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Experimentally, the sum of the W and Z gauge boson masses is equal to the top quark t mass, to 

an accuracy of better than 1%. This unexpected mass relationship has no Standard Model expla-

nation. It can be related to the precision ( ) /3 ( ) /2 (0.09%)p p W Z    mass equality in 

Fermilab and CERN pp  collision experiments. Another empirical mass relation to consider here 

is the top-quark to electron mass ratio 2(18 / ) ,t em m   which ties together the lightest and 

heaviest particle states to 0.1% accuracy. These results, which do not appear to be accidental, can 

be used as a guide in classifying high-energy particle states. Since these relationships are be-

tween different types of particle states, they logically involve the particle energies  = mc2 rather 

than their masses, since energies represent a universal property that is essentially independent of 

particle types and quantum numbers. Particle energies  are proportional to particle inertial 

masses m. The Standard Model quark energies q correspond to constituent-quark masses. The 

experimental mass/energy relationships delineated here can be fitted into a comprehensive par-

ticle generation formalism based on factor-of-137 "-boost" kinetic-energy-to-particle-energy 

transformations in related boson, fermion and gauge boson energy production channels. 
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 The three elementary particles above 12 GeV that have been experimentally verified to 

date are the W and Z gauge bosons and top quark t. Theoretically, gauge bosons and quarks are 

regarded as independent groups with respect to quantum numbers and mass values. Experimen-

tally, however, there is an unexpected relationship among their measured masses:  

  (0.8%  accuracy).W Z tm m m     

This accurate mass relationship poses a challenge to particle physicists: can it be dismissed as a 

meaningless coincidence, or does it in fact provide valuable clues with respect to the generation 

process for these particle states? In the present paper we investigate the latter possibility, using 

the experimental particle data [1] as a guide. 

 The mW + mZ = mt mass equation relates a quark mass to a sum of gauge boson masses, in 

a manner that is independent of spins, charge states (fractional or integer), and particle flavors 

and colors. This is a key result. The one common property in this mixed particle and quark triad 

is the total energy i = mic
2 of each particle state i, which by Einstein's equation is proportional 

to the inertial mass mi of the state. The inertial mass is a mass-energy entity that includes internal 

force-field and angular momentum components within the particle state [2], as well as non-

electromagnetic mass components that are necessary to maintain the localization of the mass-

energy structure [3]. Thus the observed numerical equality of the (W+Z) and (top quark t) masses 

should properly be restated as the numerical equality of their total energies: 

     (0.8%  accuracy).W Z t      
 

The fact that the W and Z energies contribute linearly to this equality suggests that their average 

energy 
WZ
  may play a significant role. The experimental values for these energies are: [1] 

  80.399 0.023 GeV; 91.1876 0.0021 GeV;W Z        

  85.793 0.013 GeV;
WZ
      

  2 171.593 0.025 GeV;W Z WZ
         

  172.9 1.1 GeV. t      

 The other key fact we know about the (W, Z, t) particle states is the manner in which they 

are generated by proton-antiproton collisions at the Tevatron and LHC. High-energy beam pro-

tons and antiprotons are relativistically fore-shortened into flat disks, which each contain three 

essentially-free ( or )q u d  or ( or )q u d  quarks. The collision process is between individual 

quarks and antiquarks. Collisions that produce gauge bosons are those rare events (one in 1010) in 
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which a quark collides squarely with an antiquark, so that the two quarks acquire enough of the 

available beam energy to boost them up into the gauge boson range. 

 Protons and neutrons have the quark configurations p(u,u,d) and n(u,d,d), respectively. 

The u and d quarks have slightly different constituent-quark masses and energies [4]. It is of 

interest to demonstrate that this u and d mass/energy difference, which we lsabel here as  does 

not play a role in the determination of the average p p  collision systematics. The n – p energy 

difference  can be attributed to the quark energy difference d – u = . Denoting the total proton 

energy as p, the corresponding quark energies are u = (p – and d = (p + 2 The 

p p  quark-antiquark collisions occur in the ratio 4uu / 4ud / 1dd. When we take an average 

over this collision ratio, the terms containing  cancel out, which gives the average experimental 

proton-plus-antiproton quark-antiquark energy 
p pq q  as  

  ( ) / 3 625.515 MeV.
p p p pq q        

The average proton-quark energy, 312.8 MeV,
pq   represents its average constituent-quark 

mass [4], so the energy equations we use here can be labeled as constituent-energy equations. 

 The fractionally-charged qp = (up, dp) proton constituent quarks reproduce the p± and n0 

nucleon charge states. Fractionally-charged qgb = (ugb, dgb) gauge-boson constituent quarks can 

similarly be invoked to reproduce the W± and Z0 charge states. The large mass splitting of the W 

and Z gauge bosons is determined by their electroweak decay channels. We can conceptually 

divide the qgb gauge boson quark excitation process into two stages: (1) an upward leap in ener-

gy from the 
p pq q  proton quark-antiquark average energy to the 

WZ
  average energy; (2) an 

energy-conserving spontaneous-symmetry-breaking gauge transformation that splits the W and Z 

energies. The experimental ratio of the 
WZ
  and 

p pq q  average energies is  

  / 137.156 ,
p pWZ q q    

which, remarkably, matches the fine structure constant value 21 / / 137.036c e    to 0.09%. 

Hence the quark-antiquark p pq q  to gb gbq q  excitation process—the conversion of kinetic energy 

into particle energy—takes place in the form of an "-boost" in energy by a factor of 137. We 

can regard the occurrence of the numerical factor 1 137   in a particle energy ratio as the 
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"signature" for the excitation of a particle "ground state" into a higher particle state via an -

boost reaction. Using the -boost notation, we write down two experimental energy equations: 

   the Tevatron-LHC pp  to gauge boson energy equation 

  ( ) / 3 ) / 2 (0.09% accuracy); (1)p p W Z          

   the top quark to proton energy equation 

  4 /3 (1.0% accuracy), (2)t p     

 The average energy of a qgb quark that is -boosted from an average-energy qp quark is  
 

  / 42.859 GeV. (3)
pgbq q      

The gauge boson quark 
gbq  is not observed as a particle state, but the quark energy 

gbq  serves 

as a unit energy quantum for the (W, Z, t) triad, where we have 

2
gb gb gbWZ q q q      (0.09%) and 4

gbqt   (1.0%).                                 (4)  

 The energy relationships established here for the (W, Z, t) triad are sufficient to identify 

them as members of the gauge boson "-boost energy channel", where the empirical properties 

of a particle -boost energy channel are delineated as follows: 

(1) A particle -boost channel is characterized by an -boost from a ground state to an excited 

state, which then acts as a unit energy quantum for creating higher-energy states. 

(2) Particle creation occurs via -boost excitations of energy channels in which different particle 

types can be generated sequentially inside a single "excitation-energy-stream". 

 (3) The twofold signature of an -boost channel is: (1) an energy ratio that contains the factor 

1 137  ; (2) a broad energy gap located above the channel ground-state energy. 

(4) There are three identifiable -boost energy channels, which are labeled by their unit energy 
quanta, and are displayed graphically in Fig. 1: 

      (a) The boson -boost: b = 70 MeV unit energy; e = 0.511 MeV ground state. 

      (b) The fermion -boost: f = 105 MeV unit energy; e = 0.511 MeV ground state. 

      (c) The gauge boson -boost: 
gbq  = 42.86 GeV unit energy; 

pq  = 313 MeV ground state. 

These energy channels occur in matching particle-antiparticle pairs. 

(5) The energy -boosts to the boson (±, 0) charge multiplet and gauge boson (W±, Z0) charge 

multiplet are, conceptually at least, to the multiplet average energy, which is then conserved in 

the subsequent spontaneous symmetry breaking of the masses. 

(6) There are no purely hadronic -boost energy channels. 
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 The experimental energy equations that apply to the gauge boson -channel were dis-

played in Eqs. (1-4). A graphical representation of the -boost from the proton-antiproton p pq q  

pair to the gauge boson gb gbq q  pair (as represented by the average WZ mass) is shown in Fig. 1. 

The low-energy boson and fermion particle excitations extend up to 12 GeV, where the Upsilon 

mesons stop. Then there is a wide energy gap from 12 to 80 GeV, where the W and Z gauge 

bosons created by the -boost appear. The fractionally-charged 43 GeV qgb quarks are not ob-

served singly, but only in the form of higher-mass gb gbq q  pairs. 

 Guided by the high-energy gauge boson -boost results, we now include the -boost 

channnels at lower energies. Hadron states by themselves contain no factor-of-137 energy ratios, 

but if we add in the leptons, two -boost energy channels open up, boson and fermion, as shown 

in Fig. 1. The spin 0 boson channel in Fig. 1 is defined by an -boost from the electron to the eb 

unit energy quantum / 70.025 MeV,eb     accompanied by a matching antiparticle -boost. 

The combined particle and antiparticle -boosts generate the spin 0 ')    pseudoscalar 

mesons in a two-step process: (1) the 1.022 MeV ee  ground state is -boosted into an  

0( ) / 2 137.27 MeV        

average-energy pion  , as portrayed in Fig. 1; (2) the   energy quantum serves as a mass unit 

that is multiplied to create the higher-energy and '   mesons. Experimentally, the ')    

mesons exhibit an accurately linear 1/4/7 energy ratio, 

4 (0.23%)   ;  ' 7 (0.33%),    

which is displayed graphically in Fig. 2, with the and '   mesons plotted in multiples of  . 

 The 70 MeV b boson energy quantum appears in the  meson as the pion quark q 
, 

where ( , ) ,q u d    so that 140 MeVbq q b    
        is the calculated pion energy. The 

experimental pion energy 137.27 MeV   thus reflects a 2% hadronic binding energy (HBE), 

which also applies to the  and ' mesons. The equation q q 
     defines the  meson quark 

energy .q  In terms of the unit boson energy quantum eb, with an overall 2% HBE applied, we 

obtain the following calculated   boson particle and q  boson quark energy equations: 
 

2 b    (0.23%) and 4 bq   (0.33%),                                      (5) 

which mirror the 2
gbWZ q   (0.09%) and 4

gbqt   (1.0%) gauge boson equations of Eq. (4).  
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Thus the -boost b excitation chain for the (±, 0, q) boson triad mirrors the qb excitation 

chain for the (W±, Z0, t) triad (where the HBE = 0 at high energies). 

 As the final result in this spin 0 boson -boost energy channel, we note that the large 

factor-of-137 energy leap from the electron pair to the pion produces a 1 MeV-to-135 MeV 

pseudoscalar meson energy gap. 

 The spin 1/2 fermion -boost energy channel shown in Fig. 1 opens with a (3/2) energy-

boost from the electron to the unit energy quantum 3 / 2 105.038 MeV,ef     which is ob-

served as the 105.7 MeV muon that serves as the unit energy for the fermion (, p, ) energy 

triad in Fig. 2. A matching antiparticle -channel is also generated, but is not required for the 

present discussion, since the energy relationships in the fermion -boost channel are between 

particle states, where the HBE (which is mainly between particle-antiparticle pairs) is of neglig-

ible importance. The fermion and boson -boost channels share the same particle energy gap. It 

is informative to compare the linear ( , , ')    and (, p, ) energy triads of Fig. 2, in which the 

lowest-energy state in each case acts as a unit energy quantum. The boson ( , , ')    triad in-

volves clearly-related pseudoscalar mesons, and it has an accurate 1/4/7 energy ratio. The fer-

mion (, p, ) triad, on the other hand, interleaves two leptons with a hadron, and has just their 

energies as the common factor; these are in an accurate 1/9/17 energy ratio. The boson inter-level 

spacing is    420 MeV (minus a 2% HBE correction); the fermion inter-level spacing is twice 

that value,    840 MeV (with no HBE correction). 

 In Fig. 2, the muon energy  = 105.658 MeV is used for illustration purposes as the 

fermion unit energy quantum. It gives the (, p, ) energy ratios 

9 (1.35%),p   17 (1.09%)  . 

Alternately, using the -boost energy quantum f = 105 MeV as the fermion unit energy gives  
 

  (0.6%),f   9 (0.7%),fp   17 (0.5%)f  ,                             (6) 

which is more accurately linear, and is used for the fermion states displayed in Fig. 4. We also 

have the accurate energy relationship (0.1%),f e     where the -boost energy f is added 

to the electron ground-state energy e. This suggests that the -boost energy from electron exci-

tations should be added to the ground-state energy. However, this addition is not significant at 

higher energies, and is not employed here. In addition to the (, p, ) triad in Eq. (6), the proton 

average-energy quark 312.8 MeV
pq   is reproduced in f units as 3  (0.7%).

pq f    



7 
 

 We now have enough experimental information to create an excitation-energy-stream that 

extends from the electron to the top quark, and occurs as follows:  

(3 /2 ) ; ; / 3 ; / ; 4 . (7)
p p gb gbe p p q q q q t                      

This sequence is diagrammed in Fig. 3, and it leads to the equation [5]  

2(3 /2 ) 9 (1/3) (1/ ) 4 (18 / ) , (8)t e e               

The calculated top-quark energy from this equation is 172.728 GeV,t   which matches the 

experimental value 172.9 1.1 GeVt    to an accuracy of 0.10%. This very close agreement 

shows that the renormalized fine structure constant 1 137.036   is the correct scaling factor for 

the -channel energy boosts, rather than the running value 2 1Q 128    [6]. It should be noted 

that the factor 18 is not an adjustable parameter, and it is not arbitrarily chosen: it is the product 

of several experimentally accurate particle energy ratios. 

 Another relevant group of basic particle ground states is the 1S 1S )( , J/ψ ,   vector meson 

triad, which is displayed in Fig. 4 together with the Bc meson. These states are of importance for 

their energy ratios and binding-energy systematics. The strange quark s serves as the unit energy 

quantum for these four states. Its calculated energy, s = 5 f = 525 MeV, is in line with the value 

deduced from hyperon magnetic moments [7]. Successive energy triplings of the s quark and 

ss   meson create the J/ and   mesons and the mixed-quark Bc meson, as sequenced here:  

1J /ψ1.019 GeV 0.97 10 , 3.097 GeV 0.983 30 ,
Sf fccss              

which require HBE's of 3.0% and 1.7%, respectively, to obtain accurate fits; and  

1
6.277 GeV 0.996 60 , 9.4603 GeV 1.001 90 ,

c Sf fB bbbc               

where the HBE has essentially vanished at these higher energies (asymptotic freedom). The HBE 

is due to hadronic gluon fields, which have ranges of about 10-13 cm. Spectroscopically, quarks q 

appear as Compton-sized objects, with radii /C qq
R c    that scale inversely with energy [8]. 

Above roughly 6 GeV, the quarks are small enough and close enough that the HBE is negligible. 

 Fermion -boosted quarks and ground-state particles are shown together on the quantized 

energy grid of Fig. 5, which is plotted in fermion units f = 105 MeV. Also displayed is the Fig. 1 

gauge boson -boost from the (up, dp) energy-averaged proton quarks up to the (ugb, dgb) energy-

averaged gauge boson quarks. When low-energy HBE's are applied, the particle energies for the 

states in Fig. 5 are reproduced at the 1% accuracy level. 
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 The experimental results displayed here have been obtained by the use of particle energy 

equations, which enable us to combine different particle types together in a single equation. 

These equations led to the identification of the particle production -boost energy channels of 

Fig. 1, each of which opens with a factor-of-137 boost in energy from a ground state to an ex-

cited state that serves as a unit energy quantum. Quantum mechanically, energy  and time t are 

closely-related non-commuting variables. Hence if particle energy ratios exhibit a dependence 

on , their lifetime ratios may also be -dependent. This is in fact the case, as is demonstrated by 

the boson pseudoscalar mesons o ')       discussed above, whose mean lifetimes  [1] are 

displayed in Fig. 6. These lifetimes span 13 orders of magnitude, and are accurate -quantized 

over the whole range. Also, the closely-related pseudoscalar kaons S
oK and K ,  which feature 

positive parity  decay channels, have the accurate lifetime ratio 
K K

(0.9%) .     0
S

 The 

fermion ground states similarly exhibit -quantized lifetimes [9]. The important result to be 

drawn from these -quantized ground-state lifetime ratios is that they reinforce the systematics of 

the -quantized particle -boost energy channels. Detailed graphical displays of the experimen-

tal lifetime data have been published elsewhere [9]. 

 The accurate energy equalities that are displayed here for the boson b and fermion f 

energy grids apply to the metastable quark ground-state configurations, which correspond to the 

particles with lifetimes  > 10-21 sec. The shorter-lived excited states are more complex: some 

particles, such as the  and K*(892) mesons, require mixed b and f basis states; other 

particles, such as the s-quark , , ,     hyperons, require unexpected HBE corrections. Anoth-

er ramification involves the factor of 3/2 mass ratio between the b = 70 MeV and f = 105 MeV 

basis states, which can be related to the mathematical systematics of a relativistically spinning 

sphere of uniform matter [8]. 

 Conclusions that can be drawn from the experimental results presented here are: 

(1) The use of particle and quark energies (which are proportional to inertial masses) to establish 

relationships among different types of particle states is a valid physics procedure. 

(2) The energy equation ,W Z t     which is accurate to 1%, should not be considered as 

accidental: these are the only particles observed above 12 GeV, and their energy relationship is 

in line with results at lower energies, including their production as the result of a pp  quark-

antiquark -boost in collider experiments at the Tevatron and LHC. 
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(3) Studies of -quantized particle energies should also include -quantized particle lifetimes. 

(4) The equation 2(18 / ) ,t e   which is accurate to 0.1%, is a significant result [5]. It ties 

together the lowest and highest energies, the longest and shortest lifetimes, and two powers of 

the renormalized fine structure constant . The numerical factor 18 in this equation is not adjust-

able, and not arbitrary: it is the product of an unbroken sequence of energy ratios that extend 

from the electron to the top quark. The numerical value 2/18 .000002958   in this equation is 

discussed by Lederman and Hill [10] in the context of the Higgs coupling constant of the elec-

tron. These authors note that the mass/energy of the top quark t matches the energy scale of the 

Higgs boson interactions, so that the top quark energy t  can be used a reference for defining the 

Higgs constant Hg . In the case of the electron, which is the example they cite, the Higgs equa-

tion is H

2/ /18e tg      , where the numerical expression comes from the present studies. 
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Fig. 1. The three experimentally-identified energy -boosts. The boson leap 

is from a 1.02 MeV ee  pair to a 137 MeV b bq q  pair (with a 2% hadronic 

binding energy applied) that represents an average-energy pion. The fermion 

leap is from the same ground state to a 211 MeV   pair (with no HBE), 

and is greater by a factor of 3/2. The boson and fermion energy channels 

share an energy gap that extends from 1 to 105 MeV (two orders of magni-

tude). The gauge boson leap is from a pp  626 MeV p pq q  average-energy 

quark pair to an 85.8 GeV gb gbq q pair (with no HBE) that represents an 

average-energy WZ gauge boson energy state, and it involves an -boost 

that is numerically equal to 1/ to a precision of 0.09%. This high-energy 

leap creates an energy gap that extends from 12 to 80 GeV. 
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Fig. 2. The linear ') (1, 4, 7)    and ( , , ) (1, 9, 17)p   energy triads, 

which are in the boson and fermion -boost energy channels, respectively, of 

Fig. 1. The pseudoscalar , and '   mesons are closely-related hadronic 

particles, but the weakly-interacting  and  leptons bear no obvious relation-

ship to the hadronic proton p. However, these boson and fermion triads share 

three common features: (1) they are both accurately linear (~1%); (2) each 

lowest-energy particle serves as the unit energy; (3) the ~836 MeV fermion 

excitation interval is double the ~410 MeV boson excitation interval (cor-

rected for HBE = 2%). This suggests that the , p, and  fermions share a 

common -boost energy stream, as do the matching , and '   bosons. 
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Fig. 3. The energy excitation path for the generation of the top quark from the electron 

ground state, showing two factor-of-137 -boosts. The resulting energy equation, 
2(18 / ) ,t e    is accurate to 0.1% [1]. The numerical factor 18 is the product of the 

excitation steps (3 /2) (9) (1 / 3) (4)    diagrammed above. The two large -boost 

steps utilize the renormalized fine structure constant value 1 137.036  . The quark 

states qp and qgb represent energy-averaged proton and gauge boson u and d quark 

combinations, respectively. The extreme accuracy of the calculation, which involves 

no freely-adjustable parameters, ties these particle excitation steps together. 
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Fig. 4. The mass-tripled 1 1( , J / , )S Sss cc bb      vector 

meson excitation tower, where 3 and 3 .b cc s     Also 

included is the mixed-quark cB bc meson. The experimental 

particle energies (in parentheses) are plotted on an f = 105 MeV 

fermion energy grid. The s = 5ef = 525 MeV energy quantum is 

the unit mass for all of these states. The deviation in % of the 

experimental energies from the calculated values is attributed to 

hadronic binding energy (HBE). As can be seen, the HBE is 3% 

at 1 GeV, and decreases smoothly to essentially zero at 6 GeV 

and above, which is a demonstration of hadronic asymptotic 

freedom. 
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Fig. 5. A logarithmic energy diagram of basic fermion particle and quark 

ground states, plotted in units of the -boost unit energy f = 105 MeV. Also 

shown is the -boost to the gauge boson and top quark energy channel, 

which is plotted in units of the quark energy quantum gb = 43 GeV. The 

labels udp and udgb denote average-energy proton and gauge boson u or d 

quark combinations. Successive energy doublings of the 2f = 210 MeV 

energy excitation unit add to the  ground state to create the (, ud, s, p ) 
fermion energy channel states. Energy triplings of the s = 525 MeV s quark 

create the ( , , )s c b vector meson states displayed in Fig. 4.  
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Fig. 6. The lifetimes of the o ')     pseudoscalar mesons, plotted as ratios 

to the ± reference lifetime, using a logarithmic plot to the base 1/137.  

The numerical values of the exponents xi, which are displayed below the 

data points, have almost-integer values that reflect the accurate fits to the 

grid lines . The -periodicity of the lifetimes over 13 orders of magnitude is 

visually apparent. This accurate lifetime scaling requires the renormalized 

coupling constant , and it reinforces the systematics of the -boost energy 

scaling displayed in Fig. 3. 


