ≡ 0 (mod p)}. Then, when we sift out from A all those elements of
every set Ap, the unsifted members of A in the interval [

√
x, x] are the integers that are not divisible by primes of P

less than z; that is to say, any integer remaining in [
√
x, x] is a prime. Let

P (z) =
∏
p∈P
p<z

p.

Furthermore, if d is a squarefree integer such that d|P (z), we define the set

Ad =
⋂
p|d

Ap.

So, from the inclusion–exclusion principle we obtain

S(A ,P, z) =
∑
d|P (z)

µ (d) |Ad| , (1)

where µ(d) is the Möbius function; and from (1) it can be derived the well-known formula of Legendre

S(A ,P, z) =
∑
d|P (z)

µ (d) |Ad| =
∑
d|P (z)

µ (d)
⌊x
d

⌋
.

In a first instance, the sieve of Eratosthenes is very useful for finding the prime numbers between
√
x and x.

However, from a theoretical point of view, the experts in sieve theory are interested in estimating for every x the
number of integers remaining after the sifting process has been performed.

The use of the Möbius function is a simple way to approach a sieve problem; however, satisfactory results are
rather hard to achieve, unless z is very small. We shall illustrate this with the application to the sieve of Eratosthenes-
Legendre, given in the book by Halberstam and Richert [2], Chapter 1, Section 5.

As usual in sieve theory, instead of |A | we can use a close approximation X to |A |. Furthermore, for each prime
p we choose a multiplicative function w(p) so that (w(p)/p)X approximates to |Ap|. Then, for each squarefree integer
d we have that (w(d)/d)X approximates to |Ad|, and we can write

|Ad| =
w(d)

d
X +Rd.

Then, substituting this into (1),
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S(A ,P, z) =
∑
d|P (z)

µ (d)

(
w(d)

d
X +Rd

)
=
∑
d|P (z)

µ (d)
w(d)

d
X +

∑
d|P (z)

µ (d)Rd. (2)

On the other hand, since w is a multiplicative function,

∑
d|P (z)

µ (d)
w(d)

d
=
∏
p∈P
p<z

(
1− w (p)

p

)
= W (z) ,

and, substituting this into (2),

S(A ,P, z) = XW (z) +
∑
d|P (z)

µ (d)Rd.

Hence, we can write

S(A ,P, z) = XW (z) + θ
∑
d|P (z)

|Rd| (θ ≤ 1).

Furthermore, if |Rd| ≤ w(d) and w(p) ≤ A0, for some constant A0 ≥ 1, we get

S(A ,P, z) = XW (z) + θ (1 +A0)
z
.

See [2, Theorem 1.1] for details. In the case of the sieve of Eratosthenes-Legendre, taking X = x, w(p) = 1, A0 = 1,
we obtain

S(A ,P, z) ≤ x
∏
p∈P
p<z

(
1− 1

p

)
+ 2z. (3)

From this we can see that the error term will be very large provided that z is not sufficiently small compared with
x. In spite of this, taking z = log x, the formula in (3) can be used to obtain an elementary upper bound for π(x).
See [2, Ch. 1, (5.8)].

Now, suppose that we express the Goldbach’s problem as a sieve problem; it is clear that in order to prove this
conjecture what we require is a lower bound for the sifting function. However, there is a well-known phenomenon in
sieve theory, called the ‘parity barrier’ or the ‘parity problem’, that was first clarified by Selberg (see [16]). It appears
that sieve methods cannot distinguish between numbers with an even number of prime factors and an odd number of
prime factors. The parity problem was described briefly by Terence Tao [15] as follows: ‘If A is a set whose elements
are all products of an odd number of primes (or are all products of an even number of primes), then (without injecting
additional ingredients), sieve theory is unable to provide non-trivial lower bounds on the size of A.’ This means that
in order to solve the Goldbach’s problem we should be able to define a suitable sieve, and furthermore we should find
a way to circumvent the parity problem.

1.2 A sieve for the Goldbach’s problem

Let P be the sequence of all primes; and given pk ∈ P, let mk = p1p2p3 · · · pk. From now on, and throughout this
paper, for convenience, we take x to be an even integer greater than p2

4 = 49. Note that if pk is the greatest prime less
than

√
x, every even number x > 49 satisfies p2

k < x < p2
k+1 < mk; this fact is very important for our purposes, as we

shall see later.
Now, how can we construct a sieve to tackle the Goldbach’s problem? Given a positive even integer x, as we have

seen in the previous subsection, using the sieve of Eratosthenes we can get the primes between
√
x and x. Assume that

among the primes between
√
x and x there is at least a prime q such that x− q is also a prime. Then, to attack the

Goldbach’s problem we need a sieve that sift out all the integers in the interval [1, x] which are divisible by the primes
p <
√
x, as the sieve of Eratosthenes does, and that additionally sift out, from the primes p remaining in [

√
x, x], all

those such that x− p is not a prime.
Then, in order to construct such a sieve, we propose to modify the sieve of Eratosthenes as follows: First, we sift

out all those integers n in the interval [1, x] such that n ≡ 0 (mod p), where p <
√
x; thus, any integer that remains

unsifted is a prime in the interval [
√
x, x]. Next, we sift out all those integers n that remains in [

√
x, x] such that
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n ≡ x (mod p). It is easy to see that any number that remains unsifted in [
√
x, x] is a prime q such that x− q is not

divisible by the primes p <
√
x; so, either x− q = 1 or x− q is a prime.

Let us define formally this sieve, which we call the Sieve associated with x, or alternatively the Sieve I. Let
A = {n ∈ Z+ : n ≤ x}. Let P be the sequence of all primes; and let z =

√
x. Let

P (z) =
∏
p∈P
p<z

p = mk.

Now, to each p ∈ P, p < z, we associate the subset Ap of A , defined as follows: Ap = {n ∈ A : n ≡ 0
(mod p) or n ≡ x (mod p)}. Furthermore, if d is a squarefree integer such that d|P (z), we define the set

Ad =
⋂
p|d

Ap.

In this case, the sifting function

S(A ,P, z) =

∣∣∣∣∣∣∣∣A \
⋃
p∈P
p<z

Ap

∣∣∣∣∣∣∣∣
counts the primes q in the interval [

√
x, x], such that either x − q = 1 or x − q is a prime. As in the case of the

sieve of Eratosthenes-Legendre, the inclusion–exclusion principle gives us

S(A ,P, z) =
∑
d|P (z)

µ (d) |Ad| .

Now, S(A ,P, z) > 2 implies that x is the sum of two primes; and if this is proved for all x, the Goldbach’s
conjecture would be proved. Then, the solution of the Goldbach’s problem depends on establishing a positive lower
bound for the sifting function. However, we can not hope to find a suitable lower bound using alone the usual sieve
methods, due to the parity problem, which was already mentioned in this Introduction. So far, all attempts to solve the
Goldbach’s problem by the usual sieve techniques did not have the expected success. For these reasons, the strategy
used in this paper differs quite a lot from the usual approach in sieve theory. In the next subsection we shall begin by
introducing another way of formulating a sieve problem.

1.3 The sequence of k-tuples of remainders

In this paper we propose to use another formulation for this kind of sieves, which is able to show all the details of
the sifting process, and will allow us to obtain a lower bound for the number of elements that remain unsifted. For
this purpose, we begin by introducing the notion of sequence of k-tuples of remainders. Let {p1, p2, p3, . . . , pk} be the
ordered set of the first k prime numbers. Suppose that for every natural number n we form a k-tuple, the elements
of which are the remainders of dividing n by p1, p2, p3, . . . , pk; so, we have a sequence of k-tuples of remainders.
If we arrange these k-tuples from top to bottom, the sequence of k-tuples of remainders can be seen as a matrix
formed by k columns and infinitely many rows, where each column is a periodic sequence of remainders modulo
ph ∈ {p1, p2, p3, . . . , pk}. It is easy to prove that the sequence of k-tuples of remainders is periodic, and the period is
equal to mk = p1p2p3 · · · pk.

Suppose that within the periods of every sequence of remainders modulo ph (a given column of the matrix), we
define some (not all) of the remainders as selected remainders, no matter the criterion for selecting the remainders.
Consequently, some k-tuples have one or more selected remainders, and other k-tuples do not have any selected
remainder. If a given k-tuple has one or more selected remainders, we say that it is a prohibited k-tuple; otherwise we
say that it is a permitted k-tuple.

Now, in a general context, a sieve is a tool or device that separates, for instance, coarser from finer particles.
Then, given a sieve device we can define a ‘sieve problem’, for instance, to count the number of finer particles that
pass through the sieve device. We can think of a sequence of k-tuples as a ‘sieve device’, in the sense that when a set
of integers is ‘fed’ into the sieve device (the sequence of k-tuples), it separates the integers associated to permitted
k-tuples from integers associated to prohibited k-tuples. The sieve problem, in this case, is to estimate the number of
integers that ‘pass through’ the sieve device; that is, to estimate the number of permitted k-tuples attached to some
of the integers in the original input set.

Given an even integer x > 49, we formulate the Sieve I (the Sieve associated with x) by means of a sequence of
k-tuples as follows. Let P be the sequence of all primes; let z =

√
x, and let pk be the greatest prime less than z. With
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the index k corresponding to the prime pk, we construct the sequence of k-tuples of remainders, where the rules for
selecting remainders are the following: In the k-tuples of the sequence, if there are any zeroes, or any of the remainders
of dividing x by p1, p2, p3, . . . , pk, these remainders are defined as selected remainders. So, within the periods of every
sequence of remainders modulo ph (a given column of the matrix), the remainder 0 is always a selected remainder, and
besides, if ph does not divide x, the resulting remainder is a second selected remainder. Let A be the set consisting of
the indices n of the sequence of k-tuples that lie in the interval [1, x]. For each p ∈P, p < z, the set Ap ⊂ A consists
of the indices n for which the corresponding element in the sequence of remainders modulo p is a selected remainder.
Then, the indices of the prohibited k-tuples lying in A are sifted out; and the indices of the permitted k-tuples lying
in A remain unsifted. The sifting function is given by the the number of permitted k-tuples whose indices lie in the
interval A . We shall define more formally the Sieve I in Section 8.

Remark 1.1. Note that given a k-tuple whose index is n < x, if n ≡ 0 (mod p) or n ≡ x (mod p) for at least one
p <

√
x, then it is a prohibited k-tuple; and if n 6≡ 0 (mod p) and n 6≡ x (mod p) for every p <

√
x, then it is a

permitted k-tuple.

Therefore, given an even integer x ≥ 49 (p2
k < x < p2

k+1), it is easy to see that the ordered set of k-tuples whose
indices lie in the interval [1, x] of the sequence is only an alternative formulation of the Sieve associated with x (the
Sieve I), which was described before by using the usual sieve theory notation. It follows that the indices (greater than
1) of the permitted k-tuples lying within [1, x] are primes p such that either x− p is a prime or x− p = 1. Note that
this form of the sieve gives us a detailed picture of the sifting process; other reasons for using this formulation for
sieves based on a sequence of k-tuples will be explained later.

n 2 3 5 7 n 2 3 5 7

1 1 1 1 1 31 1 1 1 3

2 0 2 2 2 32 0 2 2 4

3 1 0 3 3 33 1 0 3 5

4 0 1 4 4 34 0 1 4 6

5 1 2 0 5 35 1 2 0 0

6 0 0 1 6 36 0 0 1 1

7 1 1 2 0 37 1 1 2 2

8 0 2 3 1 38 0 2 3 3

9 1 0 4 2 39 1 0 4 4

10 0 1 0 3 40 0 1 0 5

11 1 2 1 4 41 1 2 1 6

12 0 0 2 5 42 0 0 2 0

13 1 1 3 6 43 1 1 3 1

14 0 2 4 0 44 0 2 4 2

15 1 0 0 1 45 1 0 0 3

16 0 1 1 2 46 0 1 1 4

17 1 2 2 3 47 1 2 2 5

18 0 0 3 4 48 0 0 3 6

19 1 1 4 5 49 1 1 4 0

20 0 2 0 6 50 0 2 0 1

21 1 0 1 0 51 1 0 1 2

22 0 1 2 1 52 0 1 2 3

23 1 2 3 2

24 0 0 4 3

25 1 1 0 4

26 0 2 1 5

27 1 0 2 6

28 0 1 3 0

29 1 2 4 1

30 0 0 0 2

11 + 41 = 52

23 + 29 = 52

Figure 1
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Example 1.1. Figure 1 illustrates how the Sieve I can be used to find some Goldbach partitions for the even number
x = 52. We proceed as follows:

1. We make a list of the primes less than
√

52. We obtain {2, 3, 5, 7}.

2. We compute the remainders of dividing x = 52 by the prime moduli of the list. We obtain {0, 1, 2, 3}.

3. In every k-tuple we select each 0, and also the elements {1, 2, 3}, corresponding to the moduli {3, 5, 7}, respec-
tively. (The selected remainders are circled.)

4. Now, we colour gray the permitted k-tuples. The arrows show the corresponding Goldbach partitions. Note that
there is no permitted k-tuple for the partition 47 + 5. (The relation between permitted k-tuples and Goldbach
partitions is given in Section 8.)

1.4 The auxiliary Sieve II

To prove part (a) of the Main Theorem, we need to prove for the Sieve I that for every even number x > 1492, the
sifting function is greater than or equal to 3. (Note that the index 1 could be associated with a permitted k-tuple.)
To prove part (b), it suffices to prove that the sifting function tends to ∞, as x→∞.

However, we can see that, no matter the formulation, the Sieve I is a ‘static’ sieve; that is, given an even number
x, we can formulate a specific Sieve I for this even number x. For our purposes, we need a ‘dinamic’ sieve, which is
able of working as x → ∞. Suppose that given x > 49 and using the Sieve I we have a way to compute the number
of permitted k-tuples whose indices lie in [1, x]; then, we could prove the Main theorem by constructing a sequence
of sieves associated with every even number x > 49. That is, we could construct a sequence where the elements are
sequences of k-tuples, each one for every even number x > 49, and compute the number of permitted k-tuples whose
indices lie in the interval [1, x] of each sequence of k-tuples.

Now, using the Sieve I, the implementation of this idea finds some difficulties. For instance, if x = 50 the Sieve
I can be described as follows: Since the greatest prime less than

√
50 is p4 = 7, we have k = 4; so, we construct the

sequence of 4-tuples of remainders. In the 4-tuples of the sequence, the selected remainders are the zeroes, or the
remainders of dividing x by p1, p2, p3, p4. Let A be the set consisting of the indices of the sequence of 4-tuples that
lie in the interval [1, 50].

Suppose that we go to the next even integer x = 52. In this case, we have again k = 4, and the sequence of
4-tuples of remainders is the same as before, but now the set A consists of the indices that lie in [1, 52], and the
selected remainders take specific values for x = 52. In addition, as x runs through the even numbers, when x > 121
we have k > 4, because the greatest prime less than

√
x will be pk > p4 = 7. The difficulty resides in the handling of

all these variables as x runs through all the even numbers. On the other hand, if x is divisible by any of the primes
p1, p2, p3, . . . , pk, the remainder of dividing x by ph (1 ≤ h ≤ k) is 0; therefore, in each sequence of remainders modulo
ph (1 ≤ h ≤ k) that form the sequence of k-tuples, there could exist one or two selected remainders within the period
of the sequence (if there is only one selected remainder, it is always 0). This is an additional serious difficulty in order
to derive a formula for computing the sifting function.

For all these reasons it is preferable to work with a more general kind of sieve, for which the sequence of k-tuples is
more ‘homogeneous’ than that corresponding to the Sieve I, in the sense that in each sequence of remainders modulo
ph (1 < h ≤ k) that form the sequence of k-tuples of this new sieve there exist always two selected remainders in every
period of the sequence. Then, we introduce another sieve, which we call simply the Sieve II. We describe the Sieve II
in the form proposed before, by means of a sequence of k-tuples, as follows. Let P be the sequence of all primes; and
let pk (k ≥ 4) be a prime of the sequence. With the index k corresponding to the prime pk, we construct the sequence
of k-tuples of remainders, where the rules for selecting remainders are the following: In every sequence of remainders
modulo ph (1 < h ≤ k) that form the sequence of k-tuples there are always two selected remainders r and r′ modulo
ph; in the sequence of remainders modulo p1 = 2 there is only one selected remainder r modulo p1. Let B be the set
consisting of the indices of the sequence of k-tuples that lie in the interval [1, y], where y is an integer that satisfies
y > pk. For each p ∈ P, p ≤ pk, the set Bp ⊂ B consists of the indices n for which the corresponding element in
the sequence of remainders modulo p is a selected remainder. The indices of the prohibited k-tuples lying in B are
sifted out; and the indices of the permitted k-tuples lying in B remain unsifted. The sifting function is defined by the
equation

T (B,P, pk) =

∣∣∣∣∣∣∣∣B \
⋃
p∈P
p≤pk

Bp

∣∣∣∣∣∣∣∣ ,
and counts the number of permitted k-tuples whose indices lie in B. We shall define more formally the Sieve II in

Section 2.
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Remark 1.2. In this case, given a k-tuple whose index is n, if n ≡ r (mod p) or n ≡ r′ (mod p) for at least one p ≤ pk,
where r, r′ are the selected remainders modulo p, then it is a prohibited k-tuple; and if n 6≡ r (mod p) and n 6≡ r′

(mod p) for every p ≤ pk, then it is a permitted k-tuple.

Note that the unsifted elements in B may be or may be not prime numbers; indeed, the Sieve II is a collection of
sieves, one for each particular choice of the selected remainders.

n 2 3 5 7 n 2 3 5 7

1 1 1 1 1 · · · · ·

2 0 2 2 2 176 0 2 1 1

3 1 0 3 3 177 1 0 2 2

4 0 1 4 4 178 0 1 3 3

5 1 2 0 5 179 1 2 4 4

6 0 0 1 6 180 0 0 0 5

7 1 1 2 0 181 1 1 1 6

8 0 2 3 1 182 0 2 2 0

9 1 0 4 2 183 1 0 3 1

10 0 1 0 3 184 0 1 4 2

11 1 2 1 4 185 1 2 0 3

12 0 0 2 5 186 0 0 1 4

13 1 1 3 6 187 1 1 2 5

14 0 2 4 0 188 0 2 3 6

15 1 0 0 1 189 1 0 4 0

16 0 1 1 2 190 0 1 0 1

17 1 2 2 3 191 1 2 1 2

18 0 0 3 4 192 0 0 2 3

19 1 1 4 5 193 1 1 3 4

20 0 2 0 6 194 0 2 4 5

21 1 0 1 0 195 1 0 0 6

22 0 1 2 1 196 0 1 1 0

23 1 2 3 2 197 1 2 2 1

24 0 0 4 3 198 0 0 3 2

25 1 1 0 4 199 1 1 4 3

26 0 2 1 5 200 0 2 0 4

27 1 0 2 6 201 1 0 1 5

28 0 1 3 0 202 0 1 2 6

29 1 2 4 1 203 1 2 3 0

30 0 0 0 2 204 0 0 4 1

31 1 1 1 3 205 1 1 0 2

32 0 2 2 4 206 0 2 1 3

33 1 0 3 5 207 1 0 2 4

34 0 1 4 6 208 0 1 3 5

35 1 2 0 0 209 1 2 4 6

· · · · · 210 0 0 0 0

Figure 2

Now, suppose that in the Sieve II we take B = {n : 1 ≤ n ≤ p2
k}. Then, given x > 49 an even number that satisfies

p2
k < x < p2

k+1, we can construct the sequence of k-tuples associated to the Sieve I; and using the same k, we can
construct the sequence of k-tuples associated to the Sieve II. So, we can compare for every even number x > 49 the
sifting function of the Sieve I with the sifting function of the attached Sieve II. That is, we can compare the number of
permitted k-tuples whose indices lie in the interval [1, x] of the sequence of k-tuples corresponding to the Sieve I, with
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the number of permitted k-tuples whose indices lie in the interval [1, p2
k] of the sequence of k-tuples corresponding to

the Sieve II. We shall prove later (Lemma 8.2) for every even number x > 49 that, under the given conditions, the
value of the sifting function corresponding to the Sieve I, is greater than or equal to the minimum value of the sifting
function corresponding to the Sieve II.

Example 1.2. For k = 4 (pk = 7), the period of the sequence of k-tuples is equal to 210. The first 35, and the
last 35 4-tuples in the interval [1, 210] (the first period of the sequence), are pictured in Figure 2, for a given choice of
selected remainders. The Sieve II is given by the k-tuples whose indices lie in [1, 72].

Using the Sieve II, we can now construct a sequence of sieves indexed by k (a sequence of sequences of k-tuples),
where each Sieve II of the sequence is the ordered set of k-tuples whose indices lie in the interval [1, p2

k] of the sequence
of k-tuples.

Now, let x > 49 be an even number such that p2
k < x < p2

k+1. Suppose that for this sequence of Sieves II we prove
that for k ≥ 35 the sifting function is greater than or equal to 3. In this case, for the Sieve associated with x (the
Sieve I) the sifting function is also greater than or equal to 3, for every even number x such that p2

k < x < p2
k+1, where

k ≥ 35; this implies part (a) of the Main Theorem. On the other hand, suppose that for the sequence of Sieves II we
prove that the sifting function tends to ∞, as k →∞. In this case, it is easy to see that for the Sieve associated with
x (the Sieve I), the sifting function also tends to ∞, as x→∞; this implies part (b) of the Main Theorem.

So, our problem now is, given the Sieve II, how to compute the number of permitted k-tuples whose indices lie
within [1, p2

k]. We shall see how the study of the sequences of k-tuples reveals the way to derive a formula for computing
this number.

1.5 Computing the number of permitted k-tuples in a period of the sequence of k-tuples
of the Sieve II

Usually, the sieve method consist in operate on the formula given by the inclusion-exclusion principle to obtain bounds
for the sifting function, as we have illustrated in the case of the sieve of Eratosthenes-Legendre. In our approach, the
starting point is also the inclusion-exclusion principle, but only as a first step towards obtaining a lower bound for the
sifting function of the Sieve II. That is, from the formula given by this principle we shall compute the exact number
of permitted k-tuples within a period of the corresponding sequence of k-tuples, as follows.

Let us consider again the Sieve II, but now we take B = {n : 1 ≤ n ≤ mk}; that is, B is now the set of the indices
corresponding to the first period of the sequence of k-tuples. Given p ∈P, 2 < p ≤ pk, we have |Bp| = 2mk/p, since
p|mk and there are two selected remainders for each modulus p > 2. Furthermore, given a squarefree integer d such
that d|mk, 2 - d, the set Bd is the intersection of the subsets Bp such that p|d, 2 < p ≤ pk. Hence,

|Bd| =
2ν(d)

d
mk (d|mk, 2 - d),

where ν(d) is the number of distinct prime divisors of d. Furthermore, we have the identity

∑
d|mk

2-d

µ (d)
2ν(d)

d
=

∏
2<p≤pk
p∈P

(
1− 2

p

)
. (4)

On the other hand, the subset Bp1 consist of the integers n ∈ B such that n ≡ r (mod p1), where r is the selected
remainder for the modulus p1 in the sequence of k-tuples of the Sieve II. Then |Bp1 | = mk/p1, since p1|mk and there
is one selected remainder for the modulus p1. Furthermore, given a squarefree integer d such that d|mk, 2 | d, the set
Bd is now the intersection of the subsets Bp such that p|d. Hence,

|Bd| =
2ν(d)−1

d
mk (d|mk, 2 | d).

Then, by the inclusion-exclusion principle,

T ({n : 1 ≤ n ≤ mk},P, pk) =
∑
d|mk

µ (d) |Bd| =
∑
d|mk

2-d

µ (d)
2ν(d)

d
mk +

∑
d|mk

2|d

µ (d)
2ν(d)−1

d
mk =

=
∑
d|mk

2-d

µ (d)
2ν(d)

d
mk −

1

2

∑
d|mk

2-d

µ (d)
2ν(d)

d
mk =

1

2

∑
d|mk

2-d

µ (d)
2ν(d)

d
mk.
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So, using (4) we can see that the number of permitted k-tuples whose indices lie in the interval [1,mk] (the first
period of the sequence of k-tuples associated to the Sieve II) is given by

T ({n : 1 ≤ n ≤ mk},P, pk) =
1

2
mk

∏
2<p≤pk
p∈P

(
1− 2

p

)
, (5)

whatever the remainders r, r′ (mod p), for every p ∈P, p ≤ pk.

1.6 The structure of the first period of the sequence of k-tuples of remainders

Until now, we have arranged the elements of each k-tuple horizontally, from left to right; and we have arranged the
k-tuples of the sequence vertically, from top to bottom. Hence, the first period of the sequence of k-tuples can be
seen as a matrix, with columns from h = 1 to h = k, and mk = p1p2p3 · · · pk rows. Note that for each h (1 ≤ h ≤ k),
we also have a sequence of h-tuples with period mh = p1p2p3 · · · ph, which fits into the period mk a whole number of
times.

7 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 ...

5 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 ...

3 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 ...

2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ...

... 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0

... 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

... 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

... 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

... 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

n

k

Figure 3

Suppose that we rotate (for convenience) the entire sequence 90 degrees counterclockwise. Then, the index n of
the sequence of k-tuples increases from left to right, and the index k of the elements of each k-tuple increases from the
bottom up. Consequently, we can think of the first period of the sequence of k-tuples as a matrix formed by k rows
and mk columns. Each row of this matrix, from h = 1 to h = k, is formed by the remainders of dividing the integers
from n = 1 to n = mk by the modulus ph. For every n (1 ≤ n ≤ mk), the corresponding column matrix is the k-tuple
of the remainders of dividing n by the moduli p1, p2, . . . , pk.

Note that if we let k →∞, the period of the sequence and the size of the involved k-tuples grow simultaneously.

Example 1.3. Figure 3 illustrates the first period of the sequence of 4-tuples pictured in Figure 2, but now arranged
horizontally from left to right.

The sequences of k-tuples in general shall be defined more formally in Section 2, but now we need the following
definition:

Definition 1.1. Given a sequence of k-tuples, and using the order relation given by the index n, we define an
interval of k-tuples, denoted by I[m,n]k, to be the set of consecutive k-tuples associated with an integer interval
[m,n] ∩ Z+, where m is the index of the first k-tuple, and n is the index of the last k-tuple. We also use the notation
I[m,n] = I[m,n]k for this interval. We define the size of I[m,n] by the equation |I[m,n]| = n −m + 1; and we use
the notation I[]k, or alternatively I[], to denote the empty interval.
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In particular, let us consider the sequence of k-tuples associated to the Sieve II. Since this sequence is periodic, it
suffices to consider its first period, between n = 1 and n = mk (the interval I[1,mk]). Note that for pk ≥ 7 (k ≥ 4), the
interval I[1, p2

k] is completely included within the first period of the sequence of k-tuples. Although this is the interval
that interests us, in order to understand the properties of the sequence of k-tuples, and its behaviour as k →∞, it is
necessary to study the whole fundamental period of the sequence, not just the interval I[1, p2

k].
The following step in our approach consists of dividing into two parts the first period of the sequence of k-tuples,

as follows: the left interval I[1, p2
k], and the right interval I[p2

k + 1,mk]. So, since for every h (1 ≤ h ≤ k) there is a
sequence of h-tuples of remainders, the interval I[1,mk]h of each sequence turns out subdivided into two intervals: the
left interval I[1, p2

k]h, and the right interval I[p2
k + 1,mk]h. If we think of the first period of the sequence of k-tuples as

a matrix, we can see that this matrix has been now partitioned into two blocks: the left block, formed by the columns
from n = 1 to n = p2

k; and the right block, formed by the columns from n = p2
k + 1 to n = mk. Each row of the left

block is formed by the remainders of dividing the integers from n = 1 to n = p2
k by the modulus ph (1 ≤ h ≤ k); and

each row of the right block is formed by the remainders of dividing the integers from n = p2
k + 1 to n = mk by the

modulus ph.
Recall that within the first period of the sequence of k-tuples (the interval I[1,mk]), the exact number of permitted

k-tuples is given by (5). Furthermore, for every h such that 1 ≤ h < k, since the number of permitted h-tuples in
a period of the sequence of h-tuples is given also by (5), and the period mh divides mk, we can compute precisely
the number of permitted h-tuples in each interval I[1,mk]h as well. We can see that for every h (1 ≤ h ≤ k), the
number of permitted h-tuples in each interval I[1,mk]h is the same, whatever the choice of the selected remainders
in the sequence of h-tuples. However, within both the left interval I[1, p2

k]h and the right interval I[p2
k + 1,mk]h, the

number of permitted h-tuples change when the selected remainders in the sequence of h-tuples are changed, because
the positions of the permitted h-tuples along the interval I[1,mk]h are modified.

Note that for every sequence of h-tuples of remainders (1 ≤ h ≤ k), the intervals I[1,mk]h, I[1, p2
k]h and I[p2

k +
1,mk]h are itself sieve devices, that separate prohibited h-tuples from permitted h-tuples.

On the other hand, attached to the first period of the sequence of k-tuples there is a k× 2 matrix, where for every
h (1 ≤ h ≤ k), the entry in the row h and first column is the number of permitted h-tuples in I[1, p2

k]h, and the entry
in the row h and second column is the number of permitted h-tuples in I[p2

k + 1,mk]h. Of course, the entries in the
matrix depends on the choice of the selected remainders in the sequence of k-tuples. Note that if we take y = p2

k in
the Sieve II, the sifting function is the entry in the first row and first column of this matrix; that is, to compute the
sifting function for the Sieve II we ought to be able to compute this entry in the matrix. Note that this quantity is
related to the entry in the first row and second column of the matrix, since the sum of both entries is given by (5).

A question may have already occurred to the reader at this point: What is the advantage of the formulation of the
sieves based in a sequence of k-tuples of remainders? We shall explain the principal reason in what follows.

Let us consider the sequence of k-tuples of the Sieve II, in horizontal position, where k ≥ 4. For a given choice of
selected remainders, the interval I[1,mk] of this sequence is a sieve device, that sift out the prohibited k-tuples that
lie in I[1,mk], and allows to survive the permitted k-tuples in this interval. Furthermore, for every h (1 ≤ h < k)
there is a sequence of h-tuples of remainders as well. And the interval I[1,mk]h of every sequence of h-tuples is also
a sieve device, that sift out the prohibited h-tuples and allows to survive the permitted h-tuples in I[1,mk]h. So,
we have decomposed the sifting process into several stages, from h = 1 to h = k, where each ‘partial’ sieve device
contributes to the whole sifting process. Hence, we can study the behaviour of this partial sieve devices to determine
the behaviour of the whole sieve; the advantage of this perspective will become apparent in the rest of this section.
Note that as h goes from 1 to k, the number of permitted h-tuples decreases, as a result of the sifting process in each
stage of the sifting process. Of course, there is also a similar structure in the left block and the right block of the first
period of the sequence of k-tuples.

1.7 The density of permitted k-tuples

In the Sieve II we have taken first the set B = {n : 1 ≤ n ≤ p2
k}, and so, the sifting function T ({n : 1 ≤ n ≤ p2

k},P, pk)
is equal to the number of permitted k-tuples in the interval I[1, p2

k] of the sequence of k-tuples associated to the Sieve
II. Note that the evaluation of this sifting function is what we need to solve the Goldbach problem. However, this
sifting function depends on the choice of the selected remainders in the sequence of k-tuples associated to the Sieve
II, and we can not compute it exactly. The obtaining of a lower bound for this sifting function is the main task that
we must perform in this paper.

On the other hand, in the Sieve II we have next taken the set B = {n : 1 ≤ n ≤ mk}; now, the sifting function
T ({n : 1 ≤ n ≤ mk},P, pk) is equal to the number of permitted k-tuples in the interval I[1,mk] of the sequence of
k-tuples associated to the Sieve II. In this case, the sifting function does not depend on the choice of the selected
remainders in the sequence of k-tuples, and it can be computed precisely using (5).

Then, a natural question arises: How we can take advantage of the exact computation of T ({n : 1 ≤ n ≤
mk},P, pk) for obtaining an estimate of T ({n : 1 ≤ n ≤ p2

k},P, pk)?
Let us consider the interval I[1,mk] (first period of the sequence of k-tuples of the Sieve II); furthermore, consider

the intervals I[1, p2
k] and I[p2

k + 1,mk]. We can see that, for a given choice of selected remainders in the sequence of
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k-tuples, if the proportion of permitted k-tuples in I[1, p2
k] is less than the proportion in I[1,mk], the proportion of

permitted k-tuples in I[p2
k + 1,mk] must be greater than the proportion in I[1,mk]; and vice versa. Note that if we

multiply the proportion of permitted k-tuples in I[1, p2
k] by p2

k we obtain the number of permitted k-tuples within this
interval.

Suppose that the proportion of permitted k-tuples in the interval I[1, p2
k] were equal to the proportion of permitted

k-tuples in the interval I[1,mk]. In this case, we could compute at once the exact number of permitted k-tuples in
the interval I[1, p2

k], since we know this quantity for the interval I[1,mk], by (5). Certainly, it is unlikely that our
assumption on the proportion of permitted k-tuples in these intervals could be true; however, we could say that in
some sense this assumption is ‘aproximately’ true. This suggests the possibility of working with this amount (the
proportion of permitted k-tuples in a given interval) to obtain the expected results.

Now, assume that for every k the proportion of permitted k-tuples in I[1, p2
k] were greater than some constant

C > 0; in this case, the number of permitted k-tuples within this interval would be greater than Cp2
k; this would imply

that the number of permitted k-tuples within I[1, p2
k] tends to infinity with k; and, indeed, this is the result that we

wish to prove.
However, it seems unlikely that this constant exists. To see this, suppose that for k large enough, and whatever

the choice of the selected remainders, the permitted k-tuples were distributed following a pattern more or less regular
along the fundamental period I[1,mk]. In this case, for both intervals I[1, p2

k] and I[p2
k + 1,mk], the proportion of

permitted k-tuples would be approximately the same as that for the interval I[1,mk]. Even so, from (5) it follows
that the proportion of permitted k-tuples in the interval I[1,mk] is given by

1

2

k∏
h=2

(
1− 2

ph

)
, (6)

which tends slowly to 0, as k →∞. This fact makes extremely doubtful that such constant C exists for the interval
I[1, p2

k], and makes working with this amount (the proportion of permitted k-tuples) not very useful.
For this reason it is more convenient to work with a new quantity, that we call the density of permitted k-tuples,

or simply the k-density, which is defined formally in Section 3. It is defined for a given interval as the quotient of
the number of permitted k-tuples within this interval and the number of subintervals of size pk. That is, for a given
interval, is the average number of permitted k-tuples within the subintervals of size pk. Since the number of permitted
k-tuples within the period does not depend on the choice of the selected remainders in the sequence of k-tuples, neither
does the k-density within the period depend on that choice. We shall prove later (Theorem 3.4) that the density of
permitted k-tuples in the period I[1,mk] tends to infinity as k →∞. For some values of k, Table 1 gives the number
of permitted k-tuples (npkt), the ratio npkt/mk, and the density of permitted k-tuples (dpkt) within the period of
the sequence of k-tuples. We shall define later the appropriate notation for the number of permitted k-tuples, and the
density of permitted k-tuples within a given interval of the sequence of k-tuples.

Note that given the proportion of permitted k-tuples within a given interval, multiplying by pk we obtain the
density of permitted k-tuples within this interval. So, assuming as before that for k large enough the permitted
k-tuples were distributed following a pattern more or less regular along the interval I[1,mk], for both intervals I[1, p2

k]
and I[p2

k + 1,mk] the density of permitted k-tuples would be approximately the same as that for the interval I[1,mk].
Now, suppose that the minimum value of the density of permitted k-tuples within the left interval I[1, p2

k] approach
the density of permitted k-tuples within the interval I[1,mk], as k →∞. This means that the minimum value of the
density of permitted k-tuples in I[1, p2

k] also tends to infinity as k → ∞. And this, in turn, implies that as k → ∞,
the number of permitted k-tuples in I[1, p2

k] tends to infinity as well, since the number of subintervals of size pk in the
interval I[1, p2

k] is equal to pk. So, the sifting function of the Sieve II tends to infinity, as k →∞; and this is the result
that we need in order to prove the Main theorem.

Attached to the first period of the sequence of k-tuples there is now another k × 2 matrix, where for every
h (1 ≤ h ≤ k), the entry in the row h and first column is the density of permitted h-tuples in I[1, p2

k]h, and the entry
in the row h and second column is the density of permitted h-tuples in I[p2

k + 1,mk]h. The entries in this matrix
also depends on the choice of the selected remainders in the sequence of k-tuples. Note that the entry in the first row
and first column of this new k × 2 matrix, multiplied by pk, is equal to the entry in the first row and first column of
the k × 2 matrix described in the preceding subsection. The relationships in the matrix of h-densities, between the
elements of the rows, and between the elements of the columns are very important for our purposes, as we shall see
later.

1.8 The density of permitted k-tuples in the interval I[1, p2k] (discussion)

An obvious question arises: What are the reasons for expecting that the minimum value of the k-density in the
interval I[1, p2

k] tends to infinity with k? We have two reasons; we describe the first as follows. Suppose that for k
large enough we divide the interval I[1,mk] of the sequence of k-tuples in subintervals of size pk. Then, counting in
every subinterval of size pk the number of permitted k-tuples, we have a ‘population’ of these values. The arithmetic
mean of this population is the k-density for the interval I[1,mk].
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Table 1: Quotient npkt/mk and density of permitted k-tuples (dpkt).

k pk mk npkt npkt/mk dpkt
4 7 210 15 0.071 0.500
5 11 2310 135 0.058 0.643
6 13 30030 1485 0.049 0.643
7 17 510510 22275 0.044 0.742
8 19 9699690 378675 0.039 0.742
9 23 223092870 7952175 0.036 0.820
10 29 - - 0.033 0.962
11 31 - - 0.031 0.962
12 37 - - 0.029 1.087
13 41 - - 0.028 1.145
14 43 - - 0.027 1.145
15 47 - - 0.025 1.199
16 53 - - 0.024 1.301
17 59 - - 0.024 1.399
18 61 - - 0.023 1.399
19 67 - - 0.022 1.490
20 71 - - 0.022 1.535
21 73 - - 0.021 1.535
22 79 - - 0.020 1.619
23 83 - - 0.020 1.660
24 89 - - 0.019 1.740
. . . . . .

On the other hand, the interval I[1, p2
k] is the union of pk subintervals, each one of size pk. So, counting the number

of permitted k-tuples in every subinterval of size pk in I[1, p2
k] we obtain a set of values that can be seen as a ‘sample’

of size pk drawn from the population. The arithmetic mean of this sample is the k-density for the interval I[1, p2
k].

Then, we can assume that the values of the k-density for the interval I[1, p2
k] (for all the possible choices of selected

remainders in the sequence of k-tuples) are spread round the mean of the population. Since the k-density for the
interval I[1,mk] increases and tends to infinity as k → ∞, it seems reasonably to expect that the minimum value of
the k-density for the interval I[1, p2

k] also increases and tends to infinity with k.
We explain now the second reason. Suppose that, on the contrary, there exist C > 0 such that for every k the

k-density for the interval I[1, p2
k] of the sequence of k-tuples (no matter the choice of the selected remainders) is

bounded above by C. We know that as k →∞ the size of I[p2
k + 1,mk] becomes vastly bigger than the size of I[1, p2

k],
since p2

k = o(mk) (Lemma 2.5). So, since the k-density in the interval I[1,mk] tends to infinity as k →∞, we deduce
that the k-density in the interval I[p2

k + 1,mk] has the same behaviour. This would mean that while the density of
permitted k-tuples in I[p2

k + 1,mk] tends to infinity as k →∞, the k-density in I[1, p2
k] remains below C for every k.

However, it seems that there is no satisfactory reason for such a different behaviour of the k-density in these intervals.
So, we suspect that there is no such upper bound C, and the behaviour of the k-density in I[1, p2

k] as k → ∞ is the
same as that in I[1,mk].

1.9 Computing the sifting function of the Sieve II (short outline)

At this point, the next step in our strategy is to derive a formula for the minimum value of the k-density in the interval
I[1, p2

k] of the sequence of k-tuples of the Sieve II. Before giving a short outline of the way to proceed, we shall make
some further remarks.

Remark 1.3. Given a sequence of k-tuples of remainders, recall that for each h (1 ≤ h ≤ k), we have a periodic
sequence of h-tuples, with period mh = p1p2p3 · · · ph. As we have already seen, we can compute precisely the number
of permitted h-tuples within the period mh; it follows that we can also compute precisely the density of permitted
h-tuples within the period mh. Then, given h and n > 1, if we let n → ∞, the size of the interval I[1, n]h of the
sequence of h-tuples increases, and the number of periods mh that fits in this interval increases as well. Hence, the
number of permitted h-tuples within the interval I[1, n]h of the sequence of h-tuples tends to ∞ as n → ∞, but
the h-density in this interval tends to the h-density within the period mh. This behaviour is very important for our
purposes, as we shall see later.

Remark 1.4. Consider again the interval I[1,mk] (the first period) of the sequence of k-tuples. Given the partition
of the period into two blocks, for each h (1 ≤ h ≤ k) we have a left interval I[1, p2

k]h and a right interval I[p2
k +1,mk]h.

Taking into account all the choices of selected remainders, there is a set of h-densities for the left interval, and a set
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of h-densities for the right interval. Since (5) gives us the number of permitted h-tuples within the period mh, and
since mk is a multiple of mh, for each h (1 ≤ h ≤ k) we can compute precisely the number of permitted h-tuples in
the interval I[1,mk]h of the corresponding sequence of h-tuples. Consequently, if we know the number of permitted
h-tuples within the left interval I[1, p2

k]h, we can compute the number of permitted h-tuples within the right interval
I[p2

k + 1,mk]h; and vice versa. So, we can define a bijective function between the set of the h-densities for the left
interval, and the set of the h-densities for the right interval. Note that if the h-density in the left interval I[1, p2

k]h is
less than the h-density in the interval I[1,mk]h, the h-density in the right interval I[p2

k + 1,mk]h must be greater than
the h-density in I[1,mk]h, and vice versa.

Remark 1.5. Given h (1 ≤ h ≤ k), since mh fits into I[1,mk]h a whole number of times, the density of permitted
h-tuples within the interval I[1,mk]h of the sequence of h-tuples is equal to the h-density within the period mh, which
can be exactly computed. Now, let k be large enough that the size of the left interval I[1, p2

k] is negligible compared to
the size of I[1,mk]. So, considering the right block of the partition, we can see that for every h, most of the permitted
h-tuples will be in the right interval I[p2

k + 1,mk]h. Thus, for every h, the h-density in the right interval I[p2
k + 1,mk]h

of the sequence of h-tuples will be very close to the h-density within the interval I[1,mk]h. Hence, the behaviour of
the maximum values of the h-density in every right interval from h = 1 to h = k (right block of the partition), will
be approximately proportional to the h-density in I[1,mk]h. This behaviour shall allow us to derive a proportionality
formula (see (29) and (30), Section 7) within the right block of the partition for k very large such that, given the
maximum value of the density of permitted 4-tuples for h = 4 (chosen by convenience), we can compute the maximum
value of the density of permitted k-tuples for h = k. This formula includes a coefficient which tends to 1 as k → ∞,
as we shall prove later (Lemma 7.6).

Recall that attached to the first period of the sequence of k-tuples there is a k × 2 matrix of densities, where
the entries depend on the choice of the selected remainders in the sequence of k-tuples. Now, in order to obtain the
formula for the minimum value of the k-density in I[1, p2

k], we need to introduce one more k × 2 matrix, which is
described as follows. Taken into account all the possible choices of the selected remainders in the sequence of k-tuples,
for every h (1 ≤ h ≤ k), the entry in the row h and first column is the minimum value of the h-density in I[1, p2

k]h,
and the entry in the row h and second column is the maximum value of the h-density in I[p2

k + 1,mk]h. That is, the
first column of this matrix contains the minimum values of the h-density in the left block of the first period of the
sequence of k-tuples, and the second column contains the maximum values of the h-density in the right block. This
matrix is associated to the matrix of h-densities, but, of course, the entries in this new matrix does not depend on the
choice of the selected remainders in the sequence of k-tuples.

Now, on the one hand, for every h (1 ≤ h ≤ k), given the entry in the row h and first column of this matrix
we could obtain the entry in the row h and second column, using the bijection described in Remark 1.4; and vice
versa. On the other hand, for k large enough, from what we explained in Remark 1.5, we can see that from h = 1 to
h = k, the behaviour of the values in the second column of the matrix (that is, the maximum values of the h-density
in I[p2

k + 1,mk]h) must be approximately proportional to the h-density in I[1,mk]h (1 ≤ h ≤ k).
Suppose that we choose h = 4 (for convenience). The relation between the entry in the row h = 4, first column

and the entry in the row h = 4, second column is given by the bijection (for h = 4); the relation between the entry in
the row h = 4, second column and the entry in the row h = k, second column is given by the proportionality formula;
and the relation between the entry in the row h = k, second column and the entry in the row h = k, first column is
given by the bijection (for h = k). Therefore, this last k×2 matrix is an implicit formula that gives us the relationship
between the entries in the row h = 4 and row h = k, in the first column.

To derive the explicit formula, we proceed as follows. Given the minimum value of the density of permitted 4-
tuples within the left interval I[1, p2

k]4, we use the bijection for h = 4 to compute the maximum value of the density of
permitted 4-tuples within the right interval I[p2

k+1,mk]4 (right block of the partition). Then, using the proportionality
formula for the right block of the partition, we compute the maximum value of the density of permitted k-tuples for
h = k within the right interval I[p2

k + 1,mk]. Next, we use the bijection for h = k to compute the minimum value
of the density of permitted k-tuples within the left interval I[1, p2

k] (returning to the left block of the partition). So,
we have derived an explicit formula for the left block of the partition (for k very large) such that, given the minimum
value of the density of permitted 4-tuples for h = 4, it allows us to compute the minimum value of the density of
permitted k-tuples for h = k. In summary, to determine the behaviour of the density of permitted h-tuples in the left
block of the partition, it was necessary ‘to make a detour’ through the right block of the partition.

At this time, if we have a lower bound for the density of permitted 4-tuples in the interval I[1, p2
k]4, using the

formula derived before we can obtain a lower bound for the density of permitted k-tuples in the interval I[1, p2
k].

Nevertheless, how could we obtain a lower bound for the 4-density in I[1, p2
k]4? To do this, we may argue as follows:

For h = 4, as k increases, the size of the interval I[1, p2
k]4 of the sequence of 4-tuples also increases, and the number

of periods m4 that fits in this interval increases as well. Thus, the 4-density in the interval I[1, p2
k]4 approaches the

4-density within the period m4, by Remark 1.3; so, for h = 4 and k large enough, we can obtain a lower bound for the
4-density in the interval I[1, p2

k]4.
Using this lower bound, the formula derived before allow us to compute a lower bound for the k-density in the

interval I[1, p2
k] of the sequence of k-tuples, where k is very large. Since the number of subintervals of size pk in

the interval I[1, p2
k] is equal to pk, multiplying this lower bound by pk, we obtain a lower bound for the number of
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permitted k-tuples in this interval; that is, we get a lower bound for the sifting function corresponding to the Sieve II.
Hence, we have a lower bound for the sifting function corresponding to the Sieve associated with x (Sieve I), where x
is an even number such that p2

k < x < p2
k+1. This result will allow us to prove part (a) of the Main Theorem.

Furthermore, with the same formula we can show that the k-density in I[1, p2
k] tends to infinity as k →∞; so, as

k →∞, the sifting function corresponding to the Sieve II tends to infinity as well. From this it follows that the sifting
function corresponding to the Sieve associated with x tends to infinity as x → ∞. This suffices to prove part (b) of
the Main Theorem.

2 Periodic sequences of k-tuples

General Notation. We write (a, b) for the greatest common divisor of a and b, if no confusion will arise. In addition,
lcm is used as an abbreviation for the least common multiple. Given a set A, we denote by |A| the cardinality of A.
For each a ∈ R, the symbol bac denotes the floor function, and the symbol dae denotes the ceiling function.

In the Introduction we began by describing a first kind of sieve to attack the Goldbach’s problem, which we call
the Sieve associated with x (or Sieve I); then, we have introduced the notion of sequence of k tuples of remainders
as a new formulation for sieves in general, and for this sieve in particular. The Sieve associated with x (Sieve I) is
directly related to the Goldbach’s problem; we defer to the last section of the paper the formal definition of this sieve.
On the other hand, we have also described in the Introduction a second sieve more general, which we call the Sieve
II. As we have seen in the Introduction, the sequence of k-tuples corresponding to the Sieve II is more homogeneous
than that corresponding to the Sieve I, in the sense that in every sequence of remainders modulo ph (1 < h ≤ k) there
are always two selected remainders. This fact is very important in order to compute the minimum value of the sifting
function of the Sieve II.

The Sieve II is not directly related to the Goldbach’s problem, but the minimum number of permitted k-tuples
in the interval I[1, p2

k] of the sequence of k-tuples corresponding to the Sieve II (the minimum value of the sifting
function of the Sieve II), is a lower bound for the number of permitted k-tuples in the interval I[1, x] of the sequence
corresponding to the Sieve I (the sifting function of the Sieve I), where p2

k < x < p2
k+1; we shall prove this fact in

Section 8. In this section we define formally the Sieve II; and we shall deal with the properties of this sieve until
Section 7.

We begin by defining the concepts of sequence of remainders and sequence of k-tuples of remainders, and other
associated concepts.

Definition 2.1. Let P be the sequence of all primes, and consider the subset {p1, p2, p3, . . . , pk} of the first k
primes.

(1) Given ph (1 ≤ h ≤ k), we define the periodic sequence {rn}, where rn denotes the remainder of dividing n by
the modulus ph. We denote the sequence {rn} by the symbol sh. The period of the sequence is equal to ph. See
Example 2.1.

(2) We define the sequence {(r1, r2, r3, . . . , rk)n}, the elements of which are k-tuples of remainders obtained by dividing
n by the moduli p1, p2, p3, . . . , pk. We arrange the sequence of k-tuples of remainders vertically; we usually omit
the comma separators in the k-tuples. Then, the sequence of k-tuples can be seen as a matrix formed by k columns
and infinitely many rows, where each column of the matrix is a periodic sequence sh (1 ≤ h ≤ k). The index k
will be called the level of the sequence of k-tuples of remainders. See Example 2.2.

Example 2.1. For the modulus p3 = 5 we have s3 = {1, 2, 3, 4, 0, 1, 2, 3, . . .}.
Example 2.2. Table 2 shows the sequence of 5-tuples of the remainders of dividing n by {2, 3, 5, 7, 11}.

Definition 2.2. Given a sequence {rn} with prime modulus pk we assign to the remainders rn one of the two
following states: selected state or not selected state.

Definition 2.3. Given a sequence of k-tuples of remainders, we define a k-tuple to be prohibited if it has one or
more selected remainders, and we define it to be permitted if it contains no selected remainders.

Definition 2.4. We denote by mk the product p1p2p3 · · · pk.

Proposition 2.1. The sequence of k-tuples of remainders is periodic, and its fundamental period is equal to mk =
p1p2p3 · · · pk.

Proof. Let sh (1 ≤ h ≤ k) be the sequences of remainders modulo ph that form a given sequence of k-tuples. The
period of every sequence sh is equal to ph ∈ {p1, p2, p3, . . . , pk}. Since p1, p2, p3, . . . , pk are primes, the product mk is
the lcm. Consequently, the fundamental period of the sequence of k-tuples is equal to mk.
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Table 2: Sequence of 5-tuples of remainders.

n 2 3 5 7 11
1 1 1 1 1 1
2 0 2 2 2 2
3 1 0 3 3 3
4 0 1 4 4 4
5 1 2 0 5 5
6 0 0 1 6 6
7 1 1 2 0 7
8 0 2 3 1 8
9 1 0 4 2 9
10 0 1 0 3 10
11 1 2 1 4 0
12 0 0 2 5 1
13 1 1 3 6 2
14 0 2 4 0 3
15 1 0 0 1 4
16 0 1 1 2 5
17 1 2 2 3 6
18 0 0 3 4 7
. . . . . .

So far, we have defined the sequence of k-tuples of remainders without defining any rules for selecting remainders;
note that without selected remainders, the sequence of k-tuples does not work as a sieve. Before defining these rules,
we shall consider another important question concerning the sequence of k-tuples of remainders. As we have seen in
the Introduction, in the case of the Sieve II it will be necessary to deal with the behaviour of the sequence of k-tuples as
k increases indefinitely. Consequently, we need two more definitions before defining the rules for selecting remainders.

Definition 2.5. Sum of sequences.
Let {p1, p2, p3, . . . , pk} be the set of the first k primes. Let {(r1 r2 r3 . . . rk)n} be the sequence of k-tuples of

the remainders of dividing n by the k prime moduli {p1, p2, p3, . . . , pk}, and let {(rk+1)n} be the sequence of the
remainders of dividing n by the prime modulus pk+1. We define the sum {(r1 r2 r3 . . . rk)n} + {(rk+1)n}, of the
sequence {(r1 r2 r3 . . . rk)n} and the sequence {(rk+1)n}, to be the sequence of (k + 1)-tuples given by the equation

{(r1 r2 r3 . . . rk)n}+ {(rk+1)n} = {(r1 r2 r3 . . . rk rk+1)n} ,

and formed by the ordered juxtaposition of each k-tuple of the first sequence with each element (index n modulo
pk+1) of the second sequence.

Definition 2.6. Let P be the sequence of all primes, and let pk ∈P. Let sk be the sequence of the remainders of
dividing n by the modulus pk. Let {sk} be the sequence of sequences sk. We define the series denoted by

∑
sk to be

the sequence {Sk}, where Sk denotes the partial sum:

S1 = s1,
S2 = s1 + s2,
S3 = s1 + s2 + s3,
. . . . . . . . . . . .
Sk = s1 + s2 + s3 + s4 + · · · + sk,

and the symbol
∑

refers to the formal addition of sequences. In each partial sum Sk, the greatest prime modulus
pk will be called the characteristic prime modulus of the partial sum Sk. The index k will be called the level, and we
shall say that Sk is the partial sum of level k.

Example 2.3. Table 3 shows the partial sum S4 and the formal addition of the sequence of remainders s5 to obtain
the partial sum S5.
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Table 3: Partial sums S4 and S5.

S4 s5 S5

n 2 3 5 7 11 2 3 5 7 11
1 1 1 1 1 1 1 1 1 1 1
2 0 2 2 2 2 0 2 2 2 2
3 1 0 3 3 3 1 0 3 3 3
4 0 1 4 4 4 0 1 4 4 4
5 1 2 0 5 5 1 2 0 5 5
6 0 0 1 6 6 0 0 1 6 6
7 1 1 2 0 7 1 1 2 0 7
8 0 2 3 1 8 0 2 3 1 8
9 1 0 4 2 + 9 = 1 0 4 2 9
10 0 1 0 3 10 0 1 0 3 10
11 1 2 1 4 0 1 2 1 4 0
12 0 0 2 5 1 0 0 2 5 1
13 1 1 3 6 2 1 1 3 6 2
14 0 2 4 0 3 0 2 4 0 3
15 1 0 0 1 4 1 0 0 1 4
16 0 1 1 2 5 0 1 1 2 5
17 1 2 2 3 6 1 2 2 3 6
18 0 0 3 4 7 0 0 3 4 7
. . . . . . . . . . .

On the one hand, we can look at a given partial sum Sk as a sequence indexed by n, of the k-tuples of remainders
obtained by dividing n by the moduli p1, p2, p3, . . . , pk. On the other hand, the partial sum Sk can be seen as a finite
sequence indexed by the set {1, . . . , k} (k ∈ Z+), of sequences of remainders modulo ph ∈ {p1, p2, p3, . . . , pk}, where
the indices {1, . . . , k} increase from left to right. And the series

∑
sk is the sequence indexed by k, of the partial sums

Sk.
Now we are ready to define the rules for selecting remainders in the sequences sh (1 ≤ h ≤ k) that make up every

partial sum Sk of the series
∑
sk.

Definition 2.7. Let sh (1 ≤ h ≤ k) be one of the sequences of remainders that form the partial sum Sk.

Rule 1. If h = 1, in the sequence of remainders s1 there will be selected one remainder, the same one in every period
of the sequence.

Rule 2. If 1 < h ≤ k, in every sequence of remainders sh, there will be selected two remainders, the same two in every
period of the sequence.

Example 2.4. Table 4 shows the partial sum of level k = 4, where the selected remainders can be seen marked
between the square brackets [ ]. Note that the 4-tuples 1 and 7 are permitted k-tuples.

Properly speaking, a given partial sum Sk is a sequence of k-tuples of remainders. However, from now on, when
we refer to a given partial sum Sk, we mean Sk together with the selected remainders, unless we specifically state
otherwise. Now we are ready to define formally the Sieve II.

Definition 2.8. Let P be the sequence of all primes; and let pk (k ≥ 4) be a prime of the sequence. Let B be
the set consisting of the indices of the partial sum Sk that lie in the interval [1, y], where y is an integer that satisfies
y > pk. For each p = ph ∈P (1 ≤ h ≤ k), the subset Bp of B consists of the indices whose remainder modulo p = ph
is one of the selected remainders r or r′. The indices of the prohibited k-tuples lying in B are sifted out; and the
indices of the permitted k-tuples lying in B remain unsifted. See Remark 1.1. The sifting function

T (B,P, pk) =

∣∣∣∣∣∣∣∣B \
⋃
p∈P
p≤pk

Bp

∣∣∣∣∣∣∣∣ ,
is given by the the number of permitted k-tuples whose indices lie in the interval B.
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Table 4: Partial sum S4 with selected remainders.

n 2 3 5 7
1 1 1 1 1
2 [0] [2] 2 2
3 1 [0] [3] [3]
4 [0] 1 4 4
5 1 [2] [0] [5]
6 [0] [0] 1 6
7 1 1 2 0
8 [0] [2] [3] 1
9 1 [0] 4 2
10 [0] 1 [0] [3]
11 1 [2] 1 4
12 [0] [0] 2 [5]
13 1 1 [3] 6
14 [0] [2] 4 0
15 1 [0] [0] 1
16 [0] 1 1 2
. . . . .

Hereafter until the end of the paper, we take B = {n : 1 ≤ n ≤ p2
k}.

In the following theorems we prove some other properties of the partial sums of the series
∑
sk, which will be used

throughout this paper.

Proposition 2.2. Let Sk be a given partial sum. Let sk+1 be the sequence of remainders modulo pk+1. Let
r (0 ≤ r < pk+1) be one of the remainders modulo pk+1 of the sequence sk+1. Let n ∈ Z+ be the index of a given
k-tuple of Sk. Then, when we juxtapose the elements of the sequence sk+1 to the right of each k-tuple of Sk, we have
the following.

(1) If the k-tuple at position n is prohibited, then the (k + 1)-tuple of Sk+1 at position n will be prohibited as well.

(2) If the k-tuple at position n is permitted and n ≡ r (mod pk+1), then:

(a) The (k + 1)-tuple of Sk+1 at position n is prohibited if and only if r is a selected remainder;

(b) The (k + 1)-tuple of Sk+1 at position n is permitted if and only if r is not a selected remainder.

Proof. By definition, a given k-tuple is prohibited if it has one or more selected remainders; if it has no selected
remainder, the k-tuple is permitted. The proof is immediate.

Definition 2.9. For a given partial sum Sk, we denote by ck the number of permitted k-tuples within a period of
Sk.

Proposition 2.3. Let Sk be a given partial sum. We have: ck = (p1 − 1)(p2 − 2)(p3 − 2) · · · (pk − 2).

Proof. It follows from (5), by simplifying the expression.

Lemma 2.4. Let Sk be a given partial sum. Let pk be the characteristic prime modulus of the partial sum Sk. Let
ck be the number of permitted k-tuples within the period of Sk. We have p2

k = o(ck).

Proof. Using Proposition 2.3, we have

p2
k

ck
=

p2
k

(p1 − 1) (p2 − 2) (p3 − 2) · · · (pk − 2)
= (7)

=

(
1

(p1 − 1) (p2 − 2) (p3 − 2) · · · (pk−2 − 2)

)(
pk

pk−1 − 2

)(
pk

pk − 2

)
.
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Let gk−1 denote the gap pk − pk−1; so, pk/(pk−1 − 2) = (pk−1 + gk−1)/(pk−1 − 2). By the Bertrand-Chebyshev
theorem, we have gk−1 < pk−1 =⇒ (pk−1+gk−1)/(pk−1−2) < 2pk−1/(pk−1−2). It follows that limk→∞ pk/(pk−1−2) <
limk→∞ 2pk−1/(pk−1−2) = 2. Since limk→∞ pk/(pk−2) = 1, returning to (7), it is easy to see that limk→∞ p2

k/ck = 0.

Lemma 2.5. Let Sk be a given partial sum. Let pk be the characteristic prime modulus of the partial sum Sk. Let
mk be the period of Sk. We have p2

k = o(mk).

Proof. Since mk = p1p2p3 · · · pk by definition, the proof follows at once from Proposition 2.3 and Lemma 2.4.

Proposition 2.6. The Construction Procedure
Let Sk and Sk+1 be consecutive partial sums of the series

∑
sk. Let mk and mk+1 be the periods of Sk and Sk+1,

respectively. Consider the following procedure. First we take pk+1 periods of the partial sum Sk. Next we juxtapose the
remainders of the sequence sk+1 to the right of each k-tuple of Sk (that is to say, we perform the operation Sk +sk+1).
This produces a whole period of the partial sum Sk+1.

Proof. By Proposition 2.1, the period mk of the partial sum Sk is equal to mk = p1p2p3 · · · pk. If we repeat pk+1 times
the period of the partial sum Sk, the total number of k-tuples will be mkpk+1 = p1p2p3 · · · pkpk+1 = mk+1. Thus,
when we add the sequence sk+1, the number of (k+ 1)-tuples of Sk+1 that we obtain is equal to mk+1, that is to say,
a period of Sk+1.

By the Construction Procedure, to get a period of the partial sum Sk+1, we first take pk+1 periods of the partial
sum Sk. The following proposition shows that the distribution of the permitted k-tuples that are within the pk+1

periods of the partial sum Sk over the residue classes modulo pk+1 is uniform.

Proposition 2.7. The permitted k-tuples within the first pk+1 periods of the partial sum Sk are uniformly distributed
over the residue classes modulo pk+1.

Proof. Let ck be the number of permitted k-tuples within a period of Sk. Let [y] = [0], [1], [2], . . . , [pk+1 − 1] be
the residue classes modulo pk+1. Let n ∈ Z+ be the index of a given permitted k-tuple within the first period of
the partial sum Sk. Thus, within pk+1 periods of the partial sum Sk there are pk+1 permitted k-tuples with indices
n′ = mkx+ n, where x = 0, 1, 2, 3, . . . , pk+1 − 1 represents each period. Because (mk, pk+1) = 1, for each residue class
[y] the congruence mkx+ n ≡ y (mod pk+1) has a unique solution x. Therefore, since there are ck permitted k-tuples
within the period of Sk, it follows that there are ck permitted k-tuples within each residue class modulo pk+1, and the
resulting distribution is uniform.

Corollary 2.8. If there are m′ consecutive periods of the partial sum Sk (including the first), where m′ is a multiple
of pk+1, the permitted k-tuples within these m′ periods are also uniformly distributed over the residue classes modulo
pk+1.

3 Definition and properties of the density of permitted k-tuples

In this section, we define more formally the concept of the density of permitted k-tuples, and we prove that the density
of permitted k-tuples within a period of the partial sum Sk is increasing and tends to ∞ as k →∞.

Definition 3.1. Let Sk be a given partial sum of the series
∑
sk; let I[m,n] be a given interval of k-tuples. We

denote by c
I[m,n]
k the number of permitted k-tuples within I[m,n]. By abuse of notation, we normally omit specific

mention of the integer interval [m,n] ∩ Z+ and write cIk instead of c
I[m,n]
k if no confusion will arise.

Definition 3.2. Let Sk be a partial sum of the series
∑
sk; let I[m,n] be a given interval of k-tuples. The number

of subintervals of size pk in this interval is equal to |I[m,n]|/pk. We define the density of permitted k-tuples in the
interval I[m,n] (or simply the k-density) by

δ
I[m,n]
k =

cIk
|I [m,n]| /pk

.

For the empty interval we define δ
I[]
k = 0. By abuse of notation, we often omit specific mention of the integer

interval [m,n] ∩ Z+ and write δIk instead of δ
I[m,n]
k .

Remark 3.1. The density of permitted k-tuples is the average number of permitted k-tuples inside subintervals of
size pk.
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Definition 3.3. Let Sk be a given partial sum of the series
∑
sk; let mk be the period of Sk. Recall that we have

used the notation ck = c
I[1,mk]
k for the number of permitted k-tuples within the interval I[1,mk] (the first period of

Sk). We normally use the notation δk = δ
I[1,mk]
k for the density of permitted k-tuples within the interval I[1,mk].

Since mk/pk is the number of subintervals of size pk within a period of Sk, by definition, we have

δk =
ck

mk/pk
.

By Proposition 2.3, the number of permitted k-tuples within the interval I[1,mk] (the first period of Sk), does
not depend on which are the selected remainders in the sequences of remainders that form Sk. Therefore, we think of
I[1,mk] as being a special interval, and this explains why we use the special notation ck for the number of permitted
k-tuples within I[1,mk], and δk for the density of permitted k-tuples within I[1,mk].

Example 3.1. The period of the partial sum S4 is equal to m4 = 2× 3× 5× 7 = 30× 7 = 210, and the number of
permitted 4-tuples within the period is equal to c4 = (2− 1)(3− 2)(5− 2)(7− 2) = 15. Then

δ4 =
c4

m4/p4
=

15

30
= 0.5.

The following lemma gives a formula for computing δk.

Lemma 3.1. We have

δk =

(
p1 − 1

p1

)(
p2 − 2

p2

)(
p3 − 2

p3

)
· · ·
(
pk−1 − 2

pk−1

)
(pk − 2) .

Proof. Within a period of the partial sum Sk, the total number of k-tuples is equal to mk = p1p2p3p4 · · · pk−1pk (see
Proposition 2.1). Therefore, the number of intervals of size pk is equal to (p1p2p3p4 · · · pk−1pk)/pk = p1p2p3p4 · · · pk−1.
On the other hand, the number of permitted k-tuples within a period of Sk is equal to ck = (p1 − 1)(p2 − 2)(p3 −
2) · · · (pk−1 − 2)(pk − 2), by Proposition 2.3. Consequently, by definition, we obtain

δk =
(p1 − 1) (p2 − 2) (p3 − 2) · · · (pk−1 − 2) (pk − 2)

p1p2p3p4 · · · pk−1
=

=

(
p1 − 1

p1

)(
p2 − 2

p2

)(
p3 − 2

p3

)
· · ·
(
pk−1 − 2

pk−1

)
(pk − 2) .

The next lemma proves that δk is increasing if k > 1.

Lemma 3.2. Let Sk and Sk+1 be consecutive partial sums of the series
∑
sk. If δk denotes the density of permitted

k-tuples within a period of Sk, and δk+1 denotes the density of permitted (k + 1)-tuples within a period of Sk+1, then

δk+1 = δk

(
pk+1 − 2

pk

)
.

Proof. By Lemma 3.1,

δk =

(
p1 − 1

p1

)(
p2 − 2

p2

)(
p3 − 2

p3

)
· · ·
(
pk−1 − 2

pk−1

)
(pk − 2)

and

δk+1 =

(
p1 − 1

p1

)(
p2 − 2

p2

)(
p3 − 2

p3

)
· · ·
(
pk−1 − 2

pk−1

)(
pk − 2

pk

)
(pk+1 − 2) .

Taking the quotient and simplifying yields

δk+1

δk
=
pk+1 − 2

pk
=⇒ δk+1 = δk

(
pk+1 − 2

pk

)
.
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Corollary 3.3. By Lemma 3.2,

1. pk+1 − pk < 2 =⇒ δk+1 < δk.

2. pk+1 − pk = 2 =⇒ δk+1 = δk.

3. pk+1 − pk > 2 =⇒ δk+1 > δk.

Example 3.2. The characteristic prime moduli of the partial sums S4 and S5 are p4 = 7 and p5 = 11. The
period of the partial sum S4 is m4 = 2 × 3 × 5 × 7 = 30 × 7 = 210, and the number of permitted 4-tuples is
c4 = (2− 1) (3− 2) (5− 2) (7− 2) = 15. Then δ4 = 15/30 = 0.500. On the other hand, the period of the par-
tial sum S5 is m5 = 2 × 3 × 5 × 7 × 11 = 210 × 11 = 2310, and the number of permitted 5-tuples is c5 =
(2− 1) (3− 2) (5− 2) (7− 2) (11− 2) = 135. Then δ5 = 135/210 ≈ 0.643. Note that since 7 and 11 are not twin
primes, δ5 > δ4 (see Corollary 3.3).

Now we prove that δk →∞ as k →∞. First, we make a definition.

Definition 3.4. Let pk > 2 and pk+1 be consecutive primes. We denote by θk the difference pk+1 − pk − 2.

Theorem 3.4. Let Sk be a given partial sum. Let δk be the density of permitted k-tuples within a period of Sk. As
k →∞, we have δk →∞.

Proof. Lemma 3.1 implies

δk =

(
p1 − 1

p1

)(
p2 − 2

p2

)(
p3 − 2

p3

)(
p4 − 2

p4

)(
p5 − 2

p5

)
· · ·
(
pk−1 − 2

pk−1

)
(pk − 2) .

If we shift denominators to the right, we obtain

δk = (p1 − 1)

(
p2 − 2

p1

)(
p3 − 2

p2

)(
p4 − 2

p3

)(
p5 − 2

p4

)
· · ·
(
pk−1 − 2

pk−2

)(
pk − 2

pk−1

)
.

By definition, θk = pk+1 − pk − 2 =⇒ pk+1 − 2 = pk + θk. Consequently, we can write the expression of δk as

δk =
1

2

(
p2 + θ2

p2

)(
p3 + θ3

p3

)(
p4 + θ4

p4

)
· · ·
(
pk−2 + θk−2

pk−2

)(
pk−1 + θk−1

pk−1

)
=

=
1

2

(
1 +

θ2

p2

)(
1 +

θ3

p3

)(
1 +

θ4

p4

)
· · ·
(

1 +
θk−2

pk−2

)(
1 +

θk−1

pk−1

)
=

=
1

3

[(
1 +

1

p1

)(
1 +

θ2

p2

)(
1 +

θ3

p3

)(
1 +

θ4

p4

)
· · ·
(

1 +
θk−1

pk−1

)(
1 +

θk
pk

)]
pk

pk + θk
.

Then

lim
k→∞

δk =
1

3

[(
1 +

1

p1

) ∞∏
k=2

(
1 +

θk
pk

)]
lim
k→∞

pk
pk + θk

. (8)

The infinite product between square brackets diverges if the series

1

p1
+

∞∑
k=2

θk
pk

(9)

diverges. In the series (9), if pk is the first of a pair of twin primes, by definition we have θk = 0; otherwise
we have θk ≥ 2. Let

∑∞
j=1 1/qj denote the series where every prime qj is the first of a pair of twin primes. Since

the series of reciprocals of the twin primes converges [4], the series
∑∞
j=1 1/qj also converges. Therefore, the series∑∞

k=1 1/pk−
∑∞
j=1 1/qj diverges, because

∑∞
k=1 1/pk diverges. By comparison with the series

∑∞
k=1 1/pk−

∑∞
j=1 1/qj ,

it follows that the series (9) diverges, because θk/pk > 1/pk for the terms where θk > 0. Thus, the infinite product in
(8) tends to ∞ as well. On the other hand, by the Bertrand-Chebyshev theorem, pk < pk+1 < 2pk =⇒ θk < pk =⇒
pk/(pk + θk) > 1/2. Consequently, δk →∞ as k →∞.
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4 The average density of permitted k-tuples within a given interval
I[m,n]

Let Sk be a given partial sum of the series
∑
sk. In Section 3 we showed that, for the interval I[1,mk] of the partial

sum Sk (the first period), the density of permitted k-tuples does not depend on the choice of the selected remainders
in the sequences sh (1 ≤ h ≤ k) that form the partial sum Sk (see Lemma 3.1). However, it is easy to see that this
assertion does not hold for all the intervals I[m,n] of the partial sum Sk. In this section we prove that, within a given
interval I[m,n] of the partial sum Sk, the average of the values of the k-density for all the possible choices of the
selected remainders is equal to δk. First, we make some definitions.

Definition 4.1. Let sh (1 ≤ h ≤ k) be the sequences of remainders that form the partial sum Sk. A given choice
of the selected remainders within the period of one of the sequences sh, or within the periods of all the sequences
sh (1 ≤ h ≤ k), will be called a combination of selected remainders. We denote by νh the number of combinations of
selected remainders within the period of a given sequence sh. Since, by definition, for the sequences sh (1 < h ≤ k)
there are two selected remainders within the period ph,

νh =

(
ph
2

)
. (10)

In the sequence s1 there is only one selected remainder within the period; then, p1 = 2 =⇒ ν1 = 2. We denote by
Nk the number of combinations of selected remainders within the periods of all the sequences sh (1 ≤ h ≤ k). Then

Nk =

(
p1

1

)(
p2

2

)(
p3

2

)
· · ·
(
pk
2

)
. (11)

Convention. From now on, when we refer to the average density of permitted k-tuples within a given interval I[m,n]
of the partial sum Sk, we mean that this average is computed taking into account all the combinations of selected
remainders in the sequences sh that form the partial sum Sk. We use the same convention when we refer to the average
number of permitted k-tuples.

Definition 4.2. The operation of Type A.
Let sh (1 ≤ h ≤ k) be the sequences of remainders that form the partial sum Sk. For h > 1, let r, r′ (mod ph)

be the selected remainders within a period ph of the sequence sh. We define the operation that changes the selected
remainders r, r′ (mod ph) to r + 1, r′ + 1 (mod ph) to be the Type A operation.

For the sequence s1, we also define the operation of changing the selected remainder r (mod p1) to r+ 1 (mod p1)
to be the operation of Type A.

Example 4.1. Table 5 shows the first period of the sequence of remainders s4 (p4 = 7), where initially we select the
remainders [1] and [3] and then we apply successively the Type A operation.

Table 5: First period of the sequence of remainders s4.

n
1 [1] 1 1 1 1 [1] 1
2 2 [2] 2 2 2 2 [2]
3 [3] 3 [3] 3 3 3 3
4 4 [4] 4 [4] 4 4 4
5 5 5 [5] 5 [5] 5 5
6 6 6 6 [6] 6 [6] 6
7 0 0 0 0 [0] 0 [0]

Definition 4.3. The operation of Type B.
Let sh (1 < h ≤ k) be the sequences of remainders that form the partial sum Sk. Let r, r′ (mod ph) be the selected

remainders (in that order), within a period ph of the sequence sh. We define the Type B operation as follows:
1) The remainder r holds selected.
2) We change the other selected remainder r′ (mod ph) to r′ + 1 (mod ph), r 6= r′ + 1.

Example 4.2. Table 6 shows the first period of the sequence of remainders s4 (p4 = 7), where initially we selected
the remainders [1] and [2], and then we applied successively the Type B operation.
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Table 6: First period of the sequence of remainders s4.

n
1 [1] [1] [1] [1] [1] [1]
2 [2] 2 2 2 2 2
3 3 [3] 3 3 3 3
4 4 4 [4] 4 4 4
5 5 5 5 [5] 5 5
6 6 6 6 6 [6] 6
7 0 0 0 0 0 [0]

Definition 4.4. Let sh (1 ≤ h ≤ k) be a given sequence of remainders modulo ph. We define νAh by νAh = ph, and
we define νBh (h > 1) by νBh = (ph − 1)/2.

Remark 4.1. Suppose that we choose two consecutive selected remainders r, r′ within the period of the sequence
sh (1 < h ≤ k). Then we have one out of νh combinations of selected remainders. Repeating the Type A operation
νAh − 1 times, we obtain νAh = ph different combinations of selected remainders. Now, if for each one of these
combinations we leave unchanged the selected remainder r, and then we repeat νBh − 1 times the Type B operation,
we obtain all the νh combinations of selected remainders within the period of the sequence sh. This is expressed by
the equation

νh =

(
ph
2

)
=

ph!

2! (ph − 2)!
= ph

ph − 1

2
= νAh ν

B
h .

Definition 4.5. Let Sk and Sk+1 be the partial sums of level k and k + 1. Let sk+1 be the sequence of remainders
of level k+ 1. Let I[m,n]k be an interval of k-tuples of Sk, and let I[m,n]k+1 be an interval of (k+ 1)-tuples of Sk+1,
where the indices m,n are the same for both intervals. When we juxtapose the remainders of the sequence sk+1 to
the right of each k-tuple of Sk, then, by Proposition 2.2, the permitted k-tuples of Sk, whose indices are congruent
to a given selected remainder of sk+1 modulo pk+1, are converted to prohibited (k + 1)-tuples of Sk+1. We denote by
fk+1 the fraction of the permitted k-tuples within the interval I[m,n]k that are converted to prohibited (k+ 1)-tuples
within the interval I[m,n]k+1. For the partial sum S1, let f1 denote the fraction of the prohibited 1-tuples within the
interval I[m,n]k=1.

We denote by fk+1 the average of fk+1 for all the combinations of selected remainders in the sequence sk+1 (k ≥ 1).

For the partial sum S1, let f1 denote the average of f1 for the 2 combinations of selected remainders in the sequence
s1.

The following lemma gives a formula for computing the average fraction fk+1.

Lemma 4.1. For k ≥ 1 we have fk+1 = 2/pk+1. For S1 we have f1 = 1/p1.

Proof. Let [0], [1], [2], . . . , [pk+1 − 1] be the residue classes modulo pk+1. Let cIk be the number of permitted k-tuples
within I[m,n]k. We denote by η0, η1, η2, . . . , ηpk+1−1 the number of permitted k-tuples within I[m,n]k whose indices
belong to the residue classes [0], [1], [2], . . . , [pk+1 − 1] respectively. Therefore, cIk = η0 + η1 + η2 + · · ·+ ηpk+1−1.

We wish to compute the average fraction of the permitted k-tuples within the interval I[m,n]k that are converted
to prohibited (k+ 1)-tuples within the interval I[m,n]k+1, for all the νk+1 combinations of selected remainders in the
sequence sk+1 (k ≥ 1). Now,

νk+1 = νAk+1ν
B
k+1 = pk+1

(pk+1 − 1)

2
,

by Remark 4.1. Consequently, we begin by taking the average over the νAk+1 combinations obtained by Type A

operations, and then we take the average of the previous averages over the νBk+1 combinations obtained by Type B
operations.

Step 1. Suppose that we choose two selected remainders r, r′ within the period of the sequence sk+1. By Proposi-
tion 2.2, the indices of the permitted k-tuples within the interval I[m,n]k of Sk that are converted to prohibited
(k + 1)-tuples within the interval I[m,n]k+1 of Sk+1 belong to one of the residue classes [r] or [r′]. It follows
that the fraction of the cIk permitted k-tuples within the interval I[m,n]k of Sk that are converted to prohibited
(k + 1)-tuples within the interval I[m,n]k+1 of Sk+1 is equal to (ηr + ηr′)/c

I
k. Taking the average over the

νAk+1 combinations of selected remainders obtained by repeated Type A operations, we obtain
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νA
k+1∑
i=1

ηr + ηr′

cIk

νAk+1

=

pk+1∑
i=1

ηr + ηr′

cIk

pk+1
=

(
1/cIk

)(pk+1−1∑
r=0

ηr +

pk+1−1∑
r′=0

ηr′

)
pk+1

=

(
1/cIk

) (
cIk + cIk

)
pk+1

=
2

pk+1
.

Step 2. Now, if we take the average over the νBk+1 = (pk+1 − 1)/2 combinations of selected remainders obtained by
repeated Type B operations from each one of the combinations obtained before, we obtain

fk+1 =

νB
k+1∑
j=1

2

pk+1

νBk+1

=
2

pk+1
,

because pk+1 does not depend on the index j (1 ≤ j ≤ νBk+1).

For the partial sum S1, there are two residue classes modulo p1 = 2 and one selected remainder. Therefore, it
is easy to see that f1 = 1/p1.

Definition 4.6. It follows from Proposition 2.2 that when we juxtapose the remainders of the sequence sk+1 to the
right of each k-tuple of Sk, the permitted k-tuples of Sk whose indices are not congruent to any of the two selected
remainders of sk+1 modulo pk+1 are, as (k + 1)-tuples of Sk+1, still permitted. We denote by f ′k+1 the fraction
of permitted k-tuples within the interval I[m,n]k of Sk that are transferred to the interval I[m,n]k+1 of Sk+1 as
permitted (k + 1)-tuples. For the partial sum S1, let f ′1 denote the fraction of the permitted 1-tuples within the
interval I[m,n]k=1.

We denote by f
′
k+1 the average of f ′k+1 for all the combinations of selected remainders in the sequence sk+1. For

the partial sum S1, let f
′
1 denote the average of f ′1 for the 2 combinations of selected remainders in the sequence s1.

Now, using the preceding lemma, we can calculate the average fraction f
′
k+1.

Lemma 4.2. We have f
′
k+1 = (pk+1 − 2)/pk+1. For S1, we have f

′
1 = (p1 − 1)/p1.

Proof. By Proposition 2.2, a given permitted k-tuple within the interval I[m,n]k of Sk can be transferred to the interval
I[m,n]k+1 of Sk+1 either as a permitted (k+ 1)-tuple or as a prohibited (k+ 1)-tuple. Consequently, fk+1 + f ′k+1 = 1,

and so fk+1 + f
′
k+1 = 1. Therefore, using Lemma 4.1, we obtain f

′
k+1 = 1− fk+1 = 1− 2/pk+1 = (pk+1 − 2)/pk+1.

For the partial sum S1, we have f1 = 1/p1 =⇒ f
′
1 = (p1 − 1)/p1.

Definition 4.7. Let Sk be the partial sum of level k. Let I[m,n] be an interval of k-tuples of Sk. We denote

by cIk the average number of permitted k-tuples within the interval I[m,n]. We denote by δ
I

k the average density of
permitted k-tuples within the interval I[m,n].

Finally, using the preceding lemmas, we calculate the average k-density within a given interval I[m,n], and show
that it is equal to the k-density within the period of Sk.

Theorem 4.3. Let δk be the density of permitted k-tuples within a period of the partial sum Sk. Then δ
I

k = δk.

Proof. Let sh (1 ≤ h ≤ k) be the sequences of remainders that form Sk. If there were no selected remainders within
the sequences sh, all the k-tuples within the interval I[m,n] would be permitted k-tuples, and then cIk = |I[m,n]|,
where |I[m,n]| is the size of the interval I[m,n]. However, since we have selected remainders in every sequence
sh (1 ≤ h ≤ k), using Lemma 4.2 at each level transition from h = 1 to h = k, we can write

cIk = |I [m,n]|
(
p1 − 1

p1

)(
p2 − 2

p2

)(
p3 − 2

p3

)
· · ·
(
pk − 2

pk

)
. (12)

Now, the number of intervals of size pk within the interval I[m,n] is equal to |I[m,n]|/pk. Consequently, by
definition,
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δ
I

k =
cIk

|I[m,n]|
pk

=
pk

|I [m,n]|
cIk. (13)

Therefore, substituting (12) for cIk in (13), and using Lemma 3.1, we obtain

δ
I

k =
pk

|I [m,n]|

(
|I [m,n]|

(
p1 − 1

p1

)(
p2 − 2

p2

)(
p3 − 2

p3

)
· · ·
(
pk − 2

pk

))
=

=

(
p1 − 1

p1

)(
p2 − 2

p2

)(
p3 − 2

p3

)
· · · (pk − 2) = δk.

5 The density of permitted k-tuples within the interval I[1, n] as n→∞
Let Sk (k > 2) be a partial sum of the series

∑
sk. Let pk be its characteristic prime modulus, and let mk be its

period. Let δk be the density of permitted k-tuples within the period of Sk. Let I[1, n] (n ≥ mk) be a given interval of
k-tuples of the partial sum Sk. We denote by cIk the number of permitted k-tuples, and by δIk the k-density in I[1, n].
In this section we will show that δIk converges to δk as n→∞. First, we make a definition.

Definition 5.1. Let bn/mkc denote the integer part of n/mk (n ≥ mk). We denote by cη the number of permitted
k-tuples within the interval I[1, bn/mkcmk] ⊆ I[1, n]. If n is not a multiple of mk, we denote by cε the number
of permitted k-tuples within the interval I[bn/mkcmk + 1, n] ⊂ I[1, n]; otherwise cε = 0. We call the interval
I[bn/mkcmk + 1, n] the incomplete period of the interval I[1, n].

The following lemma gives us a formula for the k-density in the interval I[1, n].

Lemma 5.1. We have

δIk =

⌊
n
mk

⌋
mk

n
δk +

pkcε
n

.

Proof. By definition,

δIk =
cIk
n
pk

.

Since bn/mkc is the number of times that the period of Sk fits in the interval I[1, n], the interval I[1, bn/mkcmk]
is that part of I[1, n] whose size is a multiple of mk, and so bn/mkcmk/pk is the number of subintervals of size pk
within this part of the interval I[1, n]. Consequently, multiplying by the k-density in the period of Sk, we obtain

cη =

⌊
n
mk

⌋
mk

pk
δk.

Since cIk is the number of permitted k-tuples within I[1, n], we have cIk = cη + cε. Then

δIk =
cIk
n
pk

=
cη + cε

n
pk

=

⌊
n

mk

⌋
mk

pk
δk + cε

n
pk

=

⌊
n
mk

⌋
mk

n
δk +

pkcε
n

.

Remark 5.1. Let ck be the number of permitted k-tuples within the period of Sk. By definition,

δk =
ck

mk/pk
=⇒ ck = δkmk/pk.

Now, using the formula from the preceding lemma, we find lower and upper bounds for the k-density within the
interval I[1, n].
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Lemma 5.2. Let I[1, n] (n ≥ mk) be an interval of k-tuples of a given partial sum Sk. For k > 2,

⌊
n
mk

⌋
mk⌊

n
mk

⌋
mk + (mk − 1)

δk < δIk <

(⌊
n
mk

⌋
+ 1
)
mk⌊

n
mk

⌋
mk + 1

δk. (14)

Proof. Step 1. We first consider the case where n is not a multiple of mk. By Lemma 5.1,

δIk =

⌊
n
mk

⌋
mk

n
δk +

pkcε
n

. (15)

To obtain bounds for δIk, we proceed as follows. We begin by obtaining bounds for cε. By Remark 5.1, δkmk/pk
is the number of permitted k-tuples within the period of Sk. Since by assumption n is not a multiple of mk,
it is easy to see that

0 ≤ cε ≤ δkmk/pk. (16)

Next, we obtain bounds for the denominator in (15); since n is not a multiple of mk,

bn/mkcmk + 1 ≤ n ≤ bn/mkcmk + (mk − 1) . (17)

Step 2. We obtain a lower bound for δIk. If we replace the denominator in (15) by the upper bound in (17),

⌊
n
mk

⌋
mk⌊

n
mk

⌋
mk + (mk − 1)

δk +
pkcε⌊

n
mk

⌋
mk + (mk − 1)

≤ δIk. (18)

Note that if n is equal to the upper bound in (17), the size of the incomplete period differs from the period
mk by one. On the other hand, it is easy to check, using Proposition 2.3, that within the period of the partial
sum Sk (k > 2) there is more than one permitted k-tuple. It follows that if n is equal to the upper bound
in (17), then there is at least one permitted k-tuple within the incomplete period of I[1, n], and so cε > 0.
Therefore, if we replace cε in (18) by the lower bound in (16),

⌊
n
mk

⌋
mk⌊

n
mk

⌋
mk + (mk − 1)

δk < δIk. (19)

Step 3. We now obtain an upper bound for δIk. If we replace the denominator in (15) by the lower bound in (17),

δIk ≤

⌊
n
mk

⌋
mk⌊

n
mk

⌋
mk + 1

δk +
pkcε⌊

n
mk

⌋
mk + 1

. (20)

Note that if n is equal to the lower bound in (17), the size of the incomplete period is equal to 1, and so there
can not be more than one permitted k-tuple within the incomplete period of I[1, n]. On the other hand, we
saw in Step 2 that for a level k > 2, there is more than one permitted k-tuple within the period of the partial
sum Sk. It follows that if n is equal to the lower bound in (17), then cε ≤ 1 < δkmk/pk. Therefore, if we
replace cε in (20) by the upper bound in (16),

δIk <

⌊
n
mk

⌋
mk⌊

n
mk

⌋
mk + 1

δk +
pk

δkmk

pk⌊
n
mk

⌋
mk + 1

=

(⌊
n
mk

⌋
+ 1
)
mk⌊

n
mk

⌋
mk + 1

δk. (21)
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Step 4. Now we complete the proof. Suppose that n is a multiple of mk. Then n = bn/mkcmk and cε = 0, and so
it is easy to see that δIk = δk. Since the lower bound in (19) is less than δk, and the upper bound in (21) is
greater than δk, we conclude that for every interval I[1, n] of the partial sum Sk (k > 2), the inequalities (19)
and (21) are satisfied, and the lemma is proved.

Remark 5.2. It is easy to check that the upper bound is decreasing, and the lower bound is increasing, in (14).

Finally, we show that the k-density in the interval I[1, n] of a given partial sum Sk tends to δk as the size n of the
interval increases.

Proposition 5.3. Let Sk (k > 2) be a given partial sum of the series
∑
sk. As n→∞, the density δIk converges to

δk, whatever the combination of selected remainders in the sequences sh that form the partial sum Sk.

Proof. Using the inequalities of Lemma 5.2, if we take limits as n→∞,

lim
n→∞

⌊
n
mk

⌋
mk⌊

n
mk

⌋
mk + (mk − 1)

δk < lim
n→∞

δIk < lim
n→∞

(⌊
n
mk

⌋
+ 1
)
mk⌊

n
mk

⌋
mk + 1

δk.

Now, dividing the numerator and denominator by bn/mkc, we obtain

lim
n→∞

mk

mk + (mk−1)⌊
n

mk

⌋ δk < lim
n→∞

δIk < lim
n→∞

(
1 + 1⌊

n
mk

⌋)mk

mk + 1⌊
n

mk

⌋ δk.

Since for a given level k, the values mk and δk are constants, as n→∞ we have bn/mkc → ∞, and the lower and
upper bounds tend to δk. This implies that δIk converges to δk as n→∞.

6 The k-density within the intervals I[1, p2
k] and I[p2

k + 1,mk]

Suppose given a partial sum Sk. In this section, we shall subdivide the interval I[1,mk] of Sk into two parts, and shall
establish the relation between the density of permitted k-tuples within one part and the density of permitted k-tuples
within the other part. We begin by introducing some terminology and notation.

Definition 6.1. Let Sk and Sk+1 be consecutive partial sums of the series
∑
sk. We use the notation pk → pk+1

or alternatively k → k + 1 to denote the transition from level k to level k + 1. For the level transition pk → pk+1, we
call the difference pk+1 − pk the order of the transition.

Definition 6.2. When we juxtapose the remainders of the sequence sk+1 to the right of each k-tuple of Sk, by
Proposition 2.2, a given permitted k-tuple of Sk, whose index is congruent to a selected remainder of sk+1 modulo
pk+1, is converted to a prohibited (k + 1)-tuple of Sk+1. In that case, we say that at the level transition k → k + 1
one permitted k-tuple is removed.

Let Sk (k ≥ 4) be a given partial sum of the series
∑
sk. Let sh (1 ≤ h ≤ k) be the periodic sequences of

remainders that form the partial sum Sk. Let mh be the period of every partial sum Sh from level h = 1 to level
h = k. Let ch be the number of permitted h-tuples, and let δh be the h-density within the period of every partial sum
Sh (1 ≤ h ≤ k).

Definition 6.3. If we write the index n of the sequences sh from top to bottom, and the level k from left to right
(see Table 2) we say that the partial sum Sk is in vertical position. Now, suppose that the partial sum Sk is in vertical
position, and we rotate it 90 degrees counterclockwise. Then, the index n of the sequences sh increases from left to
right, and the level k increases from the bottom up. In this case, we say that the partial sum Sk is in horizontal
position.

For every partial sum Sh from level h = 1 to level h = k in horizontal position, let us consider the interval I[1,mk]h,
whose size is the period mk of Sk.

Remark 6.1. Using Proposition 2.1, it is easy to check that the period of the partial sum S1 is equal to m1 = p1 = 2.
On the other hand, by Proposition 2.3, within every period of S1 we have only one permitted 1-tuple. Therefore, the
interval I[1,mk]1 of the partial sum S1 is divided into subintervals of size m1 = 2, each one containing one permitted
1-tuple. The position of the permitted 1-tuple is the same within every subinterval, and is determined by the selected
remainder in the sequence s1. Note that the positions of consecutive permitted 1-tuples in the partial sum S1 differ
by two.
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Remark 6.2. By the preceding remark, the positions of the permitted 1-tuples show a regular pattern along the
interval I[1,mk]1 of the partial sum S1. However, when we add the sequences sh from level h = 2 to level h = k, the
selected remainders in each sequence sh remove permitted (h − 1)-tuples from the partial sum Sh−1. Consequently,
we obtain an interval I[1,mk]k where the permitted k-tuples are spread along the interval, in positions that show an
irregular pattern. Note that if we change the combination of selected remainders in the sequences sh (1 ≤ h ≤ k),
within the interval I[1,mk]k some permitted k-tuples ‘disappear’, and other permitted k-tuples ‘appear’, although the
number of permitted k-tuples within the interval I[1,mk]k of the partial sum Sk does not change (see Proposition 2.3).

The following lemma gives us the number of permitted h-tuples within the interval I[1,mk]h of every partial sum
Sh where h < k.

Lemma 6.1. Let Sk (k ≥ 4) be a given partial sum of the series
∑
sk. Let us consider the interval I[1,mk]h in

every partial sum Sh, from level h = 1 to level h = k.
For any given partial sum Sh (h < k), the number of permitted h-tuples within the interval I[1,mk]h is equal to

chph+1ph+2 · · · pk.

Proof. Choose a level h < k. By definition, we have mk = p1p2p3 · · · phph+1ph+2 · · · pk = mhph+1ph+2 · · · pk. That is,
the size of the interval I[1,mk]h of the partial sum Sh is equal to ph+1ph+2 · · · pk times the period mh of the partial
sum Sh. Consequently, it is easy to see that the number of permitted h-tuples within the interval I[1,mk]h is equal
to chph+1ph+2 · · · pk.

Remark 6.3. By Proposition 2.3 and Lemma 6.1, the number of permitted h-tuples within the interval I[1,mk]h (1 ≤
h ≤ k) does not depend on the combination of selected remainders in the sequences sh that form the partial sum Sh;
therefore, neither does the density of permitted h-tuples within this interval (see Lemma 3.1). It is easy to see that
this h-density is equal to δh.

Now, let us denote by c′h the number of permitted h-tuples within the interval I[1,mk]h of every partial sum
Sh (1 ≤ h ≤ k), which is computed using Proposition 2.3 and Lemma 6.1. We have a question at this point: What is
the behaviour of c′h as h goes from level 1 to level k? This behaviour can be described as follows.

Remark 6.4. For every partial sum Sh (h < k), suppose that we juxtapose the remainders of the sequence sh+1 to
each h-tuple of Sh. By Proposition 2.2, the permitted h-tuples within the interval I[1,mk]h whose indices are included
in two residue classes modulo ph+1 are removed by the selected remainders within the sequence sh+1; and the permitted
h-tuples whose indices are not included in these residue classes are transferred to level h + 1 as permitted (h + 1)-
tuples within the interval I[1,mk]h+1 of the partial sum Sh+1, whatever the combination of selected remainders in the
sequence sh+1. Since for every level h < k the size of the interval I[1,mk]h is a multiple of ph+1, by Proposition 2.7
and Corollary 2.8, the permitted h-tuples within the interval I[1,mk]h of Sh are distributed uniformly over the residue
classes modulo ph+1. Therefore, for each level h < k, a fraction 2/ph+1 of the permitted h-tuples within the interval
I[1,mk]h of Sh have been removed, and a fraction (ph+1 − 2)/ph+1 have been transferred to level h+ 1 as permitted
(h+1)-tuples within the interval I[1,mk]h+1 of Sh+1, whatever the combination of selected remainders in the sequence
sh+1.

Let us examine now the behaviour of δh as h goes from level 1 to level k. Since the selected remainders of the
sequences sh+1 remove permitted h-tuples within the interval I[1,mk]h of the partial sum Sh, at each level transition
h → h + 1, the number of permitted h-tuples decreases as the level increases from h = 1 to h = k. However,
by Lemma 3.2 and Corollary 3.3, the h-density within the interval I[1,mk]h of the partial sum Sh grows at each
transition ph → ph+1 of order greater than 2, because to compute the h-density we count the permitted h-tuples
within subintervals of size ph, which grow by more than 2, overcompensating for the permitted h-tuples removed.
If ph → ph+1 is a level transition of order 2, the h-density does not change, because the increase in the size ph
is compensated for by the permitted h-tuples removed. (Note that p1 → p2 is the only level transition where δh
decreases.) Therefore, the h-density increases between h = 1 and h = k if we choose k so large that there are a
sufficient number of level transitions of order greater than 2 between h = 1 and h = k.

Now, if we ‘cut’ the first period of Sk into two parts, between the indices p2
k and p2

k + 1, we obtain a left-hand
subinterval and a right-hand subinterval.

Definition 6.4. Let Sk (k ≥ 4) be a given partial sum, in horizontal position. We subdivide the interval I[1,mk]
(its first period) into two intervals: I[1, p2

k], which we call the Left interval, and I[p2
k + 1,mk], which we call the Right

interval. We often denote the Left interval I[1, p2
k] by the symbol Lk, and the Right interval I[p2

k + 1,mk] by the
symbol Rk. For every partial sum Sh from level h = 1 to level h = k − 1 there is also a Left interval I[1, p2

k]h, and a
Right interval I[p2

k + 1,mk]h. See Figure 4.

So, the first period of the sequence of k-tuples can now be seen as a matrix, with mk columns and k rows. Each
row of this matrix, from h = 1 to h = k, is formed by the remainders modulo ph from n = 1 to n = mk. In addition,
this matrix has been partitioned into two blocks: the Left block formed by the columns from n = 1 to n = p2

k; and the
Right block formed by the columns from n = p2

k+1 to n = mk. Each row of the Left block is formed by the remainders
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of dividing the integers from n = 1 to n = p2
k by the modulus ph; and each row of the Right block is formed by the

remainders of dividing the integers from n = p2
k + 1 to n = mk by the modulus ph.

Level h = k I
[
1, p2

k

]
h=k

∪ I
[
p2
k + 1,mk

]
h=k

= I [1,mk]h=k

Level h = h′ I
[
1, p2

k

]
h=h′

∪ I
[
p2
k + 1,mk

]
h=h′

= I [1,mk]h=h′

Level h = 1 I
[
1, p2

k

]
h=1

∪ I
[
p2
k + 1,mk

]
h=1

= I [1,mk]h=1

Figure 4: Left and Right intervals

Definition 6.5. For a given partial sum Sh (1 ≤ h ≤ k), we use the notation cLk

h to denote the number of permitted

h-tuples within the Left interval I[1, p2
k]h, and we use the notation cRk

h to denote the number of permitted h-tuples
within the Right interval I[p2

k + 1,mk]h.

Although the number of permitted h-tuples within the interval I[1,mk]h of every partial sum Sh (1 ≤ h ≤ k) does
not change if we choose another set of selected remainders, the positions of the permitted h-tuples along the period
of Sh will be changed. Then, it seems reasonable to expect that some permitted h-tuples will be transferred from the
Left interval I[1, p2

k]h to the Right interval I[p2
k + 1,mk]h, or vice versa, because the size of the Left interval and the

size of the Right interval are not a multiple of mh. Hence, the number of permitted h-tuples within the Left interval
I[1, p2

k]h and within the Right interval I[p2
k + 1,mk]h is determined by the combination of selected remainders in the

sequences sh that form the partial sum Sh.

Definition 6.6. For a given partial sum Sh (that is to say, a partial sum where we have a given combination of
selected remainders in the sequences that form the partial sum Sh), we use the notation δLk

h to denote the density of

permitted h-tuples within the Left interval I[1, p2
k]h, and we use the notation δRk

h to denote the density of permitted
h-tuples within the Right interval I[p2

k + 1,mk]h.

By Remark 6.3, the h-density within the interval I[1,mk]h does not depend on the combination of selected remain-
ders in the sequences sh that form the partial sum Sh. However, the transfer of some permitted h-tuples from the Left
interval I[1, p2

k]h to the Right interval I[p2
k + 1,mk]h, or in the opposite direction, when we change the combination

of selected remainders, brings about changes in the h-density within both intervals. The crossing of some permitted
h-tuples from I[1, p2

k]h to I[p2
k + 1,mk]h decreases δLk

h and increases the δRk

h , and vice versa. By Theorem 4.3, the

average of δLk

h within I[1, p2
k]h is equal to δh, and the average of δRk

h within I[p2
k + 1,mk]h is also equal to δh. Hence

δLk

h > δh ⇐⇒ δRk

h < δh, (22)

δLk

h < δh ⇐⇒ δRk

h > δh.

Definition 6.7. We often call δLk

h (δRk

h ) the true h-density to distinguish it from the average δh within the Left
interval I[1, p2

k]h (the Right interval I[p2
k + 1,mk]h).

The following lemma shows that for every partial sum Sh (1 ≤ h ≤ k), the h-density within the Left interval
I[1, p2

k]h is not equal to the h-density within the Right interval I[p2
k + 1,mk]h.

Lemma 6.2. Let Sk (k ≥ 4) be a given partial sum of the series
∑
sk. Let us consider the interval I[1,mk]h (whose

size is the period mk of Sk), the Left interval I[1, p2
k]h and the Right interval I[p2

k + 1,mk]h, in every partial sum
Sh from level h = 1 to level h = k. Let us denote by mh the period of the partial sum Sh, and by ch the number of
permitted h-tuples within a period of the partial sum Sh (1 ≤ h ≤ k).

For every partial sum Sh we have δLk

h 6= δRk

h .

Proof. Step 1. By Remark 6.1, the positions of consecutive permitted 1-tuples in the partial sum S1 differ by 2. It
follows that the number of permitted h-tuples in every Left interval I[1, p2

k]h (1 ≤ h ≤ k) is less than the size

of the interval. In symbols, cLk

h < p2
k (1 ≤ h ≤ k).
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Step 2. Let us consider a given partial sum Sh, where 1 ≤ h < k. Consider the number of permitted h-tuples in the Left
interval I[1, p2

k]h, denoted by cLk

h , and the number of permitted h-tuples in the Right interval I[p2
k + 1,mk]h,

denoted by cRk

h . By Lemma 6.1, we have cLk

h + cRk

h = chph+1ph+2 · · · pk; so, if cLk

h is a multiple of pk, then cRk

h

is a multiple of pk as well. In this case, (cLk

h /pk) is a whole number; and so (cLk

h /pk)/pk, is a reduced fraction,

since cLk

h < p2
k, by Step 1. Hence, it is easy to check that this fraction is not equal to (cRk

h /pk)/(mk−1 − pk),

since (cRk

h /pk) is also a whole number, and mk−1 − pk is not a multiple of pk.

On the other hand, if cLk

h is not a multiple of pk, then cLk

h /p2
k is a reduced fraction; and it is easy to check that

this fraction is not equal to cRk

h /(mk − p2
k), since mk − p2

k is not a multiple of p2
k. In either case, we proved

that cLk

h /p2
k is not equal to cRk

h /(mk − p2
k).

Step 3. Now, let us consider the partial sum Sk. Consider the number of permitted k-tuples in the Left interval
I[1, p2

k], denoted by cLk

k , and the number of permitted k-tuples in the interval I[1,mk] (complete period of

Sk), denoted by ck. By Proposition 2.3 we have ck = (p1 − 1)(p2 − 2)(p3 − 2) · · · (pk − 2). Now, if cLk

k is not a

multiple of pk, we can see that cLk

k /p2
k is a reduced fraction; and it is easy to check that this fraction can not

be equal to ck/mk, since mk is a squarefree integer.

On the other hand, if cLk

k is a multiple of pk, then (cLk

k /pk) is a whole number; and (cLk

k /pk)/pk, is a reduced

fraction, since cLk

k < p2
k, by Step 1. From Proposition 2.1 and Proposition 2.3 follows

ck
mk

=
(p1 − 1) (p2 − 2) (p3 − 2) · · · (pk−1 − 2) (pk − 2)

p1p2p3 · · · pk−1pk
=

=

(
p1 − 1

p1

)(
p2 − 2

p2

)(
p3 − 2

p3

)
· · ·
(
pk−1 − 2

pk−1

)(
pk − 2

pk

)
,

and shifting the denominators to the right, we obtain

ck
mk

=

(
p2 − 2

p1

)(
p3 − 2

p2

)
· · ·
(
pk−1 − 2

pk−2

)(
pk − 2

pk−1

)
1

pk
.

Note that p1 can not be canceled with any numerator of the fractions in parentheses, since all these are odd
integers. Thus, it is easy to check that this fraction is not equal to the reduced fraction (cLk

k /pk)/pk.

In either case, the proportion of permitted k-tuples in the interval I[1, p2
k], given by cLk

k /p2
k, is not equal to

the proportion of permitted k-tuples in the interval I[1,mk], given by ck/mk. Thus, if cLk

k /p2
k > ck/mk, it

must be cRk

k /(mk − p2
k) < ck/mk; and vice versa; this implies cLk

k /p2
k 6= cRk

k /(mk − p2
k).

Step 4. We prove the lemma. From Steps 2 and 3, for every partial sum Sh (1 ≤ h ≤ k) it follows that cLk

h /p2
k 6=

cRk

h /(mk − p2
k); multiplying by ph we obtain phc

Lk

h /p2
k 6= phc

Rk

h /(mk − p2
k); and so δLk

h 6= δRk

h .

Even though the increase of the number of permitted h-tuples within one interval is equal to the decrease of the
number of permitted h-tuples within the other interval, the increase of the h-density within one interval is not equal
to the decrease of the h-density within the other interval. This is due to their being more subintervals of size ph within
I[p2

k + 1,mk]h than within I[1, p2
k]h, for k > 3. The following lemma gives the relation between the h-density within

I[1, p2
k]h and the h-density within I[p2

k + 1,mk]h. First, a definition:

Definition 6.8. Let Sh be the partial sums from level h = 1 to level h = k (k ≥ 4). Let I[1, p2
k]h be the Left

interval, and let I[p2
k + 1,mk]h be the Right interval, in every partial sum Sh (1 ≤ h ≤ k). For a given partial sum

Sh (1 ≤ h ≤ k), let δLk

h be the density of permitted h-tuples within the Left interval I[1, p2
k]h, and let δRk

h be the

density of permitted h-tuples within the Right interval I[p2
k + 1,mk]h. We use the notation {δLk

h } to denote the set

of values of δLk

h , and we use the notation {δRk

h } to denote the set of values of δRk

h , for all the combinations of selected
remainders in the sequences that form the partial sum Sh.

Lemma 6.3. There is a bijective function fh : {δLk

h } → {δ
Rk

h } such that

fh (x) = δh − (x− δh)
p2
k

mk − p2
k

,

and

f−1
h (x) = δh + (δh − x)

mk − p2
k

p2
k

.

29



Proof. For a given level h (1 ≤ h ≤ k), if we change the combination of selected remainders in the partial sum Sh,
some permitted h-tuples will be transferred from the Left interval I[1, p2

k]h to the Right interval I[p2
k + 1,mk]h, or vice

versa, as we have seen before. So, it is easy to see that there is a set of values of the number of permitted h-tuples
within the Left interval, and a set of values of the number of permitted h-tuples within the Right interval. However,
there exists a one-to-one correspondence between both sets, since the number of permitted h-tuples within the interval
I[1,mk]h is the same, whatever the combination of selected remainders in the sequences sh that form the partial sum
Sh, by Proposition 2.3 and Lemma 6.1. It follows that there is also a one-to-one correspondence between the set of
values of δLk

h , and the set of values of δRk

h . So, for a given level h (1 ≤ h ≤ k), we can define a bijective function

fh : {δLk

h } → {δ
Rk

h }.
Now, for the partial sum Sh, assume that the density of permitted h-tuples within I[1, p2

k]h, and within I[p2
k +

1,mk]h, is equal to the average δh. Then, suppose that some permitted h-tuples are transferred from the Right interval
to the Left interval. We have an increase (δLk

h −δh) of the h-density within the Left interval, and a decrease (δh−δRk

h ) of
the h-density within the Right interval. See (22). Because within the Left interval I[1, p2

k]h we have p2
k/ph subintervals

of size ph, by definition, the number of permitted h-tuples entering the Left interval is equal to (δLk

h − δh)p2
k/ph. In

the same way, within the Right interval I[p2
k + 1,mk]h we have (mk − p2

k)/ph subintervals of size ph, and then, by

definition, the number of permitted h-tuples coming out of the Right interval is equal to (δh − δRk

h )(mk − p2
k)/ph.

Since the number of permitted h-tuples entering the Left interval must be equal to the number of permitted h-tuples
coming out of the Right interval,

(
δLk

h − δh
) p2

k

ph
=
(
δh − δRk

h

) mk − p2
k

ph
=⇒ δRk

h = δh −
(
δLk

h − δh
) p2

k

mk − p2
k

.

Therefore, we have a bijective function fh : {δLk

h } → {δ
Rk

h }, such that fh(x) = δh − (x− δh)(p2
k/(mk − p2

k)), and it
is easy to check that f−1

h (x) = δh + (δh − x)(mk − p2
k)/p2

k.

7 The sifting function of the Sieve II

7.1 The behaviour of the h-density within the Right interval as k →∞
In this section we establish a lower bound for the minimum value of the sifting function of the Sieve II. Furthermore,
we prove that the minimum value of the sifting function of the Sieve II tends to infinity as k → ∞. However, before
achieving these results, we need to establish a lower bound for the k-density within the interval I[1, p2

k] of the partial
sum Sk. Now, for reasons that will be clear later, we begin by studying the behaviour of the h-density (1 ≤ h ≤ k)
within the Right block of the partition of the first period of Sk; the following example illustrates this behaviour for a
level k not too large.

Example 7.1. Let Sk be a partial sum of the series
∑
sk. Suppose that we take first k = 4, and then we let

k →∞. We can see that, as the level k increases, for every partial sum Sh from h = 1 to h = k, the size of the Right
interval I[p2

k + 1,mk]h grows very fast, since p2
k = o(mk), by Lemma 2.5. Note that for h = 1 there is one permitted

1-tuple within every period of size p1 = 2 of the partial sum S1, by Remark 6.1. So, as the size of the Right interval
I[p2

k + 1,mk]1 increases, the number of permitted 1-tuples grows very fast as well. Therefore, we can reach a level k
large enough (although not too large) that the distribution of the permitted 1-tuples that are within I[p2

k + 1,mk]1
over the residue classes modulo p2 = 3 is not far from uniform. So, the fraction of permitted 1-tuples within the
Right interval of S1 that are transferred to the Right interval of S2 as permitted 2-tuples is approximately the average
fraction (p2 − 2)/p2 (see Remark 6.4).

However, as h goes from level 1 to level k, the number of permitted h-tuples that are within the Right interval
decreases (see Remark 6.2), and ph increases; in addition, the number of combinations of selected remainders within
the sequences that form every partial sum Sh increases as well. See (10) and (11). Therefore, as h goes from level 1 to
level k − 1, for some combinations of selected remainders, the distribution of the permitted h-tuples that are within
I[p2

k + 1,mk]h over the residue classes modulo ph+1 becomes far from uniform. So, for these combinations of selected
remainders, the fraction of permitted h-tuples within the Right interval of Sh that are transferred to the Right interval
of Sh+1 as permitted (h + 1)-tuples moves away from the average fraction (ph+1 − 2)/ph+1, and consequently, the
values of δRk

h moves away from δh, as h goes from level 1 to level k.

Now, we shall consider the case where k is very large.

Remark 7.1. For every partial sum Sh from level h = 1 to level h = k (k ≥ 4), let us consider the interval I[1,mk]h,
and the Right interval I[p2

k + 1,mk]h; we denote by ck the number of permitted k-tuples within the interval I[1,mk]k;
and we denote by c′h the number of permitted h-tuples within every interval I[1,mk]h where 1 ≤ h < k. By Lemma 2.4
we have p2

k = o(ck), and by Lemma 2.5 we have p2
k = o(mk). Then, for a level k sufficiently large, most of the permitted

h-tuples in every interval I[1,mk]h (1 ≤ h ≤ k) belong to the Right interval I[p2
k + 1,mk]h, and furthermore ck � pk.
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Note that in this case, c′h � ph for every h < k, since ph < pk and c′h > ck (see Proposition 2.3 and Lemma 6.1).
Hence, it is easy to see that for each level from h = 1 to h = k − 1, the distribution of the permitted h-tuples that
are within the Right interval over the residue classes modulo ph+1 will be almost uniform, whatever the combination
of selected remainders in the sequences sh that form the partial sum Sk; so, the fraction of the permitted h-tuples
within the Right interval of Sh that are transferred to the Right interval of Sh+1 as permitted (h + 1)-tuples will be
approximately the average fraction (ph+1 − 2)/ph+1 (see Remark 6.4). It follows that for each level from h = 1 to
h = k, the values of δRk

h will be very close to δh, whatever the combination of selected remainders in the sequences sh
that form the partial sum Sk.

The following lemma shows that as k → ∞, the true h-density within the Right interval I[p2
k + 1,mk]h of every

partial sum Sh (1 ≤ h ≤ k) converges uniformly to the average δh.

Lemma 7.1. Let Sk (k ≥ 4) be a partial sum of the series
∑
sk. Let us consider the Right interval I[p2

k + 1,mk]h in
every partial sum Sh, from level h = 1 to level h = k. For every ε > 0, there exists N (depending only on ε) such that
level k > N implies |δRk

h − δh| < ε, for every partial sum Sh from level h = 1 to level h = k, whatever the combination
of selected remainders in the sequences sh that form every partial sum Sk.

Proof. Step 1. The size of the Right interval I[p2
k + 1,mk]h of the partial sum Sh, by definition, is equal to mk − p2

k,
and so the number of subintervals of size ph within the Right interval is equal to (mk − p2

k)/ph (1 ≤ h ≤ k).

Denoting by cRk

h the number of permitted h-tuples within I[p2
k + 1,mk]h, by definition, we have

δRk

h =
cRk

h

(mk − p2
k) /ph

(1 ≤ h ≤ k). (23)

Step 2. Let us denote by mh the period of the partial sum Sh, and by ch the number of permitted h-tuples within a
period of the partial sum Sh. For every level from h = 1 to h = k, let c′h be the number of permitted h-tuples
within the interval I[1,mk]h of the partial sum Sh. Using Lemma 6.1, we obtain

c′1 = c1p2p3 · · · pk, (24)

c′2 = c2p3p4 · · · pk,
. . .

c′h = chph+1ph+2 · · · pk,
. . .

c′k = ck.

Note that c′h increases as the level decreases from h = k to h = 1 (see Proposition 2.3). For every level from
h = 1 to h = k, since I[1,mk]h = I[1, p2

k]h∪ I[p2
k + 1,mk]h, the number of permitted h-tuples within the Right

interval I[p2
k + 1,mk]h can not be greater than c′h, and so we have cRk

h ≤ c′h. On the other hand, the number
of permitted h-tuples within the Left interval I[1, p2

k]h of the partial sum Sh can not be greater than the size

p2
k of the Left interval. Therefore, c′h − p2

k ≤ cRk

h . Consequently, replacing the numerator in (23) by c′h − p2
k

and by c′h, we obtain

c′h − p2
k

(mk − p2
k) /ph

≤ δRk

h ≤ c′h
(mk − p2

k) /ph
(1 ≤ h ≤ k).

Extracting the common factors c′h and mk, we obtain

c′h
mk/ph

(
1− p2

k/c
′
h

1− p2
k/mk

)
≤ δRk

h ≤ c′h
mk/ph

(
1

1− p2
k/mk

)
.

Now, by definition, mk = p1p2p3 · · · phph+1ph+2 · · · pk = mhph+1ph+2 · · · pk. Then, using (24), we can simplify
both sides:

ch
mh/ph

(
1− p2

k/c
′
h

1− p2
k/mk

)
≤ δRk

h ≤ ch
mh/ph

(
1

1− p2
k/mk

)
.

31



By definition,

δh =
ch

mh/ph
.

Therefore, for every partial sum Sh from level h = 1 to level h = k, whatever the combination of selected
remainders in the sequences sh that form the partial sum Sk, we have the bounds

δh

(
1− p2

k/c
′
h

1− p2
k/mk

)
≤ δRk

h ≤ δh
(

1

1− p2
k/mk

)
. (25)

Step 3. Now, let ε > 0 be a given small number, and let N ≥ 12. For level h = k, from (25), we obtain

δk

(
1− p2

k/c
′
k

1− p2
k/mk

)
≤ δRk

k ≤ δk
(

1

1− p2
k/mk

)
.

On the one hand, p2
k = o(mk), by Lemma 2.5. On the other hand, ck = c′k by (24), and so, by Lemma 2.4,

p2
k = o(c′k). Besides, it follows from Proposition 2.3 that c′k < mk. Therefore, we can take N large enough

that for level k > N ,

δk −
ε

2
< δk

(
1− p2

k/c
′
k

1− p2
k/mk

)
≤ δRk

k ≤ δk
(

1

1− p2
k/mk

)
< δk +

ε

2
, (26)

at level h = k.

Step 4. Now, the rightmost inequality in (26) implies

δk

(
1

1− p2
k/mk

− 1

)
<
ε

2
.

For a given level h < k, since k > N ≥ 12 by assumption, it is easy to verify, using Lemma 3.1 and Lemma 3.2,
that δh < δk. Hence,

δh

(
1

1− p2
k/mk

− 1

)
<
ε

2
=⇒ δh

(
1

1− p2
k/mk

)
< δh +

ε

2
. (27)

Step 5. The leftmost inequality in (26) implies

δk

(
1− 1− p2

k/c
′
k

1− p2
k/mk

)
<
ε

2
.

For a given level h < k, since k > N ≥ 12, we have δh < δk, as we have seen in Step 4. On the other hand,
c′h > c′k = ck by Proposition 2.3. Hence,

δh

(
1− 1− p2

k/c
′
h

1− p2
k/mk

)
<
ε

2
=⇒ δh −

ε

2
< δh

(
1− p2

k/c
′
h

1− p2
k/mk

)
. (28)

Step 6. We now prove the lemma. By (25), (26), (27), and (28), for k > N we can write

δh −
ε

2
< δh

(
1− p2

k/c
′
h

1− p2
k/mk

)
≤ δRk

h ≤ δh
(

1

1− p2
k/mk

)
< δh +

ε

2
,

for every level from h = 1 to h = k. This implies |δRk

h − δh| < ε for every level from h = 1 to h = k (k > N),
whatever the combination of selected remainders in the sequences sh that form every partial sum Sk.
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7.2 One formula for the maximum number of permitted k-tuples within the Right
interval

Let Sh be the partial sums from level h = 1 to level h = k (k ≥ 4). Consider for every Sh the Left interval I[1, p2
k]h

and the Right interval I[p2
k + 1,mk]h. Recall the notation {δLk

h } to denote the set of values of δLk

h , and the notation

{δRk

h } to denote the set of values of δRk

h , for all the combinations of selected remainders in the sequences that form
the partial sum Sh (1 ≤ h ≤ k).

Definition 7.1. We use the notation δ̂Lk

h and δ̌Lk

h to denote, respectively, min{δLk

h } and max{δLk

h }, and the notation

δ̂Rk

h and δ̌Rk

h to denote, respectively, min{δRk

h } and max{δRk

h }.

Remark 7.2. By Lemma 6.2, for every partial sum Sh (1 ≤ h ≤ k), we have δLk

h 6= δRk

h . On the other hand,
for any given level h, the average density of permitted h-tuples within the Left interval I[1, p2

k]h (the Right interval

I[p2
k + 1,mk]h) is equal to δh, by Theorem 4.3. Then, for each level between h = 1 and h = k, we have δ̂Lk

h < δh < δ̌Lk

h

(δ̂Rk

h < δh < δ̌Rk

h ). See (22).

Given Sk (k > 4), with a given combination of selected remainders, consider for level h = k the Left interval
I[1, p2

k]k and the Right interval I[p2
k + 1,mk]k. And for level h = 4, consider also the Left interval I[1, p2

k]4 and the
Right interval I[p2

k + 1,mk]4. By Lemma 6.3 there is a bijection between the values of the k-density in I[1, p2
k]k, and

the values of the k-density in I[p2
k+1,mk]k, and there is also a bijection between the values of the 4-density in I[1, p2

k]4,
and the values of the 4-density in I[p2

k + 1,mk]4. However, what is the relation between the k-density within the Left
interval I[1, p2

k]k, and the 4-density within the Left interval I[1, p2
k]4? And what is the relation between the k-density

within the Right interval I[p2
k + 1,mk]k, and the 4-density within the Right interval I[p2

k + 1,mk]4? These are the
questions in which we are interested.

By now, we know that the h-density within each interval I[1,mk]h is equal to δh (1 ≤ h ≤ k). Consequently,
for a sufficiently large level k, when we subdivide every interval I[1,mk]h into a Left interval and Right interval, it
seems reasonable to expect that the behaviour of δLk

h and δRk

h , between level h = 1 and level h = k, is analogous

to the behaviour of δh. In particular, with regard to the Right block, the values of δRk

h (1 ≤ h ≤ k) approximate
the respective average δh more and more closely as the level k becomes large, by Lemma 7.1. Thus, it is easy to see
that, from level h = 1 to level h = k, the maximum values of δRk

h within the Right interval I[p2
k + 1,mk]h, tend to be

proportional to the values of δh, as k →∞. We can use this fact to obtain a formula for the maximum value of δRk

k .
We explain this briefly as follows.

Let Sk be a given partial sum of the series
∑
sk, where k is very large; consider the first period of Sk partitioned

as we have seen before, in a Left block and a Right block. We shall restrict our attention to the behaviour of δ̌Rk

h (in
the Right block of the partition) as h goes from 1 to k; in particular, let us consider the Right interval I[p2

k + 1,mk]k,

and the Right interval I[p2
k + 1,mk]4. Assume that for the levels h = 4 and h = k, the values of δ̌Rk

h were exactly
proportional to the values of δh. In this case, we could write

δ̌Rk

k = δk +
δk
δ4

(
δ̌Rk
4 − δ4

)
. (29)

On the other hand, as noted above, the values of δ̌Rk

h become approximately proportional to the values of δh (1 ≤
h ≤ k), as k →∞. So, without the preceding assumption, for k large enough we can write

δ̌Rk

k = δk + β
δk
δ4

(
δ̌Rk
4 − δ4

)
, (30)

for some number β > 1. We shall derive this crucial formula later (Lemma 7.7), and we shall prove that β → 1 as
k →∞ (Lemma 7.6).

The following result is a corollary of Lemma 7.1. First, we make a definition.

Definition 7.2. For every level from h = 1 to h = k, we define the coefficient ξ̌Rk

h > 1, such that δ̌Rk

h = ξ̌Rk

h δh.

Lemma 7.2. Let Sk (k ≥ 4) be a partial sum of the series
∑
sk. For every ε > 0, there exists N (depending only on

ε) such that level k > N implies 1 < ξ̌Rk

h < 1 + ε, for every partial sum Sh from level h = 1 to level h = k, whatever
the combination of selected remainders in the sequences sh that form the partial sum Sk.

Proof. By Lemma 7.1, for every ε′ > 0, there exists an N (depending only on ε′) such that if the level k > N , then
δh − ε′ < δRk

h < δh + ε′ for every partial sum Sh from level h = 1 to level h = k, whatever the combination of selected

remainders in the sequences sh that form the partial sum Sk. Therefore, we can write δh < δ̌Rk

h < δh + ε′ (1 ≤ h ≤ k).
Then, dividing by δh, we obtain
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1 <
δ̌Rk

h

δh
= ξ̌Rk

h < 1 +
ε′

δh
(1 ≤ h ≤ k).

Now, using Lemma 3.1, Lemma 3.2, and Corollary 3.3, it is easy to check that the smallest element of δh (1 ≤ h ≤ k)
is δ2. Hence,

1 < ξ̌Rk

h < 1 +
ε′

δh
≤ 1 +

ε′

δ2
(1 ≤ h ≤ k). (31)

Therefore, for every ε > 0, we can take ε′ = εδ2, find the number N , and then, substituting this into (31), we
obtain 1 < ξ̌Rk

h < 1 + ε (1 ≤ h ≤ k).

For a level k ≥ 4, let us consider again the Right interval I[p2
k + 1,mk]h, of the partial sums Sh, from level h = 1 to

level h = k. Let h = i and h = j be two given levels (1 ≤ i < j ≤ k). The following lemma shows that δ̌Rk
j is greater

than the value δ̌Rk
i δj/δi, computed by assuming δ̌Rk

h ∝ δh, between level h = 1 and level h = k.

Lemma 7.3. Let Sh be the partial sums from level h = 1 to level h = k (k ≥ 4). Let us consider the Right interval
in every partial sum Sh (1 ≤ h ≤ k). Let i, j be two levels such that 1 ≤ i < j ≤ k. Then

δj < δ̌Rk
i

δj
δi
< δ̌Rk

j . (32)

In other words, the value of δ̌Rk
j exceeds the value calculated by assuming δ̌Rk

h ∝ δh, between level h = 1 and level
h = k.

Proof. By Remark 7.2, for each level between h = 1 and h = k we have δ̂Rk

h < δh < δ̌Rk

h . Now, for level h = i, there
exists one combination of selected remainders in the sequences sh that form the partial sum Si, such that the density
of permitted i-tuples within the Right interval I[p2

k + 1,mk]i is equal to the maximum value δ̌Rk
i . Since by definition

the size of the Right interval I[p2
k + 1,mk]i of the partial sum Si is equal to mk − p2

k, the number of subintervals of
size pi within this interval is (mk − p2

k)/pi. Consequently, for this particular combination of selected remainders, the

number of permitted i-tuples within the Right interval I[p2
k + 1,mk]i is equal to δ̌Rk

i (mk − p2
k)/pi. Therefore, using

Lemma 4.2 at each level transition h→ h+ 1, up to level h = j, we obtain

(
δ̌Rk
i

(
mk − p2

k

pi

))(
pi+1 − 2

pi+1

)(
pi+2 − 2

pi+2

)
· · ·
(
pj − 2

pj

)
=

= δ̌Rk
i

(
pi+1 − 2

pi

)(
pi+2 − 2

pi+1

)
· · ·
(
pj − 2

pj−1

)(
mk − p2

k

pj

)
,

which is the average number of permitted j-tuples within the Right interval I[p2
k+1,mk]j , for all the combinations

of selected remainders in the sequences sh from level i + 1 to level j, starting with the combination corresponding
to the maximum value δ̌Rk

i . Now, dividing by (mk − p2
k)/pj (the number of subintervals of size pj within the Right

interval I[p2
k + 1,mk]j , for level h = j), we get

δ̌Rk
i

(
pi+1 − 2

pi

)(
pi+2 − 2

pi+1

)
· · ·
(
pj − 2

pj−1

)
,

which is the corresponding average j-density. We can write this expression as

δ̌Rk
i

(
pi+1 − 2

pi

)(
pi+2 − 2

pi+1

)
· · ·
(
pj − 2

pj−1

)
= δ̌Rk

i

δi

(
pi+1−2
pi

)(
pi+2−2
pi+1

)
· · ·
(
pj−2
pj−1

)
δi

,

and, using Lemma 3.2, it is easy to see that

δ̌Rk
i

(
pi+1 − 2

pi

)(
pi+2 − 2

pi+1

)
· · ·
(
pj − 2

pj−1

)
= δ̌Rk

i

δj
δi
.
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Therefore, we can see that δ̌Rk
i δj/δi is the average density of permitted j-tuples within the Right interval I[p2

k +
1,mk]j , for all the combinations of selected remainders in the sequences sh from level h = i+1 to level h = j such that
the combination of selected remainders in the sequences sh from level h = 1 to level h = i is the one corresponding to
the maximum value δ̌Rk

i . That is, δ̌Rk
i δj/δi is an average, not a maximum value. Consequently, it is easy to see that

δ̌Rk
j must be greater than δ̌Rk

i δj/δi, and then we can write

δj < δ̌Rk
i

δj
δi
< δ̌Rk

j .

The lemma is proved.

Corollary 7.4. We have ξ̌Rk
i < ξ̌Rk

j (1 ≤ i < j ≤ k).

Proof. By definition, δ̌i
Rk

= ξ̌Rk
i δi, and δ̌j

Rk
= ξ̌Rk

j δj . So, replacing δ̌i
Rk

by ξ̌Rk
i δi and δ̌j

Rk
by ξ̌Rk

j δj in (32), and

then simplifying, we obtain ξ̌Rk
i < ξ̌Rk

j .

Now we define the coefficient βRk
4 , that we shall use later in the formula for δ̌Rk

k .

Definition 7.3. For k > 4, let Sh be the partial sums from level h = 1 to level h = k. We define βRk
4 by the

equation

βRk
4 =

(
ξ̌Rk

k − 1
)

(
ξ̌Rk
4 − 1

) .
Lemma 7.5. For k > 4, let Sh be the partial sums from level h = 1 to level h = k. For every k > 4, we have
βRk

4 > 1.

Proof. Given a level k > 4, by definition, (ξ̌Rk

k −1) > 0 and (ξ̌Rk
4 −1) > 0; besides, by Corollary 7.4, we have ξ̌Rk

k > ξ̌Rk
4 .

Then

βRk
4 =

(
ξ̌Rk

k − 1
)

(
ξ̌Rk
4 − 1

) > 1.

The lemma is proved.

Now, for the levels 4 and k, the number βRk
4 measures the degree of departure of the values of δ̌Rk

h from being
exactly proportional to the respective values of δh (1 ≤ h ≤ k); we explain this as follows.

Let Sh be the partial sums from level h = 1 to level h = k (k > 4); for every level h let us consider the Right
sinterval I[p2

k + 1,mk]h. Recall that δh denotes the density of permitted h-tuples within the period of the partial
sum Sh; furthermore, δh is the average density of permitted h-tuples within the Right interval I[p2

k + 1,mk]h, by
Theorem 4.3.

Remark 7.3. For a level k very large, we know by Lemma 7.1 that δ̂Rk

h and δ̌Rk

h will be very close to δh, for every
partial sum Sh from level h = 1 to level h = k. Consequently, as we have seen before, for a level k sufficiently
large, the behaviour of δ̌Rk

h will be approximately proportional to δh, between level h = 1 and level h = k; and this

approximation improves as k → ∞, by the same lemma. In the limit as k → ∞, it will be δ̂Rk

h = δ̌Rk

h = δh for every

level h; so, we can say that in the limit δ̌Rk

h is ‘exactly proportional’ to δh for every level h, where the constant of
proportionality is 1.

Now, given h, the quotient δ̌Rk

h /δh is the proportion of the maximum density of permitted h-tuples to the average

h-density, within the Right interval. Suppose that we take the fixed level h = 4; assume that the quotient δ̌Rk

k /δk is

equal to the quotient δ̌Rk
4 /δ4; that is, we are assuming that for the levels 4 and k, the values of δ̌Rk

h are proportional

to the respective values of δh. This means that given the value of δ̌Rk
4 for level h = 4, we could compute the value of

δ̌Rk

k for level h = k, since using Lemma 3.1 we can compute δh for every level h. This is precisely what is expressed
in (29). Now, by Lemma 7.3 we know that this assumption is not true; the only situation where this assumption is
true is in the limit as k → ∞, as was explained in Remark 7.3. However, for a level k large enough, the preceding
assumption of proportionality becomes approximately true, as we have noted in the same remark.
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Recall that we denote by ξ̌Rk

k the quotient δ̌Rk

k /δk, and we denote by ξ̌Rk
4 the quotient δ̌Rk

4 /δ4. By definition,

ξ̌Rk

k > 1 and ξ̌Rk
4 > 1; furthermore, ξ̌Rk

k → 1 and ξ̌Rk
4 → 1 as k → ∞, by Lemma 7.2. Hence, the difference ξ̌Rk

k − 1

measures how far δ̌Rk

k ‘deviates’ from δk, at level h = k; and the difference ξ̌Rk
4 − 1 measures how far δ̌Rk

4 ‘deviates’
from δ4, at level h = 4. So, the quotient

(
ξ̌Rk

k − 1
)

(
ξ̌Rk
4 − 1

) , (33)

denoted by βRk
4 , measures how far the values of δ̌Rk

h , for the levels 4 and k, ‘deviates’ from being exactly proportional
to the respective values of δh. Note that the behaviour of the quotient in (33) as k → ∞ depends on the rates at
which ξ̌Rk

k and ξ̌Rk
4 tend to 1.

The next lemma shows that βRk
4 tends to 1 as k →∞.

Lemma 7.6. For k > 4, let Sh be the partial sums from level h = 1 to level h = k. We have βRk
4 → 1, as k →∞.

Proof. Step 1. By Lemma 7.1, for each level from h = 1 to h = k, the density of permitted h-tuples in the Right
interval I[p2

k+1,mk]h tends uniformly to the average δh, as k →∞ (see Remark 7.1). It follows that δ̌Rk

h → δh,

as k →∞; and so ξ̌Rk

h → 1 as k →∞ also uniformly (see Lemma 7.2).

Now, in the limit as k → ∞, we have δ̌Rk

h = δh, simultaneously for every level between h = 1 and h = k, by

Lemma 7.1; and ξ̌Rk

h = 1, by Lemma 7.2, also simultaneously for every level between h = 1 and h = k. Note

that δ̌Rk

h can never attain the limit δh as k →∞ (see Remark 7.2).

Step 2. By Lemma 7.5,

βRk
4 =

(
ξ̌Rk

k − 1
)

(
ξ̌Rk
4 − 1

) > 1. (34)

We shall see what happens to the difference quotient in (34) as we let k → ∞. Note that we are comparing
the difference ξ̌Rk

4 − 1, at the fixed level h = 4, with the difference ξ̌Rk

k − 1, at level h = k, where k →∞.

By Step 1, in the limit as k → ∞, both ξ̌Rk

k and ξ̌Rk
4 must be equal to 1 simultaneously. Therefore, since

ξ̌Rk
4 < ξ̌Rk

k by Corollary 7.4, it must exist k sufficiently large that from this level, letting k → ∞, the rate at

which ξ̌Rk

k tends to 1 is greater than the rate at which ξ̌Rk
4 tends to 1, so that they can be 1 in the limit at the

same time. We conclude that the difference quotient in (34) tends to 1 from the right, as k →∞. In symbols,

lim
k→∞

βRk
4 = lim

k→∞

(
ξ̌Rk

k − 1
)

(
ξ̌Rk
4 − 1

) = 1,

and the lemma is proved.

Using simple algebra, the following lemma gives us a formula for the maximum value of δRk

k .

Lemma 7.7. Let Sh be the partial sums from level h = 1 to level h = k (k ≥ 4). For the level h = 4,

δ̌Rk

k = δk + βRk
4

δk
δ4

(
δ̌Rk
4 − δ4

)
.

Proof. By definition, we have δ̌Rk
4 = ξ̌Rk

4 δ4. Therefore, we can write

δ̌Rk

k

δ̌Rk
4

=
ξ̌Rk

k

ξ̌Rk
4

δk
δ4
.

Then
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δ̌Rk

k =
ξ̌Rk

k

ξ̌Rk
4

δk
δ4
δ̌Rk
4 = δk +

ξ̌Rk

k

ξ̌Rk
4

δk
δ4
δ̌Rk
4 − δk = δk +

ξ̌Rk

k

ξ̌Rk
4

δk
δ4
δ̌Rk
4 − δ4

δ4
δk =

= δk +
δk
δ4

(
ξ̌Rk

k

ξ̌Rk
4

δ̌Rk
4 − δ4

)
= δk +

δk
δ4

(
ξ̌
Rk
k

ξ̌
Rk
4

δ̌Rk
4 − δ4

)
(
δ̌Rk
4 − δ4

) (
δ̌Rk
4 − δ4

)
,

and, by definition,

δ̌Rk

k = δk +
δk
δ4

(
ξ̌
Rk
k

ξ̌
Rk
4

ξ̌Rk
4 δ4 − δ4

)
(
ξ̌Rk
4 δ4 − δ4

) (
δ̌Rk
4 − δ4

)
.

Now, cancelling the common factors, we obtain

δ̌Rk

k = δk +
δk
δ4

(
ξ̌Rk

k − 1
)

(
ξ̌Rk
4 − 1

) (δ̌Rk
4 − δ4

)
.

Finally, by definition,

δ̌Rk

k = δk + βRk
4

δk
δ4

(
δ̌Rk
4 − δ4

)
.

Note that we have derived the formula in (30), where the symbol β is an alternative notation for the coefficient
βRk

4 in the formula of Lemma 7.7.

7.3 A lower bound for the sifting function of the Sieve II

We recall that the first period of the partial sum Sk (k ≥ 4), in horizontal position, can be seen as a matrix, with
mk columns and k rows; and we recall also that this matrix was partitioned into two blocks: the Left block formed
by the columns from n = 1 to n = p2

k; and the Right block formed by the columns from n = p2
k + 1 to n = mk.

The preceding lemma gives us a formula for δ̌Rk

k within the Right block of the partition. However, we need a similar

formula for δ̂Lk

k within the Left block of the partition; in order to derive this formula, we proceed as we have explained

in the Introduction. Suppose that for the level 4 we know the minimum value of the density of permitted 4-tuples δ̂Lk
4 ,

within the Left interval I[1, p2
k]4 (Left block of the partition). Using the function f4 of Lemma 6.3 we can compute,

for the level 4, the maximum value of the density of permitted 4-tuples δ̌Rk
4 , within the Right interval I[p2

k + 1,mk]4
(Right block of the partition). Then, using the formula given by the preceding lemma, we can compute, for the level
k, the maximum value of the density of permitted k-tuples δ̌Rk

k , within the Right interval I[p2
k + 1,mk]k (Right block

of the partition). Finally, using the function f−1
k of Lemma 6.3 we can compute, for the level k, the minimum value

of the density of permitted k-tuples δ̂Lk

k , within the Left interval I[1, p2
k]k (Left block of the partition). This formula

is given in the following lemma.

Remark 7.4. Note that for a given level h (1 ≤ h ≤ k), the image of δ̂Lk

h under the function fh of Lemma 6.3 is

δ̌Rk

h , and the image of δ̌Lk

h under fh is δ̂Rk

h . See (22).

Lemma 7.8. Let Sk (k ≥ 4) be a partial sum of the series
∑
sk. Within the first period of Sk, consider the Left

interval I[1, p2
k]h and the Right interval I[p2

k + 1,mk]h of every partial sum Sh from h = 1 to h = k (k ≥ 4). We have

δ̂Lk

k = δk − βRk
4

δk
δ4

(
δ4 − δ̂Lk

4

)
.

Proof. Step 1. We compute the value of f4 (see Lemma 6.3) at x = δ̂Lk
4 (the minimum density of permitted 4-tuples

within the Left interval I[1, p2
k]4). We obtain

δ̌Rk
4 = f4

(
δ̂Lk
4

)
= δ4 −

(
δ̂Lk
4 − δ4

) p2
k

mk − p2
k

.

See Remark 7.4.
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Step 2. Next, we take the maximum density of permitted 4-tuples within the Right interval I[p2
k + 1,mk]4 obtained

in the previous step, and using the formula from Lemma 7.7, we get

δ̌Rk

k = δk + βRk
4

δk
δ4

(
δ̌Rk
4 − δ4

)
= δk + βRk

4

δk
δ4

((
δ4 −

(
δ̂Lk
4 − δ4

) p2
k

mk − p2
k

)
− δ4

)
.

Step 3. Finally, we compute the value of f−1
k (see Lemma 6.3) at x = δ̌Rk

k (the maximum density of permitted k-tuples
within the Right interval I[p2

k + 1,mk]k, obtained in the preceding step). We obtain

δ̂Lk

k = f−1
k

(
δ̌Rk

k

)
= δk +

(
δk − δ̌Rk

k

) mk − p2
k

p2
k

=

= δk +

(
δk −

(
δk + βRk

4

δk
δ4

((
δ4 −

(
δ̂Lk
4 − δ4

) p2
k

mk − p2
k

)
− δ4

)))
mk − p2

k

p2
k

=

= δk +

(
δk −

(
δk + βRk

4

δk
δ4

(
−
(
δ̂Lk
4 − δ4

) p2
k

mk − p2
k

)))
mk − p2

k

p2
k

=

= δk +

(
−βRk

4

δk
δ4

(
−
(
δ̂Lk
4 − δ4

) p2
k

mk − p2
k

))
mk − p2

k

p2
k

=

= δk − βRk
4

δk
δ4

(
δ4 − δ̂Lk

4

)
.

See Remark 7.4.

The following lemma proves that as k → ∞, the minimum value of the density of permitted k-tuples within the
Left interval I[1, p2

k] of the partial sum Sk tends asymptotically to the average δk.

Lemma 7.9. Let Sk (k ≥ 4) be a partial sum of the series
∑
sk. As k →∞, we have δ̂Lk

k ∼ δk.

Proof. Let Sh be the partial sums from level h = 1 to level h = k.

Step 1. Let us pay special attention to the Left interval I[1, p2
k]4 of the partial sum S4, as the level k increases. That

is, we shall keep the level h fixed at 4, and see what happens to the true density of permitted 4-tuples within
I[1, p2

k]4, denoted by δLk
4 , as the level k increases. First of all, we observe that as k increases, the size of

I[1, p2
k]4 increases as well. Consequently, by Proposition 5.3, the density δLk

4 converges to δ4 as k → ∞,
whatever the combination of selected remainders in the sequences sh that form the partial sum S4. It follows
that as k → ∞, the minimum value of δLk

4 converge to the average δ4 as well. Consequently, for this level
h = 4,

lim
k→∞

(
δ4 − δ̂Lk

4

)
= 0. (35)

Step 2. Now, we can prove this lemma. By Lemma 7.8,

δ̂Lk

k = δk − βRk
4

δk
δ4

(
δ4 − δ̂Lk

4

)
.

Dividing by δk, and taking limits as k →∞, we obtain

lim
k→∞

δ̂Lk

k

δk
= lim
k→∞

(
1− βRk

4

1

δ4

(
δ4 − δ̂Lk

4

))
.

By Lemma 7.6, as k →∞ we have βRk
4 → 1; then, from this result and by Step 1, we can compute the limit,

and finally we obtain

lim
k→∞

δ̂Lk

k

δk
= 1.
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Now we are ready to establish a lower bound for the true density of permitted k-tuples within the Left interval
I[1, p2

k] of the partial sum Sk, denoted by δLk

k . By Theorem 4.3, the average density of permitted k-tuples within
I[1, p2

k] is equal to δk, that is to say, is equal to the k-density within the period of Sk. By Lemma 3.2 and Corollary 3.3,
the density δk increases at each level transition pk → pk+1 of order greater than 2, and this implies that for level k > 4
we have δk > δ4. However, what happens to the true density δLk

k ? By Lemma 7.9, as k →∞, we have δ̂Lk

k ∼ δk; hence

δ̂Lk

k → ∞, by Theorem 3.4. It follows that there exists K ∈ Z+ such that δLk

k > δ4 for every level k > K, whatever
the combination of selected remainders in the sequences sh that form every partial sum Sk.

Lemma 7.10. Let δLk

k be the true density of permitted k-tuples within the Left interval I[1, p2
k]. For k ≥ 35 (pk ≥

149), we have δLk

k > δ4, whatever the combination of selected remainders in the sequences sh that form every partial
sum Sk.

Remark 7.5. Note that between level h = 4 and level h = 35, there are 22 level transitions of order greater than 2;
by Corollary 3.3, the average density δh increases at each level transition of order greater than 2.

Proof. Step 1. We begin by finding bounds for the density of permitted 4-tuples within the Left interval I[1, p2
k]4,

for level k ≥ 35. Let ε = 0.005; we compute δ4 using Lemma 3.1. For level k ≥ 35 (pk ≥ p35) we have
p2
k ≥ p2

35 = 22201, and consequently, for the Left interval I[1, p2
k]4, using Lemma 5.2 and Remark 5.2, it is

easy to check that

δ4 − ε < δLk
4 < δ4 + ε (k ≥ 35). (36)

Step 2. By Lemma 2.5, we can take k large enough that the size of the Left interval I[1, p2
k] is negligible compared

to the size of the interval I[1,mk]. On the other hand, βRk
4 → 1 as k → ∞, by Lemma 7.6. From the proof

of Lemma 7.6, it is easy to see that this result follows from the fact that as k →∞, the size of I[p2
k + 1,mk]

becomes larger and larger than the size of I[1, p2
k]. That is, the degree of closeness of βRk

4 to 1 depends on the
degree of closeness of the size of I[p2

k + 1,mk] to the size of I[1,mk].

Now, for a partial sum Sk where k ≥ 35, the ratio of the size of I[1, p2
k] to the size of the interval I[1,mk] is

less than 1.5 × 10−53. Clearly, the size of the Left interval I[1, p2
k] is negligible compared to the size of the

interval I[1,mk]. Consequently, βRk
4 must be very close to 1 for a level k ≥ 35.

Step 3. By definition,

δ̂Lk

k ≤ δ
Lk

k . (37)

On the other hand, by Lemma 7.8, we have the formula

δ̂Lk

k = δk − βRk
4

δk
δ4

(
δ4 − δ̂Lk

4

)
.

Therefore, substituting this into (37), we obtain

δk − βRk
4

δk
δ4

(
δ4 − δ̂Lk

4

)
≤ δLk

k . (38)

From (36), we have (δ4 − δ̂Lk
4 ) < ε if k ≥ 35; then, substituting this into (38),

δk − βRk
4

δk
δ4
ε ≤ δLk

k (k ≥ 35),

and assuming βRk
4 = 1 we obtain

δk −
δk
δ4
ε ≤ δLk

k (k ≥ 35).

Hence, it is easy to check that, with the preceding assumption, δLk

k ≥ δk − δk/δ4ε > δ4, for k ≥ 35.
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Step 4. We prove that indeed δLk

k > δ4 for k ≥ 35. Suppose that someone asked the following question: for a level

k ≥ 35, could δLk

k ≤ δ4, for a particular combination of selected remainders within the sequences sh that form
the partial sum Sk? In this case,

δ̂Lk

k = δk − βRk
4

δk
δ4

(
δ4 − δ̂Lk

4

)
≤ δ4. (39)

Since by Step 1 we have (δ4− δ̂Lk
4 ) < ε, for k ≥ 35, it is simple to check that (39) implies βRk

4 ≥ 79.2 (k ≥ 35),
and this contradicts Step 2. Therefore, the answer to this question is ‘no’, and we conclude that for every
level k ≥ 35 we have δLk

k > δ4, no matter the combination of selected remainders in the sequences sh that
form the partial sum Sk.

Definition 7.4. Let Sk be the partial sum associated to the Sieve II; recall that in Section 2 we have taken
B = {n : 1 ≤ n ≤ p2

k}; let T (B,P, pk) be the sifting function of the Sieve II. We denote by {T (B,P, pk)} the set of
the values of T (B,P, pk) for all the combinations of selected remainders in the sequences that form the partial sum
Sk.

Now, we can obtain a lower bound for the sifting function of the Sieve II (that is, a lower bound for the number
of permitted k-tuples within the Left interval I[1, p2

k] of Sk).

Lemma 7.11. For level k ≥ 35 (pk ≥ 149), we have min{T (B,P, pk)} > pk/2.

Remark 7.6. Consider the partial sum Sk of the series
∑
sk. Recall the notation {δLk

k } to denote the set of values

of δLk

k , for all the combinations of selected remainders in the sequences that form the partial sum Sk; and recall

the notation δ̂Lk

k to denote min{δLk

k }. Note that within the Left interval I[1, p2
k] of the partial sum Sk we have pk

subintervals of size pk. So, the minimum number of permitted k-tuples within the Left interval I[1, p2
k] of the partial

sum Sk is pk δ̂
Lk

k . Then, by definition, min{T (B,P, pk)} = pk δ̂
Lk

k .

Proof. By the preceding remark, min{T (B,P, pk)} = pk δ̂
Lk

k . Now, by Lemma 7.10, if k ≥ 35 then δ̂Lk

k > δ4. It
follows that min{T (B,P, pk)} > pkδ4, whenever k ≥ 35. Using Lemma 3.1, it is easy to check that δ4 = 1/2, and so
min{T (B,P, pk)} > pk/2 if k ≥ 35.

The next result can be obtained as an easy consequence of the preceding lemma, or it can be obtained from
Lemma 7.9. We shall take the second way.

Lemma 7.12. As k →∞, we have min{T (B,P, pk)} → ∞.

Proof. By Lemma 7.9, as k → ∞ we have δ̂Lk

k ∼ δk, and by Theorem 3.4 we have δk → ∞; it follows that δ̂Lk

k → ∞
as k →∞. On the other hand, by Remark 7.6, we have min{T (B,P, pk)} = pk δ̂

Lk

k . Since, as k →∞, both pk →∞
and δ̂Lk

k →∞, it follows that min{T (B,P, pk)} → ∞ as well.

8 Proof of the Main Theorem

In this section we prove the Main Theorem. We begin by defining the sequence of k-tuples of the Sieve associated
with x (the Sieve I), where x > 49 is an even number.

Definition 8.1. Let x > 49 be an even number, and let k be the index of the greatest prime less than
√
x. Let

{b1, b2, b3, . . . , bk} be the ordered set of the remainders of dividing x by p1, p2, p3, . . . , pk. We define the sequence of
k-tuples of remainders of level k, where in the sequences of remainders modulo ph (1 ≤ h ≤ k) that form this sequence
of k-tuples are applied the following rules for selecting remainders:

Rule 1. Within every period of size ph of the sequence sh (1 ≤ h ≤ k), the remainder 0 is selected.

Rule 2. Within every period of size ph of the sequence sh (1 ≤ h ≤ k), the remainder bh is selected.

Now we can define formally the Sieve I, as follows.
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Definition 8.2. Let P be the sequence of all primes; let z =
√
x, and let pk be the greatest prime less than z. Let A

be the set consisting of the indices of the sequence of k-tuples of the preceding definition, that lie in the interval [1, x].
For each p = ph ∈P, (1 ≤ h ≤ k), the subset Ap of A consists of the indices n of the sequence of k-tuples such that
the remainder of dividing n by the modulus ph is a selected remainder. Then, the indices of the prohibited k-tuples
lying in A are sifted out; and the indices of the permitted k-tuples lying in A remain unsifted. See Remark 1.2. The
sifting function

S(A ,P, z) =

∣∣∣∣∣∣∣∣A \
⋃
p∈P
p<z

Ap

∣∣∣∣∣∣∣∣ ,
is given by the number of permitted k-tuples whose indices lie in the interval A .

Remark 8.1. Every sequence sh (1 ≤ h ≤ k) that form the sequence of k-tuples associated to the Sieve I consists
of the remainders of dividing n by ph. If a remainder is equal to 0, it is always a selected remainder. If a remainder
is equal to bh, it is also a selected remainder. If x is divisible by ph, then bh = 0 and therefore, in every period ph of
sh there is only one selected remainder.

The following theorem shows that if n is the index of a permitted k-tuple belonging to the set A and 1 < n < x,
then n is a prime such that either x− n = 1 or x− n is also a prime.

Theorem 8.1. Let us consider the Sieve I, and its associated sequence of k-tuples. If n (1 < n < x) is an unsifted
element of the set A , then n is a prime such that either x− n = 1 or x− n is also a prime.

Proof. Step 1. By definition, the set A consists of the indices of the sequence of k-tuples associated to the Sieve I,
which lie in the interval [1, x]. Since n is an unsifted element of the set A , by definition, n is the index of a
permitted k-tuple. In the sequences of remainders modulo ph (1 ≤ h ≤ k) that form the sequence of k-tuples
associated to the Sieve I, if a remainder is equal to 0 then it is a selected remainder. Then, by definition,
a permitted k-tuple in this sequence has no element equal to 0 (see Remark 1.1). This means that n is not
divisible by any of the primes p1, p2, p3, . . . , pk less than z =

√
x. Since 1 < n < x, it follows at once that n is

a prime.

Step 2. Let {b1, b2, b3, . . . , bk} be the ordered set of the remainders of dividing x by p1, p2, p3, . . . , pk. Let rh (1 ≤
h ≤ k) be the elements of the permitted k-tuple whose index is n. In the sequences of remainders modulo
ph (1 ≤ h ≤ k) that form the sequence of k-tuples associated to the Sieve I, by definition, if a given remainder
of the sequence is equal to bh ∈ {b1, b2, b3, . . . , bk}, then it is a selected remainder. Consequently, by definition,
for the permitted k-tuple whose index is n we have rh 6= bh (1 ≤ h ≤ k); this implies n 6≡ x (mod ph), for
every prime ph <

√
x (see Remark 1.1).

Step 3. By Step 1, n is a prime; furthermore n 6≡ x (mod ph), where ph <
√
x, by Step 2. This last implies that x−n

is not divisible by any prime ph <
√
x. Since

√
x− n <

√
x, it follows that either x− n = 1 or x− n is also a

prime.

Note that, given the level k, and given an even integer x (p2
k < x < p2

k+1), there is a sequence of k-tuples associated
to the Sieve I, which has specific selected remainders for this particular x. On the other hand, given k, there is a
partial sum Sk associated to the Sieve II, where there are multiple choices for selecting remainders, allowed by the
rules defined in Section 2. Both are sequences of k-tuples of remainders, but they differ in the rules for selecting
remainders in each one of them. The following lemma gives the relation between the number of permitted k-tuples
within the interval I[1, p2

k] of the partial sum Sk (the sifting function of the Sieve II), and the number of permitted
k-tuples within the interval I[1, x] of the sequence of k-tuples associated to the Sieve I (the sifting function of the
Sieve I).

Recall that we denote by {T (B,P, pk)} the set of the values of T (B,P, pk) for all the combinations of selected
remainders in the sequences that form the partial sum Sk associated to the Sieve II.

Lemma 8.2. Let P be the sequence of all primes. Let x > 49 be an even number, and let k be the index of the
greatest prime less than z =

√
x; that is, p2

k < x < p2
k+1. Consider the Sieve I, the Sieve II, and their associated

sequences of k-tuples. We have S(A ,P, z) ≥ min{T (B,P, pk)}.

Proof. By definition, the sequences of remainders modulo ph (1 < h ≤ k) that form the sequence of k-tuples associated
to the Sieve I can have one or two selected remainders in every period (see Remark 8.1). However, the sequences
sh (1 < h ≤ k) that form the partial sum Sk associated to the Sieve II, by definition, have always two selected
remainders in every period. Suppose that we perform on the sequence of k-tuples associated to the Sieve I the
following operation: in each sequence of remainders modulo ph (1 < h ≤ k) that have only one selected remainder
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in every period, we choose an arbitrary second selected remainder. We obtain a partial sum Sk with a particular
combination of selected remainders, where the number of permitted k-tuples within the interval I[1, p2

k] is greater
than or equal to min{T (B,P, pk)}. It is obvious that in the interval I[1, p2

k] of the sequence of k-tuples associated
to the Sieve I before performing the operation, the number of permitted k-tuples is also greater than or equal to
min{T (B,P, pk)}. Since I[1, p2

k] ⊂ I[1, x], it follows that S(A ,P, z) ≥ min{T (B,P, pk)}.

We need one more lemma before proving the Main theorem.

Lemma 8.3. In the sequence of k-tuples associated to the Sieve I, if n (1 < n < x) is the index of a permitted
k-tuple, then n′ = x− n is the index of another permitted k-tuple.

Proof. Step 1. Let {p1, p2, p3, . . . , pk} be the ordered set of the primes less than z =
√
x; and let {b1, b2, b3, . . . , bk} be

the ordered set of the remainders of dividing x by p1, p2, p3, . . . , pk. Recall that in the sequences of remainders
modulo ph (1 ≤ h ≤ k) that form the sequence of k-tuples associated to the Sieve I, we have that 0 is a
selected remainder, and bh is also a selected remainder. Therefore, a given k-tuple whose elements are neither
0 nor bh (1 ≤ h ≤ k), by definition, is a permitted k-tuple.

Step 2. Let rh (1 ≤ h ≤ k) be the elements of the permitted k-tuple whose index is n. By definition, for the permitted
k-tuple whose index is n we have rh 6= bh (1 ≤ h ≤ k), since every bh is a selected remainder; this implies
n 6≡ x (mod ph), for every prime ph <

√
x. Hence n′ = x − n 6≡ 0 (mod ph), for every prime ph <

√
x. It

follows that the k-tuple whose index is n′ has no element equal to 0.

Step 3. Let r′h (1 ≤ h ≤ k) be the elements of the k-tuple whose index is n′ = x − n. By definition, the permitted
k-tuple whose index is n has no element equal to 0, since it is a selected remainder. This means that n is not
divisible by any of the primes p1, p2, p3, . . . , pk less than

√
x. It follows that n 6≡ 0 (mod ph) =⇒ n + x 6≡ x

(mod ph) =⇒ n′ = x − n 6≡ x (mod ph), for every prime ph ∈ {p1, p2, p3, . . . , pk}. So, for the k-tuple whose
index is n′ = x− n we have r′h 6= bh (1 ≤ h ≤ k). From Step 1, Step 2 and this step, the k-tuple whose index
is n′ is a permitted k-tuple.

Finally, we prove the Main Theorem. First, a definition:

Definition 8.3. Let x > 49 be an even number. We define the partition function g(x) as the number of represen-
tations of the even number x as the sum p+ q of two primes (p ≤ q), that is, the number of Goldbach partitions [11]
of the even number x.

Remark 8.2. Let x > 49 be an even number. Assume that in the sequence of k-tuples associated to the Sieve I
there is a permitted k-tuple at position n = x−1. Then, by Lemma 8.3, there is another permitted k-tuple at position
1; and furthermore, n = x − 1 is a prime, by Lemma 8.1, Step 1. So, 1 and x − 1 will appear among the unsifted
members of the set A . Note that in this case x is an even number of the form p+ 1, where p is a prime.

Remark 8.3. Let x > 49 be an even number. Suppose that in the sequence of k-tuples associated to the Sieve I
there is a permitted k-tuple at position n = x/2. Then, by Lemma 8.1, Step 1, the even number x is of the form
2p, where p is a prime. In this case, there is a Goldbach partition x = p + p, but for this partition we have only one
permitted k-tuple at position n = p in the sequence of k-tuples.

Theorem 8.4. The Main Theorem
Let x > 49 be an even number, and let k be the index of the greatest prime less than z =

√
x.

(a) Every even number x > p2
35 (p2

35 = 1492 = 22201) is the sum of two odd primes.

(b) As x→∞, we have g(x)→∞.

Proof. Step 1. Recall that S(A ,P, z) denotes the sifting function of the Sieve I; assume that S(A ,P, z) ≥ 3. By
Remark 8.2, among the unsifted members of the set A might appear 1 and x− 1. So, we can see that there
are at least S(A ,P, z)− 2 integers n in A such that n is a prime and x− n is also a prime, by Theorem 8.1.

Step 2. By Lemma 8.1, the unsifted members of the set A could be primes p such that x = p + q, where q is also a
prime that belongs to A . If p = q then x is of the form 2p (see Remark 8.3); in this case we have a Goldbach
partition x = p+ p, and only one member p of the set A ; otherwise, we have a Goldbach partition x = p+ q,
and two members p, q of the set A . By Step 1, it is easy to check that in either case, the number g(x) of
Goldbach partitions of the even number x must be at least d(S(A ,P, z)− 2)/2e.
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Step 3. We prove part (a) of the theorem. By Lemma 7.11, for every level k ≥ 35, we have min{T (B,P, pk)} >
pk/2 ≥ p35/2. On the other hand, S(A ,P, z) ≥ min{T (B,P, pk)} for every even number x such that
p2
k < x < p2

k+1 (k ≥ 35), by Lemma 8.2. It follows that S(A ,P, z) > p35/2 for every even number x > p2
35.

Then, by Step 1, if x > p2
35 there must be at least one unsifted member n < x of A , which is a prime such

that x− n is also a prime.

Step 4. We prove part (b) of the theorem. By Lemma 8.2, we have S(A ,P, z) ≥ min{T (B,P, pk)} for every even
number x such that p2

k < x < p2
k+1 (k ≥ 4). On the other hand, min{T (B,P, pk)} → ∞ as k → ∞, by

Lemma 7.12. It follows that S(A ,P, z)→∞ as x→∞. Hence g(x)→∞ as x→∞, by Step 2. The Main
Theorem is proved.

Now, it is a known fact that the strong Goldbach conjecture has been checked for even numbers larger than
p2

35 = 22, 201. From this and the Main theorem, we conclude that every even number x > 4 can be expressed as the
sum of two odd primes; therefore, the binary Goldbach conjecture is proved.
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