
About Absolute Galois Group

M. Pitkänen
Email: matpitka@luukku.com.

http://tgdtheory.com/public_html/.

March 8, 2012

Contents

1 Introduction 3
1.1 Could AGG act as permutation group for infinite number of objects? . . . . . . . . . . 3
1.2 Dessins d’enfant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Langlands program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Langlands program 5
2.1 Adeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Construction of representations of adelic Gl2 . . . . . . . . . . . . . . . . . . . . . . . 6

3 Compactness is guaranteed by algebraicity: dessins d’enfant 7
3.1 Dessins d’enfant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Could one combine quantum adelic representations with dessin d’enfant representations? 8
3.3 Dessins d’enfant and TGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Appendix: Basic concepts and ideas related to the number theoretic Langlands
program 11
4.1 Langlands correspondence and AGG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Abelian class field theory and adeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Langlands correspondence and modular invariance . . . . . . . . . . . . . . . . . . . . 13
4.4 Correspondence between n-dimensional representations of Gal(F/F ) and representa-

tions of GL(n,AF ) in the space of functions in GL(n, F )\GL(n,AF ) . . . . . . . . . . 14
4.4.1 Frobenius automorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.2 Automorphic representations and automorphic functions . . . . . . . . . . . . . 15
4.4.3 Hecke operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Abstract

Absolute Galois Group defined as Galois group of algebraic numbers regarded as extension
of rationals is very difficult concept to define. The goal of classical Langlands program is to
understand the Galois group of algebraic numbers as algebraic extension of rationals - Absolute
Galois Group (AGG) - through its representations. Invertible adeles -ideles - define Gl1 which
can be shown to be isomorphic with the Galois group of maximal Abelian extension of rationals
(MAGG) and the Langlands conjecture is that the representations for algebraic groups with matrix
elements replaced with adeles provide information about AGG and algebraic geometry.

I have asked already earlier whether AGG could act is symmetries of quantum TGD. The basis
idea was that AGG could be identified as a permutation group for a braid having infinite number
of strands. The notion of quantum adele leads to the interpretation of the analog of Galois group
for quantum adeles in terms of permutation groups assignable to finite l braids. One can also
assign to infinite primes braid structures and Galois groups have lift to braid groups.

Objects known as dessins d’enfant provide a geometric representation for AGG in terms of
action on algebraic Riemann surfaces allowing interpretation also as algebraic surfaces in finite
fields. This representation would make sense for algebraic partonic 2-surfaces, and could be im-
portant in the intersection of real and p-adic worlds assigned with living matter in TGD inspired
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1. Introduction 2

quantum biology, and would allow to regard the quantum states of living matter as representa-
tions of AGG. Adeles would make these representations very concrete by bringing in cognition
represented in terms of p-adics and there is also a generalization to Hilbert adeles.

1 Introduction

Langlands correspondence represents extremely abstract mathematics - perhaps too abstract for a
simple minded physicist with rather mundane thinking habits. It takes years to get just a grasp about
the basic motivations and notions, to say nothing about technicalities. Therefore I hope that my own
prattlings about Langlands correspondence could be taken with a merciful understanding attitude.
I cannot do anything for it: I just want desperately to understand what drives these mathematical
physicists and somehow I am convinced that this exotic mathematics could be extremely useful for
my attempts to develop the TGD view about Universe and everything. Writing is for me the only
manner to possibly achieve understanding - or at least a momentary illusion of understanding - and
I can only apologize if the reader has feeling of having wasted time by trying to understand these
scribblings.

Ed Frenkel lectured again about geometric Langlands correspondence and quantum field theories
and this inspired a fresh attempt to understand what the underlying notions could mean in TGD
framework. Frenkel has also article about the relationship between geometric Langlands program and
conformal field theories [14]. My own attempt might be regarded as hopeless but to my view it is
worth of reporting.

The challenge of all challenges for a number theorist is to understand the Galois group of algebraic
numbers regarded as extension of rationals - by its fundamental importance this group deserves to be
called Absolute Galois Group (AGG, [1]). This group is monstrously big since it is in some sense union
of all finite-D Galois groups. Another fundamental Galois group is the Maximal Abelian Galois Group
(MAGG) associated with maximal Abelian extension of rationals [10]. This group is isomorphic with
a subgroup assignable to the ring of adeles [3].

1.1 Could AGG act as permutation group for infinite number of objects?

My own naive proposal for years ago is that AGG could be identified as infinite-dimensional permu-
tation group S∞ [2]. What the subscript ∞ means is of course on non-trivial question. The set of all
finite permutations for infinite sequence of objects at integer positions (to make this more concrete)
or also of permutations which involve infinite number of objects? Do these object reside along integer
points of half-line or the entire real line? In the latter case permutations acting as integer shifts along
the real line are possible and bring in discrete translation group.

A good example is provided by 2-adic numbers. If only sequences consisting of a finite number
of non-vanishing bits are allowed, one obtains ordinary integers - a discrete structure. If sequences
having strictly infinite number of non-vanishing bits are allowed, one obtains 2-adic integers forming
a continuum in 2-adic topology, and one can speak about differential calculus. Something very similar
could take place in the case of AGG and already the example of maximal Abelian Galois group which
has been shown to be essentially Cartesian product of real numbers and all p-adic number fields Qp
divided by rationals suggests that Cartesian product of all p-adic continuums is involved.

What made this proposal so interesting from TGD point of view is that the group algebra of S∞
defined in proper manner is hyper-finite factor of II1 (HFF) [2]. HFFs are fundamental in TGD:
WCW spinors form as a fermionic Fock spaces HFF. This would bring in the inclusions of HFFs,
which could provide new kind understanding of AGG. Also the connection with physics might become
more concrete. The basic problem is to identify how AGG acts on quantum states and the obvious
guess is that they act on algebraic surfaces by affecting the algebraic number valued coefficients of the
polynomials involved. How to formulate this with general coordinate invariant (GCI) manner is of
course a challenge: one should be able to identify preferred coordinates or at least class of them related
by linear algebraic transformations if possible. Symmetries make possible to consider candidates for
this kind of coordinates but it is far from obvious that p-adic CP2 makes sense - or is even needed!

In [2] I proposed a realization of AGG or rather- its covering replacing elements of permutation
group with flows - in terms of braids. Later I considered the possibility to interpret the mapping of
the Galois groups assignable to infinite primes to symplectic flows on braids [5]. This group is covering
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group of AGG with permutations being replaced with flows which in TGD framework could be realized
as symplectic flows. Again GCI is the challenge. I have discussed the symplectic flow representation
of generalized Galois groups assigned with infinite primes (allowing mapping to polynomial primes)
in [5] speculating in the framework provided by the TGD inspired physical picture. Here the notion
of finite measurement resolution leading to finite Galois groups played a key role.

1.2 Dessins d’enfant

Any algebraic surface defined as a common zero locus of rational (in special case polynomial) func-
tions with algebraic coefficients defines a geometric representation of AGG. The action on algebraic
coefficients is induced the action of AGG on algebraic numbers appearing as coefficients and in the
roots of the polynomials involved. One can study many things: the subgroups of AGG leaving given
algebraic surface invariant, the orbits of given algebraic surface under AGG, the subgroups leaving
the elements at the orbit invariant, etc... . This looks simple but is extremely difficult to realize in
practice.

One working geometric approach of this kind to AGG relies on so called dessins d’enfant [6] to be
discussed later. These combinatorial objects provide an amazingly simple diagrammatic approach al-
lowing to understand concretely what the action of AGG means geometrically at the level of algebraic
Riemann surfaces. What is remarkable that every algebraic Riemann surface (with polynomials in-
volved having algebraic coefficients) is compact by Belyi’s theorem [5] and bi-holomorphisms generate
non-algebraic ones from these.

In TGD partonic 2-surfaces are the basic objects and necessarily compact. This puts bells ringing
and suggests that the old idea about AGG as symmetry group of WCW might make sense in the
algebraic intersection of real and p-adic worlds at the level of WCW identifies as the seat of life in
TGD inspired quantum biology. Could this mean that AGG acts naturally on partonic 2-surfaces
and its representations assign number theoretical quantum numbers to living systems? An intriguing
additional result is that all compact Riemann surfaces can be representation as projective varities in
CP3 assigned to twistors. Could there be some connection?

1.3 Langlands program

Another approach to AGG is algebraic and relies on finite-dimensional representations of AGG. If one
manages to construct a matrix representation of AGG, one can identify AGG invariants as eigenvalues
of the matrices characterizing their AGG conjugacy class. Langlands correspondence [14, 13] is a
conjecture stating that the representations of adelic variants of algebraic matrix groups [2] .

Adelic representations are obtained by replacing the matrix elements with elements in the ring
of rational adeles which is tensor product of rationals with Cartesian product of real numbers and
all p-adic number fields with and they provide representations of AGG. Ideles represent elements of
abelianization of AGG. Various completions of rationals are simply collected to form single super
structure.

Number theoretic invariants - such as numbers for points of certain elliptic curves (polynomials with
integer coefficients) - correspond to invariants for the representations of algebraic groups assignable
to the automorphic functions defined in the upper plane H = SL(2, R)/O(2) and invariant under
certain subgroup Γ of modular group acting as modular symmetries in this space and defining in this
manner an algebraic Riemann surface as a coset space H/Γ with finite number of cusps in which the
automorphic function vanishes. The vanishing conditions coded by Γ code also for number theoretic
information.

The conjecture is that number theoretic questions could allow translation to questions of harmonic
analysis and algebraic equations would be replaced by differential equations much simpler to handle.
Also a direct connection with subgroups of modular group Γ of SL(2, Z) emerges and number theoretic
functions like zeta and η functions emerge naturally in the complex analysis.

The notion of adeles generalizes. Instead of rationals one can consider any extension of rationals
and the MAGG and AGG associated with it. p-Adic number fields of the adele are replaced with
their extensions and algebraic extension of rationals appears as entanglement coefficients. This also
conforms with the TGD based vision about evolution and quantum biology based on a hierarchy of
algebraic extensions of rationals. For these reasons it seems that adeles or something akin to them is
tailor-made for the goals and purposes of TGD.

http://en.wikipedia.org/wiki/Dessin_d'enfant
http://en.wikipedia.org/wiki/Belyi's_theorem
http://en.wikipedia.org/wiki/Langlands_correspondence
http://en.wikipedia.org/wiki/Adele_group
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2 Langlands program

Langlands programs starts from the idea that finite-dimensional representations of AGG provide
information about AGG. If one manages to construct a matrix representation of AGG, one can identify
AGG invariants as eigenvalues of the matrices characterizing their AGG conjugacy class. Langlands
correspondence [14, 13] is a conjecture stating that the representations of adelic variants of algebraic
matrix groups [2] .

Adelic representations are obtained by replacing the matrix elements with elements in the ring
of adeles and they provide representations of AGG. Number theoretic invariants - such as numbers
for points of certain elliptic curves (polynomials with integer coefficients) - correspond to invariants
for the representations of algebraic groups assignable to the automorphic functions defined in the
upper plane H = SL(2, R)/O(2) and invariant under certain subgroup Γ of modular group acting as
modular symmetries in this space and defining in this manner an algebraic Riemann surface as a coset
space H/Γ with finite number of cusps in which the automorphic function vanishes. The vanishing
conditions coded by Γ code also for number theoretic information.

Langlands conjecture states that number theoretic questions could allow translation to questions of
harmonic analysis and algebraic equations would be replaced by differential equations much simpler to
handle. Also a direct connection with subgroups of modular group Γ of SL(2, Z) emerges and number
theoretic functions like zeta and η functions emerge naturally in the analysis. I hasten to admit that
I have failed to understand intuitively the deeper motivations for this conjecture but there is support
for it.

2.1 Adeles

This approach leads to adeles [3].

1. AGG is extremely complex and the natural approach is to try something less ambitious first
and construct representations of the Maximal Abelian Galois Group of rationals (MAGG) [10]
assigned to an extension containing all possible roots of unity. One can show that MAGG is
isomorphic to the group of invertible adeles divided by rationals. This is something concrete as
compared to AGG albeit still something extremely complex.

2. The ring of rational adeles [3] discovered by Chevalley is formed by the Cartesian product of
all p-adic number fields and of reals and its non-vanishing elements have the property that only
finite number of p-adic numbers in (...., apn , ....)×a are not p-adic integers (that is possess norm
> 1). Algebraic operations are purely local: multiplications in every completion of rationals
involved. One can also understand this space as a tensor product of rationals with integer adeles
defined by the cartesian product of reals and various p-adic integers. One can say that adeles
organize reals and all p-adic number fields to infinite-dimensional Cartesian product and that
identified rational numbers as common to all of them so that multiplication by rational acts
just as it act in a finite dimensional Cartesian product. The idea that rationals are common to
all completions of rationals is fundamental for quantum TGD so that adeles are expected to be
important.

3. The ring property of adeles makes possible to talk about polynomials of adele valued argument
having rational coefficients and one can extend algebraic geometry to adeles as long as one talks
about varieties defined by polynomials. Existence of polynomials makes it possible to talk about
matrices with adele valued elements. The notion of determinant is well-defined and one can also
define the inverse of adele matrix so that classical algebraic groups have also adele counterpart.
This is of utmost significance in Langlands program and means a breathtaking achievement in
book keeping: all the p-adic number fields would be caught under single symbol ”A”!

4. Ideles are rational adeles with inverse. Ideles form a group but sum of two ideles is not always
idele so that ideles do not form a number field and one cannot dream of constructing genuine
differential calculus of ideles or talking about rational functions of ideles. Also rational functions
fail to make sense. This means quite a strong constraint: if one wants adelic generalization of
physics the solutions of field equations must be representable in terms of polynomials or infinite
Taylor series.

http://en.wikipedia.org/wiki/Langlands_correspondence
http://en.wikipedia.org/wiki/Langlands_correspondence
http://en.wikipedia.org/wiki/Adele_group
http://en.wikipedia.org/wiki/Adele_group
http://en.wikipedia.org/wiki/Adele_ring
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The conjecture of Langlands is that the algebraic groups with matrix elements replaced with
adeles provide finite-dimensional representations of adeles in what can be loosely called group algebra
of adelic algebraic group.

The construction of representation uses complex valued functions defined in the ring of adeles.
This function algebra decomposes naturally to a tensor product of function algebras associated with
reals and various p-adic number fields and one can speak about rational entanglement between these
functions. From the TGD point of view this is very interesting since rational entanglement plays a
key role in TGD inspired quantum biology.

2.2 Construction of representations of adelic Gl2

I have explained some details about the construction of the representation of adelicGl2 in the Appendix
and earlier in [2].

1. The basic idea is to start from the tensor product of representations in various completions of
rationals using the corresponding group algebras. It is natural to require that the functions are
invariant under the left multiplication by Gl2(Q) and eigenstates of Gl2(R) Casimir operator C
under the right multiplication. The functions are smooth in the sense that they are smooth in
Gl2(R) and locally constant in Gl2(Qp).

2. The diagonal subgroup Z(A) consists of products of diagonal matrices in Gl2(A). Characters are
defined in Z(A) as group homomorphisms to complex numbers. The maximal compact subgroup
K ⊂ Gl2(A) is the Cartesian product of Gl2(Zp) and O2(R) and finite-dimensionality under the
action of these groups is also a natural condition.

3. The representations functions satisfy various constraints described in detail in the appendix and
in the article of Frenkel [14]. I just try to explain what I see as the basic ideas.

(a) Functions f form a finite-dimensional vector space under the action of elements of the
maximal compact subgroup K. Multiplication from left by diagonal elements reduces to
a multiplication with character. The functions are eigenstates of the Casimir operator of
Gl2(R) acting from left with a discrete spectrum of eigen values. they are bounded in
Gl2(A). These conditions are rather obvious.

(b) Besides this the functions satisfy also the so called cuspidality conditions, the content of
which is not obvious for a novice like me. These conditions imply that the functions are
invariant under the action for Gl2(Zp) apart from finite number of primes called ramified.
For these primes invariance holds true only under subgroup Γ0(pnk) of Sl2(Zp) consisting
of 2× 2-matrices for which the elements a21 ≡ c vanish modulo pn.

(c) What is non-trivial and looks like a miracle to a physicist is that one can reduce everything
to the study of so called automorphic functions [4] defined in Γ0(N)/Sl(2, R), N =

∏
pnk .

Intuitively one might try to understand this from the idea that adeles for which elements in
Zp are powers of p represent rational numbers. That various p-adic physics somehow factor-
ize the real physics would be the misty idea which in TGD inspired theory of consciousness
translates to the idea that various p-adic physics make possible cognitive representations
of real physics. Somehow the whole adele effectively reduces to a real number. Automor-
phic functions have a number theoretic interpretation and this is certainly one of the key
motivations between Langlands program.

4. Automorphic functions reduce to complex analytic functions in the upper half plane H =
SL2(R)/O(2) transforming in a simple manner under Γ0(N) (modular form of weight k). What
one is left with are modular forms of weight k and level N in upper half plane.

(a) The overall important cuspidality conditions characterized by integer N imply that the
automorphic functions vanish at the cusp points of the algebraic Riemann surface defined
as H/Γ0(N). The modular form can be expanded in Fourier series f =

∑
anq

n in powers
of q = exp(i2πτ), where τ parameterizes upper half plane.

http://en.wikipedia.org/wiki/Character_(mathematics)
http://arxiv.org/pdf/hep-th/0512172v1.pdf
http://en.wikipedia.org/wiki/Automorphic_functions
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(b) The Fourier coefficients an satisfy the condition amn = aman and one ends up with the
conclusion that for each elliptic curve [7] y2 = x3 + ax + b (a and b are rational numbers
satisfying 4a3 + 27b2 6= 0 and reduce to integer is the recent case) there should exist a
modular form with the property that ap codes for the numbers of points of this elliptic
curve in finite field Fp for all but finite number of primes! This is really amazing and
mysterious looking result.

(c) τ can be interpreted as a complex coordinate parametrizing the conformal moduli of tori.
Is this a pure accident or could this relate to the fact that the coefficients turn out to give
numbers of roots for algebraic elliptic surfaces, which are indeed tori? Could cuspidality
conditions have interpretation as vanishing of the modular forms for tori with moduli corre-
sponding to cusps: could these be are somehow singular as elliptic surfaces? The objection
is that the elliptic surfaces as sub-manifolds of C2 have a unique induced metric and there-
fore correspond to a unique conformal modulus τ . But what about other Kähler metrics
than the standard metric for C2 and imbeddings to other complex spaces as algebraic sur-
faces? Could adelic Gl2 representations generalize to adelic representations of Gl2g acting
on Teichmueller parameters of Riemann surface with genus g?

The notion of adeles generalizes. Instead of rationals one can consider any extension of rationals
and the MAGG and AGG associated with it. p-Adic number fields of the adele are replaced with
their extensions and algebraic extension of rationals appears as entanglement coefficients. This also
conforms with the TGD based vision about evolution and quantum biology based on a hierarchy of
algebraic extensions of rationals. For these reasons it seems that adeles or something akin to them is
tailor-made for the goals and purposes of TGD.

3 Compactness is guaranteed by algebraicity: dessins d’enfant

”This discovery, which is technically so simple, made a very strong impression on me, and it represents
a decisive turning point in the course of my reflections, a shift in particular of my centre of interest in
mathematics, which suddenly found itself strongly focussed. I do not believe that a mathematical fact
has ever struck me quite so strongly as this one, nor had a comparable psychological impact. This is
surely because of the very familiar, non-technical nature of the objects considered, of which any childs
drawing scrawled on a bit of paper (at least if the drawing is made without lifting the pencil) gives a
perfectly explicit example. To such a dessin we find associated subtle arithmetic invariants, which are
completely turned topsy-turvy as soon as we add one more stroke.”

This piece of text was written by Grothendieck. He described here the profound impact of the
notion of dessins d’enfant [6] on him. The translation of the notion to english is ”child’s drawings”.
These drawings are graphical representations of Riemann surfaces understood as pairs formed by an
algebraic Riemann surface and its universal covering space from which Riemann surface is obtained
as a projection which can be many-to-one one map. This diagram allows to construct the Riemann
surface modulo bi-holomorphism. Algebraic Riemann surface means that the equations defining it
involve only rational functions with coefficients which are algebraic numbers. This implies that the
action of AGG on the algebraic Riemann surface is well defined as action on the coefficients. One can
assign to the dessin d’enfant combinatorial invariants for the action of AGG.

3.1 Dessins d’enfant

1. Dessin d’enfant is a bi-partite graph [15] meaning that it is possible to label the nodes of the
graphs by black and white points in such a manner that the black and white points alternate
along edge paths. One can identify black and white nodes as sets U and V and every edge
of the graph connects points of U and V. For instance, bipartite graph does not posses any
odd edge cycles. Every tree is bipartite and every planar graphs with even number of edges is
bipartite. The vertices of the bipartite graph are topologically characterized by the number of
lines emerging to the vertex and also 2-vertices are possible. The surface and the embedding
can be described combinatorially using rotation system assigned with each vertex of the graph
and telling the order in which the edges would be crossed by a path that travels clockwise on
the surface around the vertex.

http://en.wikipedia.org/wiki/Elliptic_surface
http://en.wikipedia.org/wiki/Dessins_d'enfant
http://en.wikipedia.org/wiki/Riemann_surface
http://en.wikipedia.org/wiki/Bipartite_graph
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2. The notions of dessin d’enfant and counterpart for Belyi function [5] defining the projection from
the covering of sphere to sphere dates back to the work of Felix Klein. A very deep and very
surprising theorem by Belyi states that all algebraic curves represent compact compact Riemann
surfaces. These surfaces are ramified coverings of the Riemann sphere ramified at three points
only which in suitable complex coordinates can be taken to be the rational points 0,1, ∞ of
real axis. Ramification means that the rational function f with algebraic number coefficients -
known as Belyi’s function - projecting the Riemann surface as covering of sphere to sphere has
critical points which are pre-images of these three points. In the neighborhood of the critical
points the projection map known as Belyi’s function is characterized by degree telling how many
points are mapped to single point of sphere. At the critical point itself these points coincide. A
simplified example of criticality is zn at origin.

The Riemann surface in question can be taken to be H/Γ compactified by finite number of cusp
points. Here H is upper half plane Γ a subgroup of modular group having finite index

3. Dessin d’enfant allows to code combinatorially the data about the Belyi function so that one can
construct both the surface and its Belyi function from this data apart from bi-holomorhism. The
interpretation as projection from covering allows to get grasp about the geometric meaning of
dessin d’enfant. Physicist reader is probably familiar with the graphical representation of cusp
catastrophe. The projection of the critical points and curves of cusp catastrophe as function of
the two control parameters to the control parameter plane replaced in the recent case by complex
plane is highly analogous to dessin d’enfant. The boundary of cusp catastrophe in which cusp
projection is three-to-one has V -shape and at the sides of V the covering of plane is 2-to-1 and
and at the vertex and outside cusp region 1-to-1. The edges of V correspond to the edges of the
dessin d’enfant and the vertex of V to a node of dessin d’enfant.

The number of edges entering given critical point tells the degree of the Belyi function at that
critical point. Dessin d’enfant is imbedded on an oriented surface - plane in the simplest situation
but also sphere and half plane can be considered. The lines of the graph correspond to curves
at which two branches of the covering coincide.

The Wikipedia article [6] about dessin d’enfant discusses a nice example about the construction
of dessin d’enfant and is recommended for the reader.

4. The Belyi function could be any holomorphic function from X to Riemann sphere having only
0,1, and ∞ as critical values and the function f is determined only up to bi-holomorphism. If X
is algebraic surface, f is rational function with algebraic coefficients.

5. What makes the dessin d’enfant so remarkable is that AGG has natural action on the algebraic
coefficients of the rational functions defining algebraic Riemann surfaces and therefore on dessin
d’enfant. For instance, the sequence of integers form by the degrees of the projection map at
the critical points is geometric Galois invariant. One can identify the stabilize of dessin as the
sub-group of AGG leaving dessin d’enfant invariant. One can identify the orbit of dessin d’enfant
under AGG and the subgroup of AGG leaving the points of orbit invariant.

3.2 Could one combine quantum adelic representations with dessin d’enfant
representations?

As already noticed, dessin d’enfant representation of AGG allows to have representations of AGG
at the orbits of dessins d’enfant. If the orbit consists of a finite number n of points, one obtains
representations of AGG in the finite-dimensional discrete Hilbert space spanned by the points, and
representation matrices are n× n matrices.

Suppose that the Galois group of quantum adeles is indeed isomorphic with the commutator group
of AGG. If this is the case then quantum adele valued amplitudes defined in the discrete space formed
by the orbits of dessins d’enfant would provide a representation of AGG with commutator group acting
on the fiber analogous to spin degrees of freedom and AGG on the base space having role analogous
to that of Minkowski space.

One can imagine an approach mimicking the construction of induced representations [8] of Mackey
inspired by the representations of Poincare group. In this approach one identifies orbit of group G as
a space carrying the fields with spin. The subgroup H of G leaving a given point of representation

http://en.wikipedia.org/wiki/Belyi's_theorem
http://en.wikipedia.org/wiki/Belyi's_theorem
http://en.wikipedia.org/wiki/Dessins_d'enfant
http://en.wikipedia.org/wiki/Induced_representations
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space invariant is same at all points of orbit apart from conjugation. The field would have values in
H or group algebra of H or in space in which H acts linearly. In the recent case H could adelic Galois
group of quantum adeles identified as AGG or the subgroup GI of AGG leaving the dessins d’enfant
invariant.

What can one say about GI . How large it is? Can one identify it or its abelization AGI
and assign

it to the points of orbits to construct analogs of induced representations?

1. If the orbit of dessin d’enfant is finite as the fact that the number of its points is invariant under
the action of AGG suggests, GI must be infinite. This would suggests that also AGI

is infinite.
Does AGI

possess adele representation? Is this adele representation identifiable as a sub-adele
of AAGG in some sense? Could it be obtained by dropping some quantum variants of Zp:s from
the decomposition of adele? What the interpretation of these lacking primes could be? Could
these primes correspond to the primes which split in the extensions. If this is the case one could
consider the representations in which AGI

forms the fiber space at each point of dessin d’enfant.

2. One can consider also weaker option for which only so called ramified primes are dropped from
the adele for rationals to obtain the adele for algebraic extension. In adele construction there are
problematic primes p. For rational primes (or corresponding ideals) the representation of p is
as a product of primes of extension as p =

∏
P eii ei are called degrees of ramification. For some

ei > 1 one has ramification analogous to the dependence of form (z−z0)n, n > 1 of holomorphic
function around critical point have interpretation as ramified primes and corresponding factors
Zp are dropped from the adele. To eliminate the problems cause by number theoretic ramification
one can t drop ramified primes from the adele in the extensions of algebraic numbers associated
with the roots of the polynomials appearing in the Belyi map. Could the resulting adele be the
counterpart for the reduced MGGA?

3.3 Dessins d’enfant and TGD

What might be the relevance of Belyi’s theorem and dessins d’enfant for TGD?

1. In TGD framework effective 2-dimensionality implies that basic objects are partonic 2-surfaces
together with their data related to the 4-D tangent space a them. I have already earlier proposed
that Absolute Galois group could have a natural action in the world of the classical worlds
(WCW). The horrible looking problem is how to achieve General Coordinate Invariance (GCI)
for this action.

Partonic 2-surfaces are compact so that they allow a representation as algebraic surfaces. The
notion of dessin d’enfant suggests that partonic 2-surfaces could be described as simple com-
binatorial objects defined by dessin d’enfant as far as the action of Galois group is considered.
This representation would be manifestly general coordinate invariant and would allow to con-
struct representations as Galois group in terms of discrete wave functions at the orbits of dessin
d’enfant. One can also expect that the representation reduces to those of finite Galois groups.

2. Second central problem is the notion of braid which is proposed to provide a realization for
the notion of finite measurement resolution.The recent view is that time-like braids on light
like surfaces and space-like braids at the 3-surfaces defining the ends of space-time surfaces
contain braid strands as Legendrian knots for which the projection of Kähler gauge potential
has vanishing inner product with the tangent vector of the braid strand. For light-like 3-surfaces
this does not imply that the tangent vector of strand is orthogonal to the strand: if the tangent
vector is light-like the condition is automatically satisfied and light-like braid strands define a
good but - as it seems - not a unique guess for what the braid strands are. Note however that
the condition that braid strands correspond to boundaries of string world sheets gives additional
conditions. At space-like 3-surfaces orthogonality to induced Kähler gauge potential fixes the
direction of the tangent vector field only partially.

Suppose one manages to fix completely the equations for braid strands - say by the identification
as light-like strands. What about the end points of strands? How uniquely their positions
are determined? Number theoretical universality suggests that the end points are rational or
algebraic points as points of imbedding space but again GCI poses a problem. Symmetry
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arguments suggest that one could use group theoretically preferred coordinates for M4 and CP2

and identify also the coordinates of partonic 2-surface as imbedding space coordinates for their
projections to geodesic spheres of δM4

± and geodesic sphere of CP2.

A possible resolution of this problem comes from the fact that partonic 2-surface allows an
interpretation as algebraic surface. Braid ends could correspond to the critical points of the
Belyi function defining the projection from the covering so that they would be algebraic points in
the complex coordinates of partonic 2-surfaces fixed apart from algebraic bi-holomorphism. One
would a concrete topological interpretation for why the braid ends are so special. I have already
earlier proposed that braid ends could correspond to singularities associated with coordinate
patches.

3. Is it possible to have compact Riemann which cannot be represented as algebraic surfaces?.
Belyi’s theorem does not deny this. For instance rational functions with real coefficients for
polynomials are possible and must give rise to compact surfaces. Inherently non-algebraic par-
tonic 2-surfaces are possible and for them one cannot define representations of AGG at the orbits
of dessin d’denfant since the action of AGG on f is not well defined now.

This relates in an interesting manner to the conjecture [3] that life resides in the in the inter-
section of real and p-adic worlds. At WCW level this would mean that the equations for the
partonic 2-surfaces makes sense in any completion of rationals. For algebraic partonic 2-surfaces
this is indeed the case if arbitrary high-dimensional algebraic extensions of p-adic numbers are
allowed. Taking this seriously one can ask whether the existence of the representations of Galois
group at the level of WCW is an essential aspect of what it is to be living. Could one assign
Galois quantum numbers to the quantum states of living system? These would be realized in
the discrete space provided by different quantum counterparts of a given integer and one would
have discrete wave functions in these discrete spaces.

4. One also learns from Wikipedia that any compact Riemann surface is a projective variety and
thus representable using polynomial equations in projective space. It also allows an imbedding as
as a surface n 3-dimensional complex projective space CP3. Wikipedia states that if compactness
condition is added the Riemann the surface is necessarily algebraic: here however algebraic
means rational functions with arbitrary real or complex coefficients. Above it means algebraic
coefficients. Whether this CP3 could have anything to do with the twistor space appearing in
Witten’s twistor string model [1] and also in the speculated twistorial formulation of TGD [4]
remains an open question.

5. Modular invariance plays central role in TGD [1], and a natural additional condition on the
representations of AGG would be that the quantum states in WCW are modular invariant.
The action of AGG induces a well-defined action on the conformal moduli of the partonic 2-
surfaces and therefore on Teichmueller parameters. This discrete action need not be simple -
say linear- but it would be action in n-dimensional space. Modular invariance requires that the
action of AGG transformation induces a conformal scaling of the induced metric and changes
the conformal moduli by an action of modular group Sl(2g, Z). For torus topology this group
is Sl(2,Z) appearing in modular invariant functions assigned to the representations of AGG in
the group algebra of adelic algebraic groups.

6. Could the combination of dessins d’enfant as a geometric representation and adelic matrix rep-
resentations for the abelianizer of the isotropy group GI of dessin d’enfant provide additional
insights in to Langlands conjecture? The problem is that AGG elements do not leave MGGA
invariant.

7. Bi-partite graphs appear also in the construction of inclusions of hyper-finite factors of type II1
(HFF). The TGD inspired proposal that AGG allows identification as S∞ and the group algebra
of permutation group S∞ is HFF. In optimistic mood one might see dessins d’enfant as a piece
of evidence for this identification of AGG and adele formed from the Galois group of quantum
p-adic integers as its commutator group.

http://en.wikipedia.org/wiki/Riemann_surface
http://en.wikipedia.org/wiki/Bipartite_graph
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4 Appendix: Basic concepts and ideas related to the number
theoretic Langlands program

The following representation of the basic ideas of Langlands program reflects my very limited under-
standing of the extremely refined conceptual framework involved. This pieces of text can be found
almost as such also in [2] and Ed Frenkel provides more detailed discussion in his article [14, 13].

4.1 Langlands correspondence and AGG

The representations of group carry information about the group and the natural question is how to
represent the AGG and deduce invariants of AGG in this manner. Eigenvalues for the representation
matrices are invariants characterizing conjugacy classes of the group. The generators of MAGG abelled
by primes define so called Frobenius elements and the eigenvalues and traces for their representation
matrics defined invariants of this kind. The big question is how to construct representations of the
AGG. Langlands program is an attempt to answer this question.

1. 1-D representations of AGG corresponds those of maximal Abelian Galois group which is the
factor group of AGG by its commutator group. The natural intuitive guess is that the n-
dimensional representations of AGG in the group algebra of adelic algebraic group Gl(n) could
provide higher-dimensional representations of AGG. Gl(n) would give rise to a kind of AGG spin.
The action of AGG commutator group would be mapped toGLn(A) action. Does this mean that
AGG is mapped homomorphically to adelic matrices in Gln(A) as one might first think? I am
not able to answer the question. From Wikipedia one learns that so called Langlands dual [9]
extends AGG by the algebraic Lie group GL so that one obtains semi-direct product of complex
GL with the AGG which acts on the algebraic root data of GL. The adelic representations of GL
are said to control those of G. In this form the correspondence gives information about group
representations rather than number theory.

Remark: One naive guess would be that one could realize the representations of AGG by adjoint
action x → gxg−1 in the commutator subgroup of AGG, which is maximal normal subgroup
and closed with respect to this action. Also the adjoint action of the factor group defined my
maximal Abelian group in this group could define representation? The guess of the outsider is
that the practical problem is that the commutator group is not known.

2. Number theoretic Langlands program is however more than study of the relationships between
representations of G(F ) and its adelic variant GL(AF ). The basic conjecture is the existence
of duality between number theory and harmonic analysis. On number theoretical side one
typically studies algebraic curves. Typical question concerns the number of rational points in
modulo p approximation to the equations determining the algebraic curve. The conjecture about
number theoretic Langlands correspondence was inspired by the observation that Fourier series
expansions of automorphic forms code via their coefficients this kind of data and the proof of
Fermat’s theorem can be seen as application of this correspondence.

There is support for the conjecture that adelic representations carry purely number theoretic
information in the case of Gl(n). The number theoretical invariants defined by the trace for
the representation matrix for the Frobenius element generating the Abelian Galois group would
corresponds to the trace of so called Hecke operator at the side of the harmonic analysis.

3. Intuitive motivations for the Langlands duality come from the fact the notion of algebraic surface
defined by a polynomials with integer coefficients is number theoretically universal: the argument
can belong to finite field, rational numbers or their extension, real numbers, or any p-adic number
field and can represent even element of function field. Function fields defined algebraic functions
at algebraic curves in finite fields are somehow between classical number fields and function
fields associated with Riemann surfaces to which one can apply the tools of harmonic analysis.

4.2 Abelian class field theory and adeles

The context leading to the discovery of adeles was so called Abelian class field theory. Typically
the extension of rationals means that the ordinary primes decompose to the primes of the extension

http://en.wikipedia.org/wiki/Langlands_dual
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just like ordinary integers decompose to ordinary primes. Some primes can appear several times in
the decomposition of ordinary non-square-free integers and similar phenomenon takes place for the
integers of extension. If this takes place one says that the original prime is ramified. The simplest
example is provided Gaussian integers Q(i). All odd primes are unramified and primes p mod 4 = 1
they decompose as p = (a + ib)(a − ib) whereas primes p mos 4 = 3 do not decompose at all. For
p = 2 the decomposition is 2 = (1 + i)(1− i) = −i(1 + i)2 = i(1− i)2 and is not unique {±1,±i} are
the units of the extension. Hence p = 2 is ramified.

There goal of Abelian class field theory is to understand the complexities related to the factorization
of primes of the original field. The existence of the isomorphism between ideles modulo rationals -
briefly ideles - and maximal Abelian Galois Group of rationals (MAGG) is one of the great discoveries
of Abelian class field theory. Also the maximal - necessarily Abelian - extension of finite field Gp
has Galois group isomorphic to the ideles. The Galois group of Gp(n) with pn elements is actually
the cyclic group Zn. The isomorphism opens up the way to study the representations of Abelian
Galois group and also those of the AGG. One can indeed see these representations as special kind
of representations for which the commutator group of AGG is represented trivially playing a role
analogous to that of gauge group.

This framework is extremely general. One can replace rationals with any algebraic extension of
rationals and study the maximal Abelian extension or algebraic numbers as its extension. One can
consider the maximal algebraic extension of finite fields consisting of untion of all all finite fields
associated with given prime and corresponding adele. One can study function fields defined by the
rational functions on algebraic curve defined in finite field and its maximal extension to include Taylor
series. The isomorphisms applies in al these cases. One ends up with the idea that one can represent
maximal Abelian Galois group in function space of complex valued functions in GL(A) right invariant
under the action of GL(Q). A denotes here adeles.

Chevalley. Class field theory.
Abelian extensions of global fields. Classical number fields or functions on curves over finite fields.

Finite Abelian extensions–classes of ideals of the field (prime ideas for rationals- some primes do not
have unique factorization to primes of extension). Hilbert class field: maximal unramified extension:
primes split uniquely. Resiprocity homomorphism from idele class group of global field to the Galois
group of the maximal Abelian extension. Adelic algebraic group. Elements have values in adele ring.
Linear algebraic group nice. Idele group! Inverses exist. Sum of invertible ideles need not be idele??
Ideles is not a field!!!

Idele class group
Ring of integral adeles AZ = R× Ẑ. Ẑ =

∏
p Zp. Product of p-adic integers for all p.

The ring of rational adeles. AQ = Q⊗ AZ . Entanglement between Q and AZ and multiplication
by Z: all factors of AZ multiplied by Z. Interpretation as point of infinite-D linear space!!! Should be
correct.

Another definition for rational adles. R ×
∏′
pQp. All but finite number of Qp elements integers.

This looks physically natural definition. Multiplication by scalar in tensor product. Either factor.
Not both as in Cartesian product!!! On can take out negative powers of pi and if their number is not
finite the resulting number vanishes.

Does the multiplication by scalar have special consequences? Multiplication by rational as tensor
product. States the idea that rationals are common for all p-adic factors!!!

Rational adeles ok and possibility to share the factors of the rational between the factors Qp. Just
what one naively expects. Be cautious with tensor products!!! Multiplication by 1/n: all factors.
Only for factors of n the multiplication means genuine division producing p-adic number which is not
an integer!!!!

The quotient of the multiplicative group of ideles by number field homomorphic to the maximal
Abelian Galois group!

1. Miten unifioida reaali- ja p-adiset sektorit teorialle. Voisiko ajatella etta adelet tai idelet korvaisi-
vat reaaliluvut teorian formuloinnissa. Voitaisiiko vaikutusperiaate formuloida naiden avulla.
Vaikutuksen exponentti tulona p-adisista ja reaalisesta ja p-adisista eksponenteista?

2. Spinorit adelisina spinoreina. Upotus- ja avaruusaikakoordinaatit adelisina koordinaatteina.
Algebrallisuus olisi olennaista. Rationaaliset kertoimet. Tastakin voidaan yleistaa algebrallisiin
kertoimiin. Mukana olisi reaalinen sektori integraalisten adelien tasolla. Mita rationaalisuus
adeleille merkitsee?

http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Idele_class_group
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3. Saattaisiin automaattisesti teorian symmetrioille adeliset matriisi-esitykset ja yhteys Langlands
vastaavuuteen. Abelisen Galois ryhman esitykset automaattisesti. Frobenius generaattorin
identifiointi antaisi Galois invariantteja ko. esityksissa. Frobenius eigenvalues. Hecke oper-
aattori. Tata vastaavuutta en ymmarra kunnolla. Miten reaaliluvut ja theta/zeta functiot
tulevat mukaan.

4. Adeleihin liittyvat eri lukukunnat ovat riippumattomia siina mielessa etta kerto- ja yhteen lasku
ja naiden kaanteisoperaatiot ovat lokaaleja p:n suhteen.

5. Entapa algebralliset yhtalot avaruusaikapinnoille- vaikkapa partonisille pinnoille. Onko sama
yhtalo voimassa jokaisessa lukukunnassa jollain saataisiin algebrallisia kopioita. Pateeko tama
reaali- ja p-adisten maailmojen leikkauksessa. Enta yleisemmin. Onko jokaisessa sektorissa
voimassa omat yhtalonsa partonisille 2-pinnoille. Tata suosisi olemassa oleva kuva. Olisi ky-
seessa olennaisesti kirjanpidollinen kikka jossa koko valtaisa lukukuntien kirjo unifioitaisiin.

6. Adele-analyyttisyys mielekas? Voidaanko puhua algebrallisista pinnoista adeleleille? Adelen
potenssit ovat maariteltyja. Polynomit maariteltyja. Algebralliset ryhmat. Myos determinantti
ehto. Rationaalifunktiot eivat. Ideleilla kaanteis-idele mutta idelet eivat suljettuja summauksen
suhteen. Vain polynomien maarittelemat adele-analyyttiset pinnat saattaisivat olla mielekkaita.
Derivaatan kasite ei maaritelty koska inverssi ei ole yleisessa tapauksessa maaritelty.

7. Mita tarkoittaisi se, etta rationaalipisteet ovat yhteisia reaalisille ja p-adisille pinnoille? Ratio-
naalisen adelen kasite konstitentti taman vaatimuksen kanssa. Tama on se mika pitaisi ymmar-
taa. Onko pelkastaan yhteisista rationaalipisteista kyse. Kanoninen identifikaatio joka kuvaa
reaaliluvuille adelen tekijat. Kvanttirationaalit. Miten tama realisoitasiin adeleiden tasolla.
Kvantti-adelet. Mita kanoninen identifikaatio merkitsee naille. p-Adiset sektorit projisoidaan
reaaliseen sektoriin projektiolla jonka maarittelee kanoninen identifikaatio.

Minimaali-tulkinta: adelisessa kuvassa kootaan vain yhteen reaali- ja p-adiset fysiikat. Klas-
sisella tasolla ihan ok. Mahdollinen tulkinta Galois ryhman alkioina on kuitenkin uutta!!!
Lisana rengas ominaisuus multiplikatiivisen ryhma-ominaisuuden lisaksi. Tama on aarimmaisen
ei-triviaalia ja tekee mahdolliseksi lineaari-ryhmista ja niiden aliryhmista jotka maariteltava
polynomi-yhtaloiden avuilla jottei jouduta tekemisiin inverssien kanssa.

Mita merkitsivat adeliset algebralliset ryhmat. Onko tassa jotain.

4.3 Langlands correspondence and modular invariance

A strong motivation for Langlands correspondence is modular invariance - or rather its restricted
form - which emerges in both number theory and in the automorphic representations of Gl2 and
relates directly to the ramification of primes for Galois extensions- now maximal Abelian extension.
In TGD framework the restricted modular invariance could have interpretation in terms of concrete
representations of AGG involving the action of AGG on the adelic variants of Teichmueller parameters
characterizing the algebraic surfaces its variants in various number fields.

It is not necessary to know the explicit action of AGG to modular parameters. What is however
needed is modular invariance in some sense. The first - and hard-to-realize - option is that allowed
subgroup of AGG leaves the conformal equivalence class of Riemann surface invariant. Second option
is that the action of both AGG and modular group Sl(2g, Z) or its subgroup leave the states of
representation invariant. This is the case if AGG induces Gl2g transformations in each Cartesian
factor of the adele and the states defined in the group algebra of Gl2g are invariant. For ramified
primes however modular invariance can break down to subgroup of Sl2g. These conditions lead to
automorphic modular forms.

These arguments are very heuristic and following arguments due to Frenkel give better view about
the situation.

1. Gal(Q/Q) is a poorly understood concept. The idea is to define this group via its representations
and construct representations in terms of group GL(2, A) and more generally GL(n,A), where
A refers to adeles. Also representations in any reductive group can be considered. The so
called automorphic representations of these groups have a close relationship to the modular
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forms [11] , which inspires the conjecture that n-dimensional representations of Gal(Q/Q) are
in 1-1 correspondence with automorphic representations of GL(n,A).

2. This correspondence predicts that the invariants characterizing the n-dimensional representa-
tions of Gal(Q/Q) resp. GL(n,A) should correspond to each other. The invariants at Galois
sides are the eigenvalues of Frobenius conjugacy classes Frp in Gal(Q/Q). The non-trivial im-
plication is that in the case of l-adic representations the latter must be algebraic numbers. The
ground states of the representations of Gl(n,R) are in turn eigen states of so called Hecke opera-
tors Hp,k, k = 1, .., n acting in group algebra of Gl(n,R). The eigenvalues of Hecke operators for
the ground states of representations must correspond to the eigenvalues of Frobenius elements
if Langlands correspondence holds true.

3. The characterization of the K-valued representations of reductive groups in terms of Weil group
WF associated with the algebraic extension K/F allows to characterize the representations in
terms of homomorphisms of Weil group to the Langlands dual GL(F ) of G(F ).

4.4 Correspondence between n-dimensional representations of Gal(F/F )
and representations of GL(n,AF ) in the space of functions in GL(n, F )\GL(n,AF )

The starting point is that the maximal abelian subgroup Gal(Qab/Q) of the Galois group of algebraic
closure of rationals is isomorphic to the infinite product Ẑ =

∏
p Z
×
p , where Z×p consists of invertible

p-adic integers [14] .
By introducing the ring of adeles one can transform this result to a slightly different form. Adeles

are defined as collections ((fp)p∈P , f∞), P denotes primes, fp ∈ Qp, and f∞ ∈ R, such that fp ∈ Zp for

all p for all but finitely many primes p. It is easy to convince oneself that one has AQ = (Ẑ⊗Z Q)×R
and Q×\AQ = Ẑ × (R/Z) . The basic statement of abelian class field theory is that abelian Galois
group is isomorphic to the group of connected components of F×\A×F .

This statement can be transformed to the following suggestive statement:
1) 1-dimensional representations of Gal(F/F ) correspond to representations of GL(1, AF ) in the

space of functions defined in GL(1, F )\GL(1, AF ).
The basic conjecture of Langlands was that this generalizes to n-dimensional representations of

Gal(F/F ).
2) The n-dimensional representations of Gal(F/F ) correspond to representations of GL(n,AF ) in

the space of functions defined in GL(n, F )\GL(n,AF ).
This relation has become known as Langlands correspondence.
It is interesting to relate this approach to that discussed in this chapter.

1. In TGD framework adeles do not seem natural although p-adic number fields and l-adic repre-
sentations have a natural place also here. The new view about numbers is of course an essentially
new element allowing geometric interpretation.

2. The irreducible representations of Gal(F , F ) are assumed to reduce to those for its finite sub-
group G. If Gal(F , F ) is identifiable as S∞, finite dimensional representations cannot correspond
to ordinary unitary representations since, by argument to be represented later, their dimension
is of order order n→∞ at least. Finite Galois groups can be however interpreted as a sub-group
of outer automorphisms defining a sub-factor of Gal(Q,Q) interpreted as HFF. Outer automor-
phisms result at the limit n → ∞ from a diagonal imbedding of finite Galois group to its nth

Cartesian power acting as automorphisms in S∞. At the limit n→∞ the imbedding does not
define inner automorphisms anymore. Physicist would interpret the situation as a spontaneous
symmetry breaking.

3. These representations have a natural extension to representations of Gl(n, F ) and of general
reductive groups if also realized as point-wise symmetries of sub-factors of HFF. Continuous
groups correspond to outer automorphisms of group algebra of S∞ not inducible from outer
automorphisms of Sinfty. That finite Galois groups and Lie groups act in the same representation
space should provide completely new insights to the understanding of Langlands correspondence.

4. The l-adic representations of Gal(Q/Q) could however change the situation. The representations
of finite permutation groups in R and in p-adic number fields p < n are more complex and
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actually not well-understood [12] . In the case of elliptic curves [14] (say y2 = x3 + ax +
b, a, b rational numbers with 4a3 + 27b2 6= 0) so called first etale cohomology group is Q2

l

and thus 2-dimensional and it is possible to have 2-dimensional representations Gal(Q/Q) →
GL(2, Ql). More generally, l-adic representations σ of of Gal(F/F )→ GL(n,Ql) is assumed to
satisfy the condition that there exists a finite extension E ⊂ Ql such that σ factors through a
homomorphism to GL(n,E).

Assuming Gal(Q/Q) = S∞, one can ask whether l-adic or adelic representations and the repre-
sentations defined by outer automorphisms of sub-factors might be two alternative manners to
state the same thing.

4.4.1 Frobenius automorphism

Frobenius automorphism is one of the basic notions in Langlands correspondence. Consider a field
extension K/F and a prime ideal v of F (or prime p in case of ordinary integers). v decomposes
into a product of prime ideals of K: v =

∏
wk if v is unramified and power of this if not. Consider

unramified case and pick one wk and call it simply w. Frobenius automorphisms Frv is by definition
the generator of the Galois group Gal(K/w,F/v), which reduces to Z/nZ for some n.

Since the decomposition group Dw ⊂ Gal(K/F ) by definition maps the ideal w to itself and
preserves F point-wise, the elements of Dw act like the elements of Gal(OK/w,OF /v) (OX denotes
integers of X). Therefore there exists a natural homomorphism Dw : Gal(K/F )→ Gal(OK/w,OF /v)
(= Z/nZ for some n). If the inertia group Iw identified as the kernel of the homomorphism is trivial
then the Frobenius automorphism Frv, which by definition generates Gal(OK/w,OF /v), can be
regarded as an element of Dw and Gal(K/F ). Only the conjugacy class of this element is fixed since
any wk can be chosen. The significance of the result is that the eigenvalues of Frp define invariants
characterizing the representations of Gal(K/F ). The notion of Frobenius element can be generalized
also to the case of Gal(Q/Q) [14] . The representations can be also l-adic being defined in GL(n,El)
where El is extension of Ql. In this case the eigenvalues must be algebraic numbers so that they make
sense as complex numbers.

Two examples discussed in [14] help to make the notion more concrete.

1. For the extensions of finite fields F = G(p, 1) Frobenius automorphism corresponds to x → xp

leaving elements of F invariant.

2. All extensions of Q having abelian Galois group correspond to so called cyclotomic extensions
defined by polynomials PN (x) = xN+1. They have Galois group (Z/NZ)× consisting of integers
k < n which do not divide n and the degree of extension is φ(N) = |Z/NZ×|, where φ(n) is Euler
function counting the integers n < N which do not divide N . Prime p is unramified only if it
does not divide n so that the number of ”bad primes” is finite. The Frobenius equivalence class
Frp in Gal(K/F ) acts as raising to pth power so that the Frp corresponds to integer p mod n.

4.4.2 Automorphic representations and automorphic functions

In the following I want to demonstrate that I have at least tried to do my home lessons by trying to
reproduce the description of [14] for the route from automorphic adelic representations of GL(2, R)
to automorphic functions defined in upper half-plane.

1. Characterization of the representation

The representations ofGL(2, Q) are constructed in the space of smooth bounded functionsGL(2, Q)\GL(2, A)→
C or equivalently in the space of GL(2, Q) left-invariant functions in GL(2, A). A denotes adeles and
GL(2, A) acts as right translations in this space. The argument generalizes to arbitrary number field
F and its algebraic closure F .

1. Automorphic representations are characterized by a choice of compact subgroup K of GL(2, A).
The motivating idea is the central role of double coset decompositions G = K1AK2, where Ki are
compact subgroups and A denotes the space of double cosets K1gK2 in general representation
theory. In the recent case the compact group K2 ≡ K is expressible as a product K =

∏
pKp×

O2.
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To my best understanding N =
∏
pekk in the cuspidality condition gives rise to ramified primes

implying that for these primes one cannot find GL2(Zp) invariant vectors unlike for others.
In this case one must replace this kind of vectors with those invariant under a subgroup of
GL2(Zp) consisting of matrices for which the component c satisfies c mod pnp = 0. Hence for
each unramified prime p one has Kp = GL(2, Zp). For ramified primes Kp consists of SL(2, Zp)
matrices with c ∈ pnpZp. Here pnp is the divisor of conductor N corresponding to p. K-finiteness
condition states that the right action of K on f generates a finite-dimensional vector space.

2. The representation functions are eigen functions of the Casimir operator C of gl(2, R) with eigen-
value ρ so that irreducible representations of gl(2, R) are obtained. An explicit representation
of Casimir operator is given by

C =
X2

0

4
+X+X −+X−X+ ,

where one has

X0

(
0 i
−i 0

)
,

(
1 ∓i
∓i −1

)
.

3. The center A× of GL(2, A) consists of A× multiples of identity matrix and it is assumed f(gz) =
χ(z)f(g), where χ : A× → C is a character providing a multiplicative representation of A×.

4. Also the so called cuspidality condition∫
Q\NA

f(

(
1 u
0 1

)
g)du = 0

is satisfied [14] . Note that the integration measure is adelic. Note also that the transformations
appearing in integrand are an adelic generalization of the 1-parameter subgroup of Lorentz
transformations leaving invariant light-like vector. The condition implies that the modular
functions defined by the representation vanish at cusps at the boundaries of fundamental domains
representing copies Hu/Γ0(N), where N is so called conductor. The ”basic” cusp corresponds
to τ = i∞ for the ”basic” copy of the fundamental domain.

The groups gl(2, R), O(2) and GL(2, Qp) act non-trivially in these representations and it can
be shown that a direct sum of irreps of GL(2, AF ) × gl(2, R) results with each irrep occurring
only once. These representations are known as cuspidal automorphic representations.

The representation space for an irreducible cuspidal automorphic representation π is tensor product
of representation spaces associated with the factors of the adele. To each factor one can assign ground
state which is for un-ramified prime invariant under Gl2(Zp) and in ramified case under Γ0(N). This
ground states is somewhat analogous to the ground state of infinite-dimensional Fock space.

2. From adeles to Γ0(N)\SL(2, R)

The path from adeles to the modular forms in upper half plane involves many twists.

1. By so called central approximation theorem the group GL(2, Q)\GL(2, A)/K is isomorphic to
the group Γ0(N)\GL+(2, R), where N is conductor [14]. This means enormous simplification
since one gets ride of the adelic factors altogether. Intuitively the reduction corresponds to
the possibility to interpret rational number as collection of infinite number of p-adic rationals
coming as powers of primes so that the element of Γ0(N) has interpretation also as Carteisian
product of corresponding p-adic elements.

2. The group Γ0(N) ⊂ SL(2, Z) consists of matrices(
a b
c d

)
, c mod N = 0.
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+ refers to positive determinant. Note that Γ0(N) contains as a subgroup congruence subgroup
Γ(N) consisting of matrices, which are unit matrices modulo N . Congruence subgroup is a nor-
mal subgroup of SL(2, Z) so that also SL(2, Z)/Γ0(N) is group. Physically modular group Γ(N)
would be rather interesting alternative for Γ0(N) as a compact subgroup and the replacement
Kp = Γ0(pkp)→ Γ(pkp) of p-adic groups adelic decomposition is expected to guarantee this.

3. Central character condition together with assumptions about the action of K implies that the
smooth functions in the original space (smoothness means local constancy in p-adic sectors:
does this mean p-adic pseudo constancy?) are completely determined by their restrictions to
Γ0(N)\SL(2, R) so that one gets rid of the adeles.

3. From Γ0(N)\SL(2, R) to upper half-plane Hu = SL(2, R)/SO(2)

The representations of (gl(2, C), O(2)) come in four categories corresponding to principal series,
discrete series, the limits of discrete series, and finite-dimensional representations [14] . For the discrete
series representation π giving square integrable representation in SL(2, R) one has ρ = k(k − 1)/4,
where k > 1 is integer. As sl2 module, π∞ is direct sum of irreducible Verma modules with highest
weight −k and lowest weight k. The former module is generated by a unique, up to a scalar, highest
weight vector v∞ such that

X0v∞ = −kv∞ , X+v∞ = 0 .

The latter module is in turn generated by the lowest weight vector(
1 0
0 −1

)
v∞ .

This means that entire module is generated from the ground state v∞, and one can focus to the
function φπ on Γ0(N)\SL(2, R) corresponding to this vector. The goal is to assign to this function
SO(2) invariant function defined in the upper half-plane Hu = SL(2, R)/SO(2), whose points can be
parameterized by the numbers τ = (a+ bi)/(c+ di) determined by SL(2, R) elements. The function
fπ(g) = φπ(g)(ci+ d)k indeed is SO(2) invariant since the phase exp(ikφ) resulting in SO(2) rotation
by φ is compensated by the phase resulting from (ci+ d) factor. This function is not anymore Γ0(N)
invariant but transforms as

fπ((aτ + b)/(cτ + d)) = (cτ + d)kfπ(τ)

under the action of Γ0(N) The highest weight condition X+v∞ implies that f is holomorphic function
of τ . Such functions are known as modular forms of weight k and level N . It would seem that the
replacement of Γ0(N) suggested by physical arguments would only replace Hu/Γ0(N) with Hu/Γ(N).

fπ can be expanded as power series in the variable q = exp(2πτ) to give

fπ(q) =

∞∑
n=0

anq
n . (4.1)

Cuspidality condition means that fπ vanishes at the cusps of the fundamental domain of the action of
Γ0(N) on Hu. In particular, it vanishes at q = 0 which which corresponds to τ = −∞. This implies
a0 = 0. This function contains all information about automorphic representation.

4.4.3 Hecke operators

Spherical Hecke algebra (which must be distinguished from non-commutative Hecke algebra associated
with braids) can be defined as algebra of GL(2, Zp) bi-invariant functions on GL(2, Qp) with respect
to convolution product. This algebra is isomorphic to the polynomial algebra in two generators H1,p

and H2,p and the ground states vp of automorphic representations are eigenstates of these operators.
The normalizations can be chosen so that the second eigenvalue equals to unity. Second eigenvalue
must be an algebraic number. The eigenvalues of Hecke operators Hp,1 correspond to the coefficients
ap of the q-expansion of automorphic function fπ so that fπ is completely determined once these
coefficients carrying number theoretic information are known [14] .
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The action of Hecke operators induces an action on the modular function in the upper half-plane
so that Hecke operators have also representation as what is known as classical Hecke operators. The
existence of this representation suggests that adelic representations might not be absolutely necessary
for the realization of Langlands program.

From TGD point of view a possible interpretation of this picture is in terms of modular invariance.
Teichmueller parameters of algebraic Riemann surface are affected by absolute Galois group. This
induces Sl(2g,Z) transformation if the action does not change the conformal equivalence class and a
more general transformation when it does. In the Gl2 case discussed above one has g = 1 (torus). This
change would correspond to non-trivial cuspidality conditions implying that ground state is invariant
only under subgroup of Gl2(Zp) for some primes. These primes would correspond to ramified primes
in maximal Abelian extension of rationals.
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